1
|
Hu B, Hu S, You L, Chen Z. Understanding arbuscular mycorrhizal fungi's contribution to hexabromocyclododecane metabolism: Pathways and ecological implications in contaminated environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137396. [PMID: 39893978 DOI: 10.1016/j.jhazmat.2025.137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
This study investigates the role of arbuscular mycorrhizal fungi (AMF) in the metabolism of hexabromocyclododecane (HBCD) and its ecological effects in contaminated environments. We focused on the symbiotic relationships between Iris pseudacorus L. and AMF (Rhizophagus irregularis) under HBCD exposure. Our results show that HBCD induces oxidative damage, which hinders plant growth. However, AMF significantly enhance the plant's antioxidant defenses, reducing oxidative damage and supporting better growth of I. pseudacorus. HBCD biodegradation patterns showed β- > γ- > α-HBCD, with AMF playing a key role in stabilizing rhizosphere microbial communities, particularly promoting Proteobacteria and potential bacterial degraders like Aeromonas and Trichococcus, which contributed to HBCD removal. Additionally, AMF appear to upregulate genes such as cypD_E, GST, dehH, dehA, dehM, Em3.8.1.2, and ligB, which are involved in debromination and hydroxylation reactions. This research highlights AMF's potential to enhance the phytoremediation of HBCD, providing valuable insights for environmental remediation strategies.
Collapse
Affiliation(s)
- Bo Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shanshan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lexing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, Praha 16500, Czech Republic.
| |
Collapse
|
2
|
Kralj K, Chen Z. Arbuscular mycorrhizal fungi improve treatment performance and vegetative resilience in constructed wetlands exposed to microplastics. ENVIRONMENTAL RESEARCH 2025; 270:121049. [PMID: 39920963 DOI: 10.1016/j.envres.2025.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Microplastics are increasingly present in municipal wastewater and wastewater treatment plant effluent, prompting the use of constructed wetlands (CWs) for additional treatment. Enhancing CWs with arbuscular mycorrhizal fungi (AMF), known to aid nutrient removal and alleviate plant pollution stress, is gaining interest. This study is the first to examine the influence of two microplastic polymers (polyethylene microspheres and polyester microfibers) at concentrations of 0.1 and 1 mg/L on nutrient removal, plant health, and microbial composition in AMF-inoculated CWs. The results indicate that AMF inoculation combined with microplastic treatments significantly enhances nutrient removal in wetlands, achieving a 45.7% increase in total nitrogen removal and a 25.3% increase in phosphate removal. The effects of microplastics on plant health vary depending on the inoculation status, with an increase in lipid peroxidation (73.4% ± 25.4), and a decrease in the effective quantum yield of PSII (13.4% ± 5) observed in all treatments. High concentrations of polyester microfibers significantly altered the microbial community, increasing AMF colonization frequency and microbial richness, decreasing evenness and the abundance of denitrifying genera, and creating distinct clusters in beta diversity analysis. AMF inoculation maintained higher species richness and evenness, contributing to the resilience of CWs to microplastic pollution. Overall, AMF-inoculated wetlands and plants showed superior treatment performance, highlighting the successful bio-augmentation potential of this approach.
Collapse
Affiliation(s)
- Kristina Kralj
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
3
|
Wang Y, Li X, You L, Hu S, Fang J, Hu B, Chen Z. Enhancement of PFAS stress tolerance and wastewater treatment efficiency by arbuscular mycorrhizal fungi in constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 263:120148. [PMID: 39424036 DOI: 10.1016/j.envres.2024.120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
This study aims to explore the effects of arbuscular mycorrhizal fungi (AMF) on the growth of Iris pseudacorus L. and treatment efficacy in constructed wetlands (CWs) subjected to stress from per-and poly-fluoroalkyl substances (PFASs). The findings reveal that PFASs exposure induces oxidative damage and inhibits the growth of I. pseudacorus. However, AMF symbiosis enhances plant tolerance to PFAS stress by modulating oxidative responses. AMF treatment not only promoted plant growth but also improved photosynthetic efficiency under PFAS exposure. Compared to non-AMF treatment, those with AMF treatment exhibited significantly increased levels of peroxidases and antioxidant enzymes, including peroxidase and superoxide dismutase, along with a notable reduction in lipid peroxidation. Additionally, AM symbiosis markedly enhanced the efficacy of CWs in the remediation of wastewater under PFASs-induced stress, with removal efficiencies for COD, TP, TN, and NH4+-N increasing by 19-34%, 67-180%, 106-137%, and 25-95%, respectively, compared to the AMF- treatments. In addition, the metabolic pathways of PFASs appeared to be influenced by their carbon chain length, with long-chain PFASs like perfluorooctanoic acid (PFOA) and perfluoro anionic acid (PFNA) exhibiting more complex pathways compared to short-chain PFASs such as perfluoro acetic acid (PFPeA), and perfluoro hexanoic acid (PFHpA). These results suggest that AMF-plant symbiosis can enhance plant resilience against PFAS-induced stress and improve the pollutant removal efficiency of CWs. This study highlights the significant potential of AMF in enhancing environmental remediation strategies, providing new insights for the more effective management of PFAS-contaminated ecosystems.
Collapse
Affiliation(s)
- Yuchen Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xue Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lexing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shanshan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jinfu Fang
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, 16500, Czech Republic; School of Resource and Environmental Sciences, Wuhan University of Technology, Wuhan, 430079, China
| | - Bo Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, 16500, Czech Republic
| |
Collapse
|
4
|
Zhang Y, Wang B, Hassan M, Zhang X. Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122407. [PMID: 39265490 DOI: 10.1016/j.jenvman.2024.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Water eutrophication caused by nitrogen (N) and phosphorus (P) has become a global environmental issue. Biochar is a competent adsorbent for removing N and P from wastewater. However, compared with commercial activated carbon, biochar has relatively limited adsorption capacity. To broaden the field scale application of biochar, biochar coupled with multiple technologies (BC-MTs) (such as microorganisms, electrochemistry, biofilm, phytoremediation, etc.) have been extensively developed for environmental remediation. Nevertheless, due to the fluctuations and differences in biochar types, coupling methods, and wastewater types, various techniques show different removal mechanisms and performance, hindering the promotion and application of BC-MTs. A systematic review of the research progress of BC-MTs is highly necessary to gain a better understanding of the current research status and progress, as well as to promote the application of these techniques. In this paper, the application of pristine and modified biochar in adsorbing N and P in wastewater is critically reviewed. Then the removal performance, influencing factors, mechanisms, and the environmental applications of BC-MTs in wastewater are systematically summarized. In addition, the cost analysis and risk assessment of BC-MTs in environmental applications are conducted. Finally, suggestions and prospects for future research and practical application are put forward.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
5
|
Chen Y, Hajslova J, Schusterova D, Uttl L, Vymazal J, Chen Z. Transformation and degradation of tebuconazole and its metabolites in constructed wetlands with arbuscular mycorrhizal fungi colonization. WATER RESEARCH 2024; 263:122129. [PMID: 39094199 DOI: 10.1016/j.watres.2024.122129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization has been used in constructed wetlands (CWs) to enhance treatment performance. However, its role in azole (fungicide) degradation and microbial community changes is not well understood. This study aims to explore the impact of AMF on the degradation of tebuconazole and its metabolites in CWs. Total organic carbon levels were consistently higher with the colonization of AMF (AMF+; 9.63- 16.37 mg/L) compared to without the colonization of AMF (AMF-; 8.79-14.48 mg/L) in CWs. Notably, tebuconazole removal was swift, occurring within one day in both treatments (p = 0.885), with removal efficiencies ranging from 94.10 % to 97.83 %. That's primarily due to rapid substrate absorption at the beginning, while degradation follows with a longer time. Four metabolites were reported in CWs first time: tebuconazole hydroxy, tebuconazole lactone, tebuconazole carboxy acid, and tebuconazole dechloro. AMF decreased the abundance of tebuconazole dechloro in the liquid phase, suggesting an inhibitory effect of AMF on dechlorination processes. Furthermore, tebuconazole carboxy acid and hydroxy were predominantly found in plant roots, with a higher abundance observed in AMF+ treatments. Metagenomic analysis highlighted an increasing abundance in bacterial community structure in favor of beneficial microorganisms (xanthomonadales, xanthomonadaceae, and lysobacter), along with a notable presence of functional genes like codA, NAD, and deaD in AMF+ treatments. These findings highlight the positive influence of AMF on tebuconazole stress resilience, microbial community modification, and the enhancement of bioremediation capabilities in CWs.
Collapse
Affiliation(s)
- Yingrun Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Dana Schusterova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Leos Uttl
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jan Vymazal
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic.
| |
Collapse
|
6
|
González Álvarez Á, Martinez I Quer A, Ellegaard-Jensen L, Sapkota R, Carvalho PN, Johansen A. Fungal removal of cyanotoxins in constructed wetlands: The forgotten degraders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172590. [PMID: 38642746 DOI: 10.1016/j.scitotenv.2024.172590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.
Collapse
Affiliation(s)
- Ángela González Álvarez
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Alba Martinez I Quer
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Wu Q, Chen Y, He Y, Cheng Q, Wu Q, Liu Z, Li Y, Yang Z, Tan Y, Yuan Y. Enhanced nitrogen and phosphorus removal by a novel ecological floating bed integrated with three-dimensional biofilm electrode system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119346. [PMID: 37866187 DOI: 10.1016/j.jenvman.2023.119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The ecological floating bed (EFB) has been used extensively for the purification of eutrophication water. However, the traditional EFB (T-EFB) often exhibits a decline in nitrogen and phosphorus removal because of the limited adsorption capacity of fillers and inadequate electron donors. In the present study, a series of electrolysis-ecological floating beds (EC-EFBs) were constructed to investigate the decontamination performance of conventional pollutants. EC-EFB outperformed T-EFB in terms of nitrogen and phosphorus removal. Its removal efficiency of total nitrogen and total phosphorus was 20.51-32.95% and 45.06-96.20%, which were higher than that in T-EFB.. Moreover, the plants in EC-EFB demonstrated higher metabolic activity than those in T-EFB. Under the electrolysis condition of 0.51 mA/cm2 for 24 h, the malondialdehyde content and superoxide dismutase activity in EC-EFB were 6.08 nmol/g and 22.61 U/g, which were significantly lower compared to T-EFB (38.65 nmol/g and 26.13 U/g). And the soluble protein content of plant leaves increased from 3.31 mg/g to 5.72 mg/g in EC-EFB. Microbial analysis revealed that electrolysis could significantly change the microbial community and facilitate the proliferation of nitrogen-functional microbes, such as Thermomonas, Hydrogenophaga, Deinococcus, and Zoogloea. It is important to highlight that the hydrogen evolution reaction at the cathode area facilitated phosphorus removal in EC-EFB, thereby inhibiting phosphorus leaching. This study provides a promising and innovative technology for the purification of eutrophic water.
Collapse
Affiliation(s)
- Qingyu Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yang He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiming Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiong Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhenmei Yang
- Jiangjin Ecological Environment Monitoring Station, Chongqing, 402260, China
| | - Yuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
8
|
Xu Z, Huang J, Chu Z, Meng F, Liu J, Li K, Chen X, Jiang Y, Ban Y. Plant and microbial communities responded to copper and/or tetracyclines in mycorrhizal enhanced vertical flow constructed wetlands microcosms with Canna indica L. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131114. [PMID: 36870129 DOI: 10.1016/j.jhazmat.2023.131114] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a significant role in pollutants removal in constructed wetlands (CWs). However, the purification effects of AMF on combined copper (Cu) and tetracycline (TC) pollution in CWs remains unknown. This study investigated the growth, physiological characteristics and AMF colonization of Canna indica L. living in vertical flow CWs (VFCWs) treated for Cu and/or TC pollution, the purification effects of AMF enhanced VFCWs on Cu and TC, and the microbial community structures. The results showed that (1) Cu and TC inhibited plant growth and decreased AMF colonization; (2) the removal rates of TC and Cu by VFCWs were 99.13-99.80% and 93.17-99.64%, respectively; (3) the growth, Cu and TC uptakes of C. indica and Cu removal rates were enhanced by AMF inoculation; (4) TC and Cu stresses reduced and AMF inoculation increased bacterial operational taxonomic units (OTUs) in the VFCWs, Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria were the dominant bacteria, and AMF inoculation decreased the relative abundance of Novosphingobium and Cupriavidus. Therefore, AMF could enhance the pollutants purification in VFCWs by promoting plant growth and altering the microbial community structures.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhenya Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Fake Meng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Jianjun Liu
- POWERCHINA Huadong Engineering Corporation Limited, Hangzhou 311122, Zhejiang, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
9
|
Wu B, Xu D, Wang H, Xu R, Qin N, Han J. Wetland plant-derived biochar enhances the diclofenac treatment performance in vertical subsurface flow constructed wetlands. ENVIRONMENTAL RESEARCH 2022; 215:114326. [PMID: 36113575 DOI: 10.1016/j.envres.2022.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Diclofenac (DFC) is a pharmacologically active compound frequently detected in various receiving waters. To improve the efficiency of constructed wetlands in removing DFC, biochar (BC) is added as a substrate. The study mainly involved the effect of adding wetland plant-derived BC to vertical subsurface flow constructed wetlands (VSF-CWs) on the DFC removal process. In addition, the study discussed the effects of the initial DFC concentration (0.05-1.00 mg L-1), pH (5.5-8.5), and hydraulic retention times (HRTs, 1-7 d) on the removal process and fluctuations in the microbial community. Preliminary results of the study showed optimal removal (>90%) achieved at an initial DFC concentration of 0.75-1 mg L-1, a pH of 6.5-7.5, and an HRT of 7 d. Moreover, no significant effects on the removal efficiency of conventional water quality parameters were observed. Non-metric multidimensional scaling results revealed a reshaped community structure, which was altered by the initial DFC concentration. DFC concentration is a key factor in the variation of microbial communities and controls the quantitative evolution of the species in experimental units. Therefore, the addition of BC to CWs effectively enhanced the removal efficiency of DFC and provided a viable and effective improvement of the CWs.
Collapse
Affiliation(s)
- Bin Wu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; China Aneng Group First Engineering Bureau Co. Ltd, Nanning, PR China
| | - Duo Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Runyu Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Naibing Qin
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Jinlong Han
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| |
Collapse
|
10
|
González-González RB, Flores-Contreras EA, Parra-Saldívar R, Iqbal HMN. Bio-removal of emerging pollutants by advanced bioremediation techniques. ENVIRONMENTAL RESEARCH 2022; 214:113936. [PMID: 35932833 DOI: 10.1016/j.envres.2022.113936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.
Collapse
Affiliation(s)
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
11
|
Madikizela LM, Botha TL, Kamika I, Msagati TAM. Uptake, Occurrence, and Effects of Nonsteroidal Anti-Inflammatory Drugs and Analgesics in Plants and Edible Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:34-45. [PMID: 34967604 DOI: 10.1021/acs.jafc.1c06499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant uptake of pharmaceuticals that include nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics from contaminated environment has benefits and drawbacks. These pharmaceuticals enter plants mostly through irrigation with contaminated water and application of sewage sludge as soil fertilizer. Aquatic plants withdraw these pharmaceuticals from water through their roots. Numerous studies have observed the translocation of these pharmaceuticals from the roots into the aerial tissues. Furthermore, the occurrence of the metabolites of NSAIDs in plants has been observed. This article provides an in-depth critical review of the plant uptake of NSAIDs and analgesics, their translocation, and toxic effects on plant species. In addition, the occurrence of metabolites of NSAIDs in plants and the application of constructed wetlands using plants for remediation are reviewed. Factors that affect the plant uptake and translocation of these pharmaceuticals are examined. Gaps and future research are provided to guide forthcoming investigations on important aspects that worth explorations.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Tarryn Lee Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Titus Alfred M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|