1
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
2
|
Guo R, Cen X, Ni BJ, Zheng M. Bioplastic polyhydroxyalkanoate conversion in waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122866. [PMID: 39405858 DOI: 10.1016/j.jenvman.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) have been proposed as a promising solution for plastic pollution due to their biodegradability and diverse applications. To promote PHA as a competitive commercial product, an attractive alternative is to produce and recover PHA in the use of mixed cultures such as waste activated sludge from wastewater treatment plants. PHA can accumulate in sludge with a potential range of 40%-65% g PHA/g VSS. However, wider challenges with PHA production efficiency, stability, and economic viability still persist for PHA application. This work provides an overview of the current understanding and status of PHA bioconversion in waste sludge with particular attention given to metabolic pathways, operation modes, factors affecting the process, and applications. Challenges and future prospectives for PHA bioconversion in sludge are discussed.
Collapse
Affiliation(s)
- Rui Guo
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
3
|
Ramandani AA, Sun YM, Lan JCW, Lim JW, Chang JS, Srinuanpan S, Khoo KS. Upcycling food waste as a low-cost cultivation medium for Chlorella sp. microalgae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39319876 DOI: 10.1002/jsfa.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Global food loss and waste have raised environmental concerns regarding the generation of greenhouse gases (e.g., carbon dioxide and methane gas), which directly contribute to climate change. To address these concerns, the present research aims to upcycle food waste into an alternative culture medium for the cultivation of microalgae. Various parameters including pretreatment of food waste (i.e., autoclave and non-autoclave), concentration of food waste culture medium (i.e., 10%, 30%, 50%, 70%, 90% and 100%), harvesting efficiency and biochemical compounds of Chlorella sp. microalgae were carried out. RESULTS Based on the preliminary findings, the highest biomass concentration obtained from 10% food waste culture medium in the autoclave for Chlorella sp., including strains FSP-E, ESP-31 and CY-1, were 2.869 ± 0.022, 2.385 ± 0.018 and 0.985 ± 0.0026 g L-1, respectively. Since Chlorella vulgaris FSP-E exhibited the highest biomass concentration, this microalgal strain was selected to examine the subsequent parameters. Cultivation of C. vulgaris FSP-E in 100FW achieves a biomass concentration of 4.465 ± 0.008 g L-1 with biochemical compounds of 6.94 ± 1.396, 248.24 ± 0.976 and 406.23 ± 0.593 mg g-1 for lipids, carbohydrates and proteins, respectively. CONCLUSION This study shows that using food waste as an alternative culture medium for C. vulgaris FSP-E can achieve substantial biomass productivity and biochemical content. This research work would contribute to the concept of net zero emission and transitioning toward a circular bioeconomy by upcycling food waste as an alternative culture medium for the cultivation of microalgae. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adityas Agung Ramandani
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yi-Ming Sun
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Chiang Mai Research Center for Carbon Capture and Storage, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai, Thailand
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Oliveira DTD, Mescouto VAD, Paiva RDJ, Silva SRFD, Santos LAB, Serra GM, Xavier LP, Noronha RCR, Nascimento LASD. Use of Residual Lignocellulosic Biomass and Algal Biomass to Produce Biofuels. Int J Mol Sci 2024; 25:8299. [PMID: 39125868 PMCID: PMC11312266 DOI: 10.3390/ijms25158299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Efforts are intensifying to identify new biofuel sources in response to the pressing need to mitigate environmental pollutants, such as greenhouse gases, which are key contributors to global warming and various worldwide calamities. Algae and microalgae present themselves as excellent alternatives for solid-gaseous fuel production, given their renewable nature and non-polluting characteristics. However, making biomass production from these organisms economically feasible remains a challenge. This article collates various studies on the use of lignocellulosic waste, transforming it from environmental waste to valuable organic supplements for algae and microalgae cultivation. The focus is on enhancing biomass production and the metabolites derived from these biomasses.
Collapse
Affiliation(s)
- Deborah Terra de Oliveira
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Vanessa Albuquerque de Mescouto
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Rutiléia de Jesus Paiva
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Sara Roberta Ferreira da Silva
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Luiz Augusto Barbosa Santos
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Gustavo Marques Serra
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Luciana Pereira Xavier
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | | | - Luís Adriano Santos do Nascimento
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| |
Collapse
|
5
|
Ansari SA, Kumar T, Sawarkar R, Gobade M, Khan D, Singh L. Valorization of food waste: A comprehensive review of individual technologies for producing bio-based products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121439. [PMID: 38870792 DOI: 10.1016/j.jenvman.2024.121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The escalating global concerns about food waste and the imperative need for sustainable practices have fuelled a burgeoning interest in the valorization of food waste. This comprehensive review delves into various technologies employed for converting food waste into valuable bio-based products. The article surveys individual technologies, ranging from traditional to cutting-edge methods, highlighting their respective mechanisms, advantages, and challenges. SCOPE AND APPROACH The exploration encompasses enzymatic processes, microbial fermentation, anaerobic digestion, and emerging technologies such as pyrolysis and hydrothermal processing. Each technology's efficacy in transforming food waste into bio-based products such as biofuels, enzymes, organic acids, prebiotics, and biopolymers is critically assessed. The review also considers the environmental and economic implications of these technologies, shedding light on their sustainability and scalability. The article discusses the role of technological integration and synergies in creating holistic approaches for maximizing the valorization potential of food waste. Key finding and conclusion: This review consolidates current knowledge on the valorization of food waste, offering a comprehensive understanding of individual technologies and their contributions to the sustainable production of bio-based products. The synthesis of information presented here aims to guide researchers, policymakers, and industry stakeholders in making informed decisions to address the global challenge of food waste while fostering a circular and eco-friendly economy.
Collapse
Affiliation(s)
- Suhel A Ansari
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Tinku Kumar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Riya Sawarkar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Mahendra Gobade
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Debishree Khan
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Lal Singh
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| |
Collapse
|
6
|
Handayati Y, Widyanata C. Effective food waste management model for the sustainable agricultural food supply chain. Sci Rep 2024; 14:10290. [PMID: 38704396 PMCID: PMC11069547 DOI: 10.1038/s41598-024-59482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
The extensive research examines the current state of agricultural food supply chains, with focus on waste management in Bandung Regency, Indonesia. The study reveals that a significant proportion of food within the agricultural supply chain goes to waste and discusses the various challenges and complexities involved in managing food waste. The research presents a conceptual model based on the ADKAR change management paradigm to promote waste utilization, increase awareness and change people's behaviors. The model emphasizes the importance of creating awareness, fostering desire, providing knowledge, implementing changes, and reinforcing and monitoring the transformation process. It also addresses the challenges, barriers, and drivers that influence waste utilization in the agricultural supply chain, highlighting the need for economic incentives and a shift in public awareness to drive meaningful change. Ultimately, this study serves as a comprehensive exploration of food waste management in Bandung Regency, shedding light on the complexities of the issue and offering a systematic approach to transition towards more sustainable waste utilization practices.
Collapse
Affiliation(s)
- Yuanita Handayati
- School of Business and Management (SBM), Bandung Institute of Technology, Bandung, 40116, Indonesia.
| | - Chryshella Widyanata
- School of Business and Management (SBM), Bandung Institute of Technology, Bandung, 40116, Indonesia
| |
Collapse
|
7
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
8
|
de Morais EG, Sampaio ICF, Gonzalez-Flo E, Ferrer I, Uggetti E, García J. Microalgae harvesting for wastewater treatment and resources recovery: A review. N Biotechnol 2023; 78:84-94. [PMID: 37820831 DOI: 10.1016/j.nbt.2023.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Microalgae-based wastewater treatment has been conceived to obtain reclaimed water and produce microalgal biomass for bio-based products and biofuels generation. However, microalgal biomass harvesting is challenging and expensive, hence one of the main bottlenecks for full-scale implementation. Finding an integrated approach that covers concepts of engineering, green chemistry and the application of microbial anabolism driven towards the harvesting processes, is mandatory for the widespread establishment of full-scale microalgae wastewater treatment plants. By using nature-based substances and applying concepts of chemical functionalization in already established harvesting methods, the costs of harvesting processes could be reduced while preventing microalgae biomass contamination. Moreover, microalgae produced during wastewater treatment have unique culture characteristics, such as the consortia, which are primarily composed of microalgae and bacteria, that should be accounted for prior to downstream processing. The aim of this review is to examine recent advances in microalgal biomass harvesting and recovery in wastewater treatment systems, considering the impact of consortia variability. The costs of available harvesting technologies, such as coagulation/flocculation, coupled to sedimentation and differential air flotation, are provided. Additionally, promising technologies are discussed, including autoflocculation, bioflocculation, new filtration materials, nanotechnology, microfluidic and magnetic methods.
Collapse
Affiliation(s)
- Etiele Greque de Morais
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Igor Carvalho Fontes Sampaio
- CPID - Espírito Santo's Center for Research, Innovation and Development, Eliezer Batista hill, Jardim América, 29140-130 Cariacica, Espírito Santo, Brazil
| | - Eva Gonzalez-Flo
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Enrica Uggetti
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Joan García
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
9
|
Chong JWR, Tang DYY, Leong HY, Khoo KS, Show PL, Chew KW. Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae. Bioengineered 2023; 14:2244232. [PMID: 37578162 PMCID: PMC10431731 DOI: 10.1080/21655979.2023.2244232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hui Yi Leong
- ISCO (Nanjing) Biotech-Company, Nanjing, Jiangning, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Yang YF, Ye GB, Wang HJ, Li HY, Lin CSK, Zheng XF, Pugazhendhi A, Wang X. Utilization of lipidic food waste as low-cost nutrients for enhancing the potentiality of biofuel production from engineered diatom under temperature variations. BIORESOURCE TECHNOLOGY 2023; 387:129611. [PMID: 37541549 DOI: 10.1016/j.biortech.2023.129611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
The scarcity of natural fossil fuels presents a promising opportunity for the development of renewable microalgae-based biofuels. However, the current microalgae cultivation is unable to effectively address the high costs of the production of biofuels. To tackle this challenge, this study focused on recruiting engineered Phaeodactylum tricornutum (FabG-OE) to enhance biomass accumulation and lipid production by employing food waste hydrolysate under temperature variations. The biomass and lipid accumulations of FabG-OE were improved effectively in mixed culture medium and food waste hydrolysate at a volume ratio (v/v) of 80:20 at 30 °C. It was found that oxidative stress might contribute to the overexpression of lipogenic genes, thereby leading to lipogenesis at 30 °C. Upscaling cultivation of FabG-OE at 30 °C using a semi-continuous strategy and batch strategy was conducted to achieve 0.73 and 0.77 g/L/d of biomass containing 0.35 and 0.38 g/L/d of lipid, respectively. In summary, these findings provide valuable insights for advancing microalgae-based biofuel production.
Collapse
Affiliation(s)
- Yu-Feng Yang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang-Bin Ye
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Hua-Jun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Xiao-Fei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Xiang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
12
|
Vu DH, Mahboubi A, Root A, Heinmaa I, Taherzadeh MJ, Åkesson D. Application of Immersed Membrane Bioreactor for Semi-Continuous Production of Polyhydroxyalkanoates from Organic Waste-Based Volatile Fatty Acids. MEMBRANES 2023; 13:569. [PMID: 37367773 DOI: 10.3390/membranes13060569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Volatile fatty acids (VFAs) appear to be an economical carbon feedstock for the cost-effective production of polyhydroxyalkanoates (PHAs). The use of VFAs, however, could impose a drawback of substrate inhibition at high concentrations, resulting in low microbial PHA productivity in batch cultivations. In this regard, retaining high cell density using immersed membrane bioreactor (iMBR) in a (semi-) continuous process could enhance production yields. In this study, an iMBR with a flat-sheet membrane was applied for semi-continuous cultivation and recovery of Cupriavidus necator in a bench-scale bioreactor using VFAs as the sole carbon source. The cultivation was prolonged up to 128 h under an interval feed of 5 g/L VFAs at a dilution rate of 0.15 (d-1), yielding a maximum biomass and PHA production of 6.6 and 2.8 g/L, respectively. Potato liquor and apple pomace-based VFAs with a total concentration of 8.8 g/L were also successfully used in the iMBR, rendering the highest PHA content of 1.3 g/L after 128 h of cultivation. The PHAs obtained from both synthetic and real VFA effluents were affirmed to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a crystallinity degree of 23.8 and 9.6%, respectively. The application of iMBR could open an opportunity for semi-continuous production of PHA, increasing the feasibility of upscaling PHA production using waste-based VFAs.
Collapse
Affiliation(s)
- Danh H Vu
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Andrew Root
- MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland
| | - Ivo Heinmaa
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | | | - Dan Åkesson
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| |
Collapse
|
13
|
Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. ENVIRONMENTAL RESEARCH 2023; 225:115558. [PMID: 36842700 DOI: 10.1016/j.envres.2023.115558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food waste (FW) contains many nutritional components such as proteins, lipids, fats, polysaccharides, carbohydrates, and metal ions, which can be reused in some processes to produce value-added products. Furthermore, FW can be converted into biogas, biohydrogen, and biodiesel, and this type of green energy can be used as an alternative to nonrenewable fuel and reduce reliance on fossil fuel sources. It has been demonstrated in many reports that at the laboratory scale production of biochemicals using FW is as good as pure carbon sources. The goal of this paper is to review approaches used globally to promote turning FW into useable products and green energy. In this context, the present review article highlights deeply in a transdisciplinary manner the sources, types, impacts, characteristics, pre-treatment strategies, and potential management of FW into value-added products. We find that FW could be upcycled into different valuable products such as eco-friendly green fuels, organic acids, bioplastics, enzymes, fertilizers, char, and single-cell protein, after the suitable pre-treatment method. The results confirmed the technical feasibility of all the reviewed transformation processes of FW. Furthermore, life cycle and techno-economic assessment studies regarding the socio-economic, environmental, and engineering aspects of FW management are discussed. The reviewed articles showed that energy recovery from FW in various forms is economically feasible.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
14
|
Xu K, Zou W, Peng B, Guo C, Zou X. Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. BIOLOGY 2023; 12:biology12040594. [PMID: 37106794 PMCID: PMC10135979 DOI: 10.3390/biology12040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.
Collapse
Affiliation(s)
- Kaiwei Xu
- Institute of Systems Security and Control, College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
| | - Wen Zou
- State Owned SIDA Machinery Manufacturing, Xianyang 712201, China
| | - Biao Peng
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Chao Guo
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
15
|
Kee PE, Cheng YS, Chang JS, Yim HS, Tan JCY, Lam SS, Lan JCW, Ng HS, Khoo KS. Insect biorefinery: A circular economy concept for biowaste conversion to value-added products. ENVIRONMENTAL RESEARCH 2023; 221:115284. [PMID: 36640934 DOI: 10.1016/j.envres.2023.115284] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
With rapid growing world population and increasing demand for natural resources, the production of sufficient food, feed for protein and fat sources and sustainable energy presents a food insecurity challenge globally. Insect biorefinery is a concept of using insect as a tool to convert biomass waste into energy and other beneficial products with concomitant remediation of the organic components. The exploitation of insects and its bioproducts have becoming more popular in recent years. This review article presents a summary of the current trend of insect-based industry and the potential organic wastes for insect bioconversion and biorefinery. Numerous biotechnological products obtained from insect biorefinery such as biofertilizer, animal feeds, edible foods, biopolymer, bioenzymes and biodiesel are discussed in the subsequent sections. Insect biorefinery serves as a promising sustainable approach for waste management while producing valuable bioproducts feasible to achieve circular bioeconomy.
Collapse
Affiliation(s)
- Phei Er Kee
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hip Seng Yim
- Booya Holdings, Northpoint Mid Valley City, No. 1 Medan Syed Putra Utara, 59200 Kuala Lumpur, Malaysia
| | - John Choon Yee Tan
- Zelcos Biotech Sdn Bhd, No. 1 Lorong Nagasari 11, Taman Nagasari, 13600 Prai, Pulau Pinang, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia.
| | - Kuan Shiong Khoo
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Chong JWR, Khoo KS, Chew KW, Ting HY, Show PL. Trends in digital image processing of isolated microalgae by incorporating classification algorithm. Biotechnol Adv 2023; 63:108095. [PMID: 36608745 DOI: 10.1016/j.biotechadv.2023.108095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Identification of microalgae species is of importance due to the uprising of harmful algae blooms affecting both the aquatic habitat and human health. Despite this occurence, microalgae have been identified as a green biomass and alternative source due to its promising bioactive compounds accumulation that play a significant role in many industrial applications. Recently, microalgae species identification has been conducted through DNA analysis and various microscopy techniques such as light, scanning electron, transmission electron, and atomic force -microscopy. The aforementioned procedures have encouraged researchers to consider alternate ways due to limitations such as costly validation, requiring skilled taxonomists, prolonged analysis, and low accuracy. This review highlights the potential innovations in digital microscopy with the incorporation of both hardware and software that can produce a reliable recognition, detection, enumeration, and real-time acquisition of microalgae species. Several steps such as image acquisition, processing, feature extraction, and selection are discussed, for the purpose of generating high image quality by removing unwanted artifacts and noise from the background. These steps of identification of microalgae species is performed by reliable image classification through machine learning as well as deep learning algorithms such as artificial neural networks, support vector machines, and convolutional neural networks. Overall, this review provides comprehensive insights into numerous possibilities of microalgae image identification, image pre-processing, and machine learning techniques to address the challenges in developing a robust digital classification tool for the future.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Huong-Yong Ting
- Drone Research and Application Centre, University of Technology Sarawak, No.1, Jalan Universiti, 96000 Sibu, Sarawak, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
17
|
Zhi Ling RL, Kong LK, Lim LH, Teo SS, Ng HS, Lan JCW, Khoo KS. Identification of microorganisms from fermented biowaste and the potential for wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 218:115013. [PMID: 36495970 DOI: 10.1016/j.envres.2022.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Food loss or waste is a far-reaching problem and has indeed become a worrying issue that is growing at an alarming rate. Fruits and vegetables are lost or wasted at the highest rate among the composition of food waste. Furthermore, the world is progressing toward sustainable development; hence, an efficient approach to valorise fruit and vegetable waste (FVW) is necessary. A simple phenotypic characterisation of microbiota isolated from the fermented FVW was conducted, and its effectiveness toward wastewater treatment was investigated. Presumptive identification suggested that yeast is dominant in this study, accounting for 85% of total isolates. At the genus level, the enriched medium's microbial community consists of Saccharomyces, Bacillus and Candida. Ammonium in the wastewater can enhance certain bacteria to grow, such as lactic acid bacteria, resulting in decreased NH4+ concentration at the end of the treatment to 0.5 mg/L. In addition, the fermented biowaste could reduce PO43- by 90% after the duration of treatment. Overall, FVW is a valuable microbial resource, and the microbial population enables a reduction in organic matter such as NH4+ and PO43-. This study helps explore the function and improve the effectiveness of utilising biowaste by understanding the microorganisms responsible for producing eco-enzyme.
Collapse
Affiliation(s)
- Regina Leong Zhi Ling
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Lai Kuan Kong
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Lai Huat Lim
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Swee Sen Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia.
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Kuan Shiong Khoo
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Wang H, Hu X, Cui Y, Sobhi M, Xu X, Zan X, Zhu F, Ni J, Elshobary M, Huo S. Oil-rich filamentous algae cultivation in anaerobic digestate effluent: Inhibition effect of undissociated fatty acids. ALGAL RES 2023; 69:102964. [DOI: 10.1016/j.algal.2022.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Kumar Y, Kaur S, Kheto A, Munshi M, Sarkar A, Om Pandey H, Tarafdar A, Sindhu R, Sirohi R. Cultivation of microalgae on food waste: Recent advances and way forward. BIORESOURCE TECHNOLOGY 2022; 363:127834. [PMID: 36029984 DOI: 10.1016/j.biortech.2022.127834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are photosynthetic microbes that can synthesize compounds of therapeutic potential with wide applications in the food, bioprocessing and pharmaceutical sector. Recent research advances have therefore, focused on finding suitable economic substrates for the sustainable cultivation of microalgae. Among such substrates, food derived waste specifically from the starch, meat, dairy, brewery, oil and fruit and vegetable processing industries has gained popularity but poses numerous challenges. Pretreatment, dilution of waste water supernatants, mixing of different food waste streams, utilizing two-stage cultivation and other biorefinery approaches have been intensively explored for multifold improvement in microalgal biomass recovery from food waste. This review discusses the advances and challenges associated with cultivation of microalgae on food waste. The review suggests that there is a need to standardize different waste substrates in terms of general composition, genetically engineered microalgal strains, tackling process scalability issues, controlling wastewater toxicity and establishing a waste transportation chain.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Samandeep Kaur
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Ankan Kheto
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Mohona Munshi
- Division of Food Technology, Department of Chemical Engineering, VFSTR, Guntur, A.P, India
| | - Ayan Sarkar
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India.
| |
Collapse
|
20
|
Gautam K, Vishvakarma R, Sharma P, Singh A, Kumar Gaur V, Varjani S, Kumar Srivastava J. Production of biopolymers from food waste: Constrains and perspectives. BIORESOURCE TECHNOLOGY 2022; 361:127650. [PMID: 35907601 DOI: 10.1016/j.biortech.2022.127650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/27/2023]
Abstract
Food is an essential commodity for the survival of any form of life on earth. Yet generation of plethora of food waste has significantly elevated the global concern for food scarcity, human and environment deterioration. Also, increasing use of polymers derived from petroleum hydrocarbons has elevated the concerns towards the depletion of this non-renewable resource. In this review, the use of waste food for the production of bio-polymers and their associated challenges has been thoroughly investigated using scientometric analysis. Various categories of food waste including fruit, vegetable, and oily waste can be employed for the production of different biopolymers including polyhydroxyalkanoates, starch, cellulose, collagen and others. The advances in the production of biopolymers through chemical, microbial or enzymatic process that increases the acceptability of these biopolymers has been reviewed. The comprehensive compiled information may assist researchers for addressing and solving the issues pertaining to food wastage and fossil fuel depletion.
Collapse
Affiliation(s)
- Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | | |
Collapse
|
21
|
López-Pacheco IY, Rodas-Zuluaga LI, Cuellar-Bermudez SP, Hidalgo-Vázquez E, Molina-Vazquez A, Araújo RG, Martínez-Ruiz M, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation. Mar Drugs 2022; 20:601. [PMID: 36286425 PMCID: PMC9605595 DOI: 10.3390/md20100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms' sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.
Collapse
Affiliation(s)
- Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | | | | | | | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
22
|
Allouzi MMA, Allouzi S, Al-Salaheen B, Khoo KS, Rajendran S, Sankaran R, Sy-Toan N, Show PL. Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Mohan H, Vadivel S, Rajendran S. Removal of harmful algae in natural water by semiconductor photocatalysis- A critical review. CHEMOSPHERE 2022; 302:134827. [PMID: 35526682 DOI: 10.1016/j.chemosphere.2022.134827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Harmful Algal Blooms (HABs) have turned out to be a global occurrence owing to the detrimental phenomenon like eutrophication and global climate change caused by human activities. This newly emergent threat imposes a severe hazardous to public health, ecosystems and fishery-based economies. Rapid and exponential growth of certain delirious and toxic algal species shall be held causative to the formation of HABs. The potential disadvantages they pose, make it necessary the identification of efficient treatment methodologies. Photocatalysis has been identified as the most promising solution amongst all the identified and investigated methods, for the environmental and economic benefits beheld. Different treatment methodologies were evaluated and light has been thrown on the advantages beheld by photocatalysis over the other methods. Focus has been given to the different photocatalysts that have been so far put to use towards photocatalytic disinfection of HABs and algal toxins. This present study provides useful information on the application of the traditional and photocatalysis process for removal of HABs in water bodies. Moreover, the results revealed that photocatalysis method could cause potent inhibitory effect on growth of algae species and disrupted algal cells membranes to some extent. Finally, the conventional treatment techniques have been recognized to be insufficient for removal of HABs. However, the photocatalyst technology have been utilized mostly for the mineralization and neutralization of the algal pollutants without any harmful secondary pollutants.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sethumathavan Vadivel
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| |
Collapse
|
24
|
Loke Show P. Global market and economic analysis of microalgae technology: Status and perspectives. BIORESOURCE TECHNOLOGY 2022; 357:127329. [PMID: 35589045 DOI: 10.1016/j.biortech.2022.127329] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Microalgae have been a promising alternative source of high-value compounds to replace the non-sustainable fossil fuels resource. The recent research development of algae-based bioproducts has remarkable impact various industries section for its renewability, efficiency, and environmentally friendly crops over those synthetic-made product. However, by utilizing microalgae biomass toward their full potential is still limited due to lack of research funding, social acceptability and challenges in policy implementation. This present review highlights the various microalgae biotechnology with consideration of economical aspect for the global potential of algae market, comparison between the microalgae market in Malaysia and international countries. In addition, the cultivation technologies and feasibility of microalgae biomass production globally, followed by insightful challenges and future development of microalgae industry are mentioned. The current study will contribute to the understanding of upstream and downstream of microalgae processing along with technical economical understandings for the successful commercialisation of microalgae products.
Collapse
Affiliation(s)
- Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
25
|
Hydrothermal treatment of lignocellulose waste for the production of polyhydroxyalkanoates copolymer with potential application in food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Koreti D, Kosre A, Jadhav SK, Chandrawanshi NK. A comprehensive review on oleaginous bacteria: an alternative source for biodiesel production. BIORESOUR BIOPROCESS 2022; 9:47. [PMID: 38647556 PMCID: PMC10992283 DOI: 10.1186/s40643-022-00527-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 01/19/2023] Open
Abstract
Due to continuously increasing population, industrialization, and environmental pollution, lead to generating high energy demand which suitable for our environment. Biodiesel is an alternative renewable fuel source. According to the feedstock of production, biodiesel has been categorized into four generations. The main disadvantage of the first and second generation is the raw material processing cost that the challenge for its industrial-level production. Oleaginous bacteria that contain more than 20% lipid of their cellular biomass can be a good alternative and sustainable feedstock. Oleaginous bacteria used as feedstock have numerous advantages, such as their high growth rate, being easy to cultivate, utilizing various substrates for growth, genetic or metabolic modifications possible. In addition, some species of bacteria are capable of carbon dioxide sequestration. Therefore, oleaginous bacteria can be a significant resource for the upcoming generation's biodiesel production. This review discusses the biochemistry of lipid accumulation, screening techniques, and lipid accumulation factors of oleaginous bacteria, in addition to the overall general biodiesel production process. This review also highlights the biotechnological approach for oleaginous bacteria strain improvement that can be future used for biodiesel production and the advantages of using general biodiesel in place of conventional fuel, along with the discussion about global policies and the prospect that promotes biodiesel production from oleaginous bacteria.
Collapse
Affiliation(s)
- Deepali Koreti
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Anjali Kosre
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | |
Collapse
|
27
|
Roy Chong JW, Tan X, Khoo KS, Ng HS, Jonglertjunya W, Yew GY, Show PL. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes. ENVIRONMENTAL RESEARCH 2022; 206:112620. [PMID: 34968431 DOI: 10.1016/j.envres.2021.112620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Global demand for plastic materials has severely harm the environment and marine sea life. Therefore, bioplastics have emerged as an environmentally friendly alternative due to sustainability, minimal carbon footprint, less toxicity and high degradability. This review highlights the sustainable and environmentally friendly approach towards bioplastic production by utilizing microalgae as a feed source in several ways. First, the microalgae biomass obtained through the biorefinery approach can be processed into PHA under certain nutrient limitations. Additionally, microalgae biomass can act as potential filler and reinforcement towards the enhancement of bioplastic either blending with conventional bioplastic or synthetic polymer. The downstream processing of microalgae via suitable extraction and pre-treatment of bioactive compounds such as lipids and cellulose are found to be promising for the production of bioplastics. Moving on, the intermediate processing of bioplastic via lactic acid synthesized from microalgae has favoured the microwave-assisted synthesis of polylactic acid due to cost efficiency, minimum solvent usage, low energy consumption, and fast rate of reaction. Moreover, the reliability and effectiveness of microalgae-based bioplastics are further evaluated in terms of techno-economic analysis and degradation mechanism. Future improvement and recommendations are listed towards proper genetic modification of algae strains, large-scale biofilm technology, low-cost cultivation medium, and novel avocado seed-microalgae bioplastic blend.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, People's Republic of China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Woranart Jonglertjunya
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Salaya, Putthamonthon, Nakorn Pathom, Thailand
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
28
|
Sharma P, Gaur VK, Gupta S, Varjani S, Pandey A, Gnansounou E, You S, Ngo HH, Wong JWC. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152357. [PMID: 34921885 DOI: 10.1016/j.scitotenv.2021.152357] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
Majority of industries, in order to meet the technological development and consumer demands generate waste. The untreated waste spreads out toxic and harmful substances in the environment which serves as a breeding ground for pathogenic microorganisms thus causing severe health hazards. The three industrial sectors namely food, agriculture, and oil industry are among the primary organic waste producers that affect urban health and economic growth. Conventional treatment generates a significant amount of greenhouse gases which further contributes to global warming. Thus, the use of microbes for utilization of this waste, liberating CO2 offers an indispensable tool. The simultaneous production of value-added products such as bioplastics, biofuels, and biosurfactants increases the economics of the process and contributes to environmental sustainability. This review comprehensively summarized the composition of organic waste generated from the food, agriculture, and oil industry. The linkages between global health hazards of industrial waste and environmental implications have been uncovered. Stare-of-the-art information on their subsequent utilization as a substrate to produce value-added products through bio-routes has been elaborated. The research gaps, economical perspective(s), and future research directions have been identified and discussed to strengthen environmental sustainability.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
29
|
Chin JHC, Samian MR, Normi YM. Characterization of polyhydroxyalkanoate production capacity, composition and weight synthesized by Burkholderia cepacia JC-1 from various carbon sources. Heliyon 2022; 8:e09174. [PMID: 35368536 PMCID: PMC8971576 DOI: 10.1016/j.heliyon.2022.e09174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/27/2021] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are microbial polymers that have received widespread attention in recent decades as potential alternatives to some petrochemical-based plastics. However, widespread use of PHA is often impeded by its cost of production. Therefore, the search for and systematic investigation of versatile microbial PHA producers capable of using various carbon sources, even in the form of animal fats, for PHA biosynthesis is desirable. This study highlights the PHA production capacity, monomer composition and molecular weight synthesized by Burkholderia cepacia JC-1, a locally isolated strain from soil, from various carbon sources. In the category of simple sugars and plant oils, the use of glucose and palm oil at C:N ratio of 40 resulted in the highest accumulation of 52 wt% and 36 wt% poly(3-hydroxybutyrate) [P(3HB)] homopolymer and dry cell weight of 2.56 g/L and 3.17 g/L, respectively. Interestingly, B. cepacia JC-1 was able to directly utilize animal-derived lipid in the form of crude and extracted chicken fat, resulting in appreciable dry cell weight and PHA contents of up to 3.19 g/L and 47 wt% respectively, surpassing even that of palm oil in the group of triglycerides as substrates. The presence of antibiotics (streptomycin) in cultivation medium did not significantly affect cell growth and polymer production. The supply of sodium pentanoate as a co-substrate resulted in the incorporation of 3-hydroxyvalerate (3HV) monomer at fractions up to 37 mol%. The molecular weight of polymers produced from glucose, palm oil and chicken fat were in the range of 991–2118 kDa, higher than some reported studies involving native strains. The results from this study form an important basis for possible improvements in using B. cepacia JC-1 and crude chicken fats in solid form for PHA production in the future.
Collapse
Affiliation(s)
- Julian Hock-Chye Chin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Mohd Razip Samian
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology (EMTech) Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Ranganadhareddy A, Varghese RP. Bioplastic Production from Microalgae and Applications: A Review. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2022. [DOI: 10.51847/iwuftfnvel] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. BIORESOURCE TECHNOLOGY 2022; 344:126324. [PMID: 34785335 DOI: 10.1016/j.biortech.2021.126324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hidehiro Ishizawa
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
32
|
Acedos MG, Moreno-Cid J, Verdú F, González JA, Tena S, López JC. Exploring the potential of slaughterhouse waste valorization: Development and scale-up of a new bioprocess for medium-chain length polyhydroxyalkanoates production. CHEMOSPHERE 2022; 287:132401. [PMID: 34600930 DOI: 10.1016/j.chemosphere.2021.132401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The progressive increase of slaughterhouse waste production requires actions for both addressing an environmental issue and creating additional value within a biorefinery concept. In this regard, some of these animal by-products exhibit a significant content of fatty acids that could be efficiently converted into bioplastics such as polyhydroxyalkanoates (PHAs) by adequately performing substrate screening with producing bacterial strains and applying affordable pretreatments. One of the main challenges also relies on the difficulty to emulsify these fat-rich substrates within culture broth and make the fatty acids accessible for the producing bacteria. In this work, the potential of two fat-rich animal by-products, grease trap waste (GTW) and tallow-based jelly (TBJ), as inexpensive carbon sources for microbial growth and PHA production was evaluated for the first time. Upon substrate screening, using different pseudomonadal strains (P. resinovorans, P. putida GPo1, P. putida KT2440) and pretreatment conditions (autoclave-based, thermally-treated or saponified substrates), the highest growth and mcl-PHA production performance was obtained for P. resinovorans, thus producing up to 47% w/w mcl-PHA simply using hygienized GTW. The novel bioprocess described in this study was successfully scaled up to 5 and 15 L, resulting in CDW concentrations of 5.9-12.8 g L-1, mcl-PHA contents of 33-62% w/w and PHA yields of 0.1-0.4 gPHA g-1fatty acids, greatly depending on the substrate dosing strategy used and depending on culture conditions. Moreover, process robustness was confirmed along Test Series by the roughly stable monomeric composition of the biopolymer produced, mainly formed by 3-hydroxyoctanoate and 3-hydroxydecanoate. The research here conducted is crucial for the cost-effectiveness of mcl-PHA production along this new slaughterhouse waste-based biorefinery concept.
Collapse
Affiliation(s)
- Miguel G Acedos
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain
| | - Juan Moreno-Cid
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - Fuensanta Verdú
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - José Antonio González
- R&D Department, Bionet Engineering, Av/ Azul, Parque Tecnológico Fuente Álamo, El Estrecho-Lobosillo, 30320, Fuente Álamo, Murcia, Spain
| | - Sara Tena
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain
| | - Juan Carlos López
- Biotechnology Department, AINIA, Parque Tecnológico de Valencia, Av/ Benjamín Franklin 5-11, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
33
|
Chong JWR, Khoo KS, Yew GY, Leong WH, Lim JW, Lam MK, Ho YC, Ng HS, Munawaroh HSH, Show PL. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. BIORESOURCE TECHNOLOGY 2021; 342:125947. [PMID: 34563823 DOI: 10.1016/j.biortech.2021.125947] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have emerged as an effective dual strategy for bio-valorisation of food processing wastewater and food waste hydrolysate which favours microalgae cultivation into producing value-added by products mainly lipids, carbohydrates, and proteins to the advantages of bioplastic production. Moreover, various microalgae have successfully removed high amount of organic pollutants from food processing wastewater prior discharging into the environment. Innovation of microalgae cultivating in food processing wastewater greatly reduced the cost of wastewater treatment compared to conventional approach in terms of lower carbon emissions, energy consumption, and chemical usage while producing microalgae biomass which can benefit low-cost fertilizer and bioplastic applications. The study on several microalgae species has all successfully grown on food waste hydrolysates showing high exponential growth rate and biomass production rich in proteins, lipids, carbohydrates, and fatty acids. Multiple techniques have been implemented for the extraction of food wastes to be incorporate into the bioplastic production.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung 40154, West Java, Indonesia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
34
|
Chandra R, Pradhan S, Patel A, Ghosh UK. An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113210. [PMID: 34375226 DOI: 10.1016/j.jenvman.2021.113210] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work is remediation of dairy wastewater (DWW) for biodiesel feedstock production using poly-microalgae cultures of four microalgae namely Chlorella minutissima (C. minutissima), Scenedesmus abundans (S. abundans), Nostoc muscorum (N. muscorum) and Spirulina sp. The poly-microalgae cultures were prepared as C. minutissima + N. muscorum (CN), C. minutissima + N. muscorum + Spirulina sp. (CNSS) and S. abundans + N. muscorum + Spirulina sp. (SNSS). Poly-microalgae culture CNSS cultivated on 70% DWW achieved 75.16, 61.37, 58.76, 84.48 and 84.58%, removals of biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and suspended solids (SS), respectively, at 12:12 h photoperiod that resulted into total biomass and lipid yield of 3.47 ± 0.07 g/L and 496.32± 0.065 mg/L. However, maximum biomass and lipid yields of 5.76 ± 0.06 and 1152.37 ± 0.065 mg/L were achieved by poly-microalgae culture CNSS cultivated on 70% DWW + 10 g/L of glucose at 18:6 h photoperiod. Fatty acid methyl ester (FAME) analysis shown presence of C14:0 (myristic acid) C16:0 (palmitic acid), C16:1 (palmitoleic acid), C18:0 (stearic acid), C18:2 (linoleic acid) and C18:3 (linolenic acid), it indicates that the lipids produced from poly-microalgae cultures are suitable for biodiesel production. Thus, poly-microalgae cultures could be more efficient than mono-microalgae cultures in the remediation of DWW and for biodiesel feedstock production.
Collapse
Affiliation(s)
- Rajesh Chandra
- Bioenergy Research Laboratory, Polymer and Process Engineering Department, Indian Institute of Technology Roorkee (Saharanpur Campus), Saharanpur, 247001, Uttar Pradesh, India
| | - Snigdhendubala Pradhan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Lulea, Sweden
| | - Uttam Kumar Ghosh
- Bioenergy Research Laboratory, Polymer and Process Engineering Department, Indian Institute of Technology Roorkee (Saharanpur Campus), Saharanpur, 247001, Uttar Pradesh, India.
| |
Collapse
|