1
|
Liang D, Wang F, Xue S, Yan J, Xu Y, Lv G, Yan J. Purification of waste liquids from alkaline washing pretreatment of municipal solid waste incineration fly ash using Friedel's salt. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125020. [PMID: 40106993 DOI: 10.1016/j.jenvman.2025.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Washing is a widely used pretreatment method for the resource utilization of municipal solid waste incineration fly ash (MSWI FA). However, the high concentrations of heavy metals and chlorides in alkaline washing pretreatment waste liquids can adversely affect the environment and human health, necessitating proper disposal. Therefore, in this study, the heavy metal removal and ultrasonic-assisted two-stage dechlorination process from MSWI FA alkaline washing waste liquids using Friedel's salt were developed. When the end-point pH was 9 and Friedel's salt dosage was 4 g/L, the removal rate of key heavy metals from MSWI FA alkaline washing waste liquids exceeded 95 %. A series of characterization showed that Friedel's salt can effectively remove heavy metals from waste liquids through isomorphic substitution, ion exchange, surface adsorption and precipitation formation. Experimental results demonstrated that when the molar ratio of Ca: Al: Cl was adjusted to 2.5:1.2:1 in the first stage and 7:3:1 in the second stage, combined with an ultrasonic power of 600 W, the ultrasound-assisted two-stage dechlorination method achieved a chloride removal efficiency exceeding 93.8 % from the alkaline washing solution of MSWI FA. And, 272.6 g of Friedel's salt was obtained while treating 1 L of waste liquids. This study revealed that ultrasonic-enhanced dechlorination occurs through mechanisms that promote the dissolution and dispersion of CaO while inhibiting the formation of Ca3Al2(OH)12. In addition, the combination of alkaline washing pretreatment and waste liquids reuse, an integrated idea was provided, which was helpful for the comprehensive utilization of MSWI FA.
Collapse
Affiliation(s)
- Dehua Liang
- State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou, 310027, China
| | - Fei Wang
- State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou, 310027, China.
| | - Shengrong Xue
- State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou, 310027, China
| | - Jiawei Yan
- State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou, 310027, China
| | - Yang Xu
- State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou, 310027, China
| | - Guojun Lv
- State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou, 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou, 310027, China
| |
Collapse
|
2
|
Wang J, Li T, Wang J, Zhang C, Zhang X, Duan G. Enhancing the Early Hydration of Supersulfate Cement: The Effect of Sodium Aluminate. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1228. [PMID: 40141508 PMCID: PMC11943890 DOI: 10.3390/ma18061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Supersulfate cement (SSC) has received significant attention in the construction industry due to its extensive utilization of solid wastes and low carbon emissions. However, the low carbonation resistance and early strength of SSC greatly restricted its application, which was attributed to early insufficient alkalinity and slow hydration. Facilitating early hydration alkalinity is critical to promote early hydration and improve early performance for SSC. Thus, sodium aluminate (SA), an admixture with concentrations ranging from 0% to 4%, was adopted to enhance early alkalinity and investigate its impact on the initial hydration process. The results indicated that incorporating SA into SSC enhances its early performance by balancing high alkalinity and AFt stability. The addition of 2% SA accelerates hydration procession, reducing initial and final setting times by 76% and 42%, respectively, while increasing viscosity by 50% for improved structural stability. At 2% SA, 1-day and 7-day compressive strengths rose from 3.7 MPa to 8.4 MPa and from 15.1 MPa to 18.5 MPa, respectively, representing gains of 127% and 22.5%, which were facilitated by accelerated GGBFS dissolution and needle-like AFt formation, which densifies the crystal-gel network microstructure.
Collapse
Affiliation(s)
- Jiawei Wang
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, China (C.Z.); (G.D.)
| | - Ting Li
- China Communications Construction Group Second Engineering Co., Ltd., Jinan 250022, China
| | - Jinbang Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
- Hock Technology Co., Ltd., Jining 272104, China
| | - Chong Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, China (C.Z.); (G.D.)
| | - Xiuzhi Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, China (C.Z.); (G.D.)
| | - Guangbin Duan
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, China (C.Z.); (G.D.)
| |
Collapse
|
3
|
Yu H, Li Z, Yu D, Huang J, Zou X, Wang Y. Removal of high concentration chlorides and organic pollutants from incineration fly ash and sewage sludge hydrothermal liquid by Friedel's salt preparation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124383. [PMID: 39899921 DOI: 10.1016/j.jenvman.2025.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Hydrothermal liquid, produced in the process of coordinated hydrothermal harmless disposal of incineration fly ash (IFA) and sewage sludge (SS), contains a large number of organic pollutants and chloride. There is no report on the treatment of wastewater produced by hydrothermal treatment. To address the aforementioned issue, this study employs Friedel's salt precipitation for the dechlorination of the hydrothermal liquid. Experimental results show that the application of a reagent ratio of n(Al):n(Ca):n(Cl) = 4:8:1 effectively removed 76.77% of Cl- and 99.76% of SO42- from the hydrothermal liquid at an optimized temperature of 25 °C. Additionally, not only a 36.85% reduction of total organic carbon (TOC) was achieved through flocculation with sodium aluminate (NaAlO2), but also merely 1% of Al3+ from the original dosage remained in the filtrate. Moreover, combined with the analysis of the phase structure of the precipitate, Friedel's salt precipitation primarily removes Cl- via interlayer ion exchange and charge balance adsorption, providing insights into the operational mechanisms and the influence of interference factors. This work provides technical support for the application of synergistic hydrothermal treatment technology of IFA and SS, also has reference value for the treatment of other high chlorine-containing organic wastewater.
Collapse
Affiliation(s)
- Hao Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiwei Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Di Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jingxin Huang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo, 315000, China.
| |
Collapse
|
4
|
Wang Y, Zhan L, Luo Q, Chen H, Mao J, Wan J, Liu C, Chen H, Zheng S, Chen Z, Li Z, Yang L. Investigation on the rotary atomization evaporation of high-salinity desulfurization wastewater: Performance and products insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123044. [PMID: 39476668 DOI: 10.1016/j.jenvman.2024.123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Spray drying of concentrated wastewater epitomizes a harmonious convergence of technological progress, economic viability, and practicality within the realm of zero liquid discharge. Nevertheless, elevated salinity may influence the atomization and evaporation processes, along with the storage and transportation of evaporation products. This study systematically examines the influence of salinity on rotary atomization evaporation performance and evaporation products of wastewater through a series of experimental investigations. The results indicate that, under identical conditions, the overall droplet size of high-salinity wastewater is approximately 20-50% larger compared to conventional wastewater. Salinity significantly influences the atomization particle size (D32), followed by rotation speed, and then influent flow rate. The high-salinity wastewater droplets manifest a multi-bubble growth pattern with earlier shell expansion, where the reduction of free water dominates the overall process dynamics. Despite the diminished evaporation rate, the total evaporation duration shortens with elevating salinity, reducing flue gas consumption by about 10%. With elevated crystalline salt content, high-salinity wastewater evaporation products exhibit pronounced hygroscopicity, manifesting as a viscous powder with suboptimal flowability (FF 3.57) at a 2 wt% moisture content. This study bridges the gap in rotary spray drying technology for high-salinity wastewater treatment, contributing to sustainable water conservation and energy-efficient management.
Collapse
Affiliation(s)
- Yurui Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Lingxiao Zhan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qiwei Luo
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Heng Chen
- School of Mechatronics and Energy Engineering, Ningbo Tech University, Ningbo, 315100, China
| | - Juecen Mao
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Jun Wan
- College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaozhen Liu
- College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haijie Chen
- Datang Environmental Industry Group Co., Ltd., Beijing, 100097, China
| | - Suoqi Zheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhanxing Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhihao Li
- Shandong University- Qingdao Campus, Qingdao, 266237, China
| | - Linjun Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
5
|
Ścieżyńska D, Majewski M, Nath S, Bury D, Jastrzębska A, Bogacki J, Marcinowski P. Application of waste iron in wet flue gas desulfurization (WFGD) wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66090-66102. [PMID: 39615006 DOI: 10.1007/s11356-024-35646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The wet flue gas desulfurization (WFGD) procedure results in wastewater containing a complex mixture of pollutants, including heavy metals and organic compounds, which are hardly degradable and pose significant environmental challenges. Addressing this issue, the proposed approach, incorporating waste iron shavings as a heterocatalyst within a modified Fenton process, represents a sustainable and effective solution for contaminants degrading in WFGD wastewater. Furthermore, this study aligns with the Best Available Techniques (BAT) regulations by meeting the requirement for compound oxidation-replacing the chlorine utilization with the generation of highly reactive radicals-and coagulation, which completes the treatment process. This method introduces an innovative use of waste-derived iron shavings in a BAT-compliant technology, providing a sustainable and cost-effective alternative to conventional treatments. The study focuses on process kinetics and optimization parameters, achieving approximately 48% total organic carbon (TOC) removal in 90 min at an optimal pH 3, using 1998 mgL-1 H2O2 under UV light. Analysis of variance revealed that the process efficiency depended more significantly on pH than time duration or the H2O2 dose. Catalyst's characterization, including the use of microscopic techniques, including electron microscopy, laser diffraction, X-ray fluorescence, Raman spectroscopy, and UV spectroscopy, indicates its stability and great reusability with consistent TOC decrease across three process cycles. This research demonstrates a cost-effective, environmentally friendly approach to wastewater treatment, advancing sustainable methodologies through the repurposing of waste materials and underscoring the catalyst's reuse potential.
Collapse
Affiliation(s)
- Dominika Ścieżyńska
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Ul. Nowowiejska 20 00-653, Warsaw, Poland
| | - Maciej Majewski
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Ul. Nowowiejska 20 00-653, Warsaw, Poland
| | - Susmita Nath
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Ul. Nowowiejska 20 00-653, Warsaw, Poland
| | - Dominika Bury
- Faculty of Mechatronics, Warsaw University of Technology, Ul. Św. Andrzeja Boboli 8, 02-525, Warsaw, Poland
| | - Agnieszka Jastrzębska
- Faculty of Mechatronics, Warsaw University of Technology, Ul. Św. Andrzeja Boboli 8, 02-525, Warsaw, Poland
| | - Jan Bogacki
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Ul. Nowowiejska 20 00-653, Warsaw, Poland.
| | - Piotr Marcinowski
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Ul. Nowowiejska 20 00-653, Warsaw, Poland
| |
Collapse
|
6
|
Lin S, Lv G, Khalid Z, Jiang X, Yan J. Process optimization and mechanism for removal of high-concentration chlorine from municipal solid waste incineration fly ash washing wastewater by Friedel's salt. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119542. [PMID: 37956519 DOI: 10.1016/j.jenvman.2023.119542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Waterwashing is an important pretreatment method for the reuse of municipal solid waste incineration (MSWI) fly ash. However, the presence of high levels of chlorides and small amounts of sulfides in the waterwashing solution makes it difficult to treat and reuse. Therefore, in this study, a calcium sulfate- Friedel's salt precipitation method was used to dechlorinate and desulfurize in the MSWI fly ash washing solution. This paper mainly focused on the chloride removal, and the effects of factors such as reagent ratios, temperature, and reaction time on chloride removal rate and the two-stage dechlorination and desulfurization process were optimized. The experimental results indicated that when the ratio in the first stage was n(Ca):n(Al):n(Cl) = 3:1.5:1, and in the second stage, n(Ca):n(Al):n(Cl) = 8:4:1, a chloride removal rate of up to 90.5% and a sulfide removal rate of over 99.88% could be obtained. The deposited particles were analyzed by using FE-SEM, XRD, and FTIR to investigate their size, morphology, phase composition, and functional groups. The study revealed that excessively high or low reagent ratios could reduce the interlayer spacing of Friedel's salt. Additionally, high temperatures led to the decomposition of Friedel's salt, and the dechlorination efficiency was affected.
Collapse
Affiliation(s)
- Shunda Lin
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China; Zhejiang University Qingshanhu Energy Research Center, Lina, Hangzhou, PR China
| | - Guojun Lv
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China; Zhejiang University Qingshanhu Energy Research Center, Lina, Hangzhou, PR China
| | - Zeinab Khalid
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China; Zhejiang University Qingshanhu Energy Research Center, Lina, Hangzhou, PR China
| | - Xuguang Jiang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China; Zhejiang University Qingshanhu Energy Research Center, Lina, Hangzhou, PR China.
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China; Zhejiang University Qingshanhu Energy Research Center, Lina, Hangzhou, PR China
| |
Collapse
|
7
|
Chalaris M, Gkika DA, Tolkou AK, Kyzas GZ. Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119627-119653. [PMID: 37962753 DOI: 10.1007/s11356-023-30891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Metallurgy is pivotal for societal progress, yet it yields wastewater laden with hazardous compounds. Adhering to stringent environmental mandates, the scientific and industrial sectors are actively researching resilient treatment and disposal solutions for metallurgical effluents. The primary origins of organic pollutants within the metallurgical sector include processes such as coke quenching, steel rolling, solvent extraction, and electroplating. This article provides a detailed analysis of strategies for treating steel industry waste in wastewater treatment. Recent advancements in membrane technologies, adsorption, and various other processes for removing hazardous pollutants from steel industrial wastewater are comprehensively reviewed. The literature review reveals that advanced oxidation processes (AOPs) demonstrate superior effectiveness in eliminating persistent contaminants. However, the major challenges to their industrial-scale implementation are their cost and scalability. Additionally, it was discovered that employing a series of biological reactors instead of single-step biological processes enhances command over microbial communities and operating variables, thus boosting the efficacy of the treatment mechanism (e.g., achieving a chemical oxygen demand (COD) elimination rate of over 90%). This review seeks to conduct an in-depth examination of the current state of treating metallurgical wastewater, with a particular emphasis on strategies for pollutant removal. These pollutants exhibit distinct features influenced by the technologies and workflows unique to their respective processes, including factors such as their composition, physicochemical properties, and concentrations. Therefore, it is of utmost importance for customized treatment and disposal approaches, which are the central focus of this review. In this context, we will explore these methods, highlighting their advantages and characteristics.
Collapse
Affiliation(s)
- Michail Chalaris
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece.
| | - Despina A Gkika
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| | - Athanasia K Tolkou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| |
Collapse
|
8
|
Liu X, Zhang H, Zhang X, Yang Y, Yang C, Zhao P, Dong Y. Chloride removal from flue gas desulfurization wastewater through Friedel's salt precipitation method: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160906. [PMID: 36521621 DOI: 10.1016/j.scitotenv.2022.160906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
As a high efficiency method for chloride removal, Friedel's salt precipitation (FSP) method has attracted much attention in zero liquid discharge (ZLD) of flue gas desulfurization (FGD) wastewater. This review provides comprehensive knowledge of FSP method for chloride removal through analysis of the evolution, reaction mechanisms and influential factors, and describes the recent research progress. FSP method is a cost-efficient technology to remove chloride from saline wastewater by adding lime and aluminate. Chloride ions react with the precipitants by adsorption or/and ion exchange to form Friedel's salt, which is affected by the reaction conditions including reaction time, temperature, interferential ions, etc. The effluent of this process can be reused as the makeup water of desulfurization tower, and the dechloridation precipitates can be reclaimed as adsorption materials and sludge conditioners. That can not only offset a fraction of the treatment cost, but also avoid secondary pollution, so ZLD of FGD wastewater can be achieved. This paper summarizes the deficiencies and potential improvement measures of FSP method. We believe this technology is a promising way to achieve ZLD of FGD wastewater and other wastewater containing chloride, and expect FSP method would become more mature and be widely applied in hypersaline wastewater treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xiao Liu
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Hao Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Xiaoyang Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Yanchun Yang
- Guoneng (Shandong) Energy & Environment Co. Ltd., Jinan 250012, Shandong, China
| | - Chunzhen Yang
- Guoneng (Shandong) Energy & Environment Co. Ltd., Jinan 250012, Shandong, China
| | - Pei Zhao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China.
| | - Yong Dong
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China.
| |
Collapse
|
9
|
Wang Z, An X, Wang P, Du X, Hao X, Hao X, Ma X. Removal of high concentration of chloride ions by electrocoagulation using aluminium electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50567-50581. [PMID: 36795207 DOI: 10.1007/s11356-023-25792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Wastewater containing a high concentration of chloride ions (Cl- ions) generated in industrial production will corrode equipment and pipelines and cause environmental problems. At present, systematic research on Cl- removal by electrocoagulation is scarce. To study the Cl- removal mechanism, process parameters (current density and plate spacing), and the influence of coexisting ions on the removal of Cl- in electrocoagulation, we use aluminum (Al) as the sacrificial anode, combined with physical characterization and density functional theory (DFT) to study Cl- removal by electrocoagulation. The result showed that the use of electrocoagulation technology to remove Cl- can reduce the concentration of Cl- in an aqueous solution below 250 ppm, meeting the Cl- emission standard. The mechanism of Cl- removal is mainly co-precipitation and electrostatic adsorption by forming chlorine-containing metal hydroxyl complexes. The current density and plate spacing affect the Cl- removal effect and operation cost. As a coexisting cation, magnesium ion (Mg2+) promotes the removal of Cl-, while calcium ion (Ca2+) inhibits it. Fluoride ion (F-), sulfate (SO42-), and nitrate (NO3-) as coexisting anions affect the removal of Cl- ions through competitive reaction. This work provides a theoretical basis for the industrialization of Cl- removal by electrocoagulation.
Collapse
Affiliation(s)
- Zirui Wang
- Department of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaowei An
- Department of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Peifen Wang
- Department of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaoqiong Hao
- Department of Petroleum and Chemical Engineering, Jiangsu Key Lab Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xuli Ma
- Department of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
10
|
Hu X, Ji Z, Gu S, Ma Z, Yan Z, Liang Y, Chang H, Liang H. Mapping the research on desulfurization wastewater: Insights from a bibliometric review (1991-2021). CHEMOSPHERE 2023; 314:137678. [PMID: 36586446 DOI: 10.1016/j.chemosphere.2022.137678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Desulfurization wastewater in coal-fired power plants (CFPPs) is a great environmental challenge. This study aimed at the current status and future research trends of desulfurization wastewater by bibliometric analysis. The desulfurization wastewater featured with high sulfate (8000 mg/L), chlorite (8505 mg/L), magnesium (2882 mg/L) and calcium (969 mg/L) but low sodium (801.82 mg/L), and the concentrations of the main contaminants were critically summarized. There was an increasing trend in the annual publications of desulfurization wastewater in the period from 1991 to 2021, with an average growth rate of 15%. Water Science and Technology, Desalination and Water Treatment, Energy & Fuels, Chemosphere, and Journal of Hazardous Materials are the top 5 journals in this field. China was the most productive country (58.3% of global output) and the core country in the international cooperation network. Wordcloud analysis and keyword topic trend demonstrated that removal/treatment of pollutants dominated the global research in the field of desulfurization wastewater. The primary technologies for desulfurization wastewater treatment were systematically evaluated. The physicochemical treatment technologies occupied half of the total treatment methods, while membrane-based integrated processes showed potential applications for beneficial reuse. The challenges and outlook on desulfurization wastewater treatment for achieving zero liquid discharge are summarized.
Collapse
Affiliation(s)
- Xueqi Hu
- State Grid Sichuan Comprehensive Energy Service Co., Ltd., Power Engineering Br., Chengdu, 610072, China
| | - Zhengxuan Ji
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Suhua Gu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China
| | - Zeren Ma
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610207, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
11
|
Zhang M, Xia Q, Zhao X, Guo J, Zeng L, Zhou Z. Concentration effects of calcium ion on polyacrylamide fouling of ion-exchange membrane in electrodialysis treatment of flue gas desulfurization wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Yang W, Cao X, Zhang Q, Ma R, Fang L, Liu S. Coupled microwave hydrothermal dechlorination and geopolymer preparation for the solidification/stabilization of heavy metals and chlorine in municipal solid waste incineration fly ash. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158563. [PMID: 36087669 DOI: 10.1016/j.scitotenv.2022.158563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
To improve the degradation efficiency of persistent organic pollutants (POPs) in municipal solid waste incineration fly ash (MSWIFA), as well as to overcome the difficulties of subsequent hydrothermal liquid and hydrothermal slag treatment, a two-step treatment strategy of microwave hydrothermal degradation coupled with geopolymer immobilization was proposed. Results showed that the optimal process parameters for microwave hydrothermal dechlorination were a temperature of 220 °C, a time of 1 h, and NaOH addition of 10 wt%. Microwaves accelerated the OH- mediated hydrolysis reactions and promoted the breaking of CCl bonds, leading to dechlorination. The compressive strength of the 20 % MSWIFA-based geopolymers reached 75.79 MPa, and the immobilization rate of the heavy metals (HMs) and Cl- surpassed 90 %. Alkaline environment provided by microwave hydrothermal promoted the formation of Ca(OH)2, which subsequently formed Friedel's salt (3CaO•Al2O3•CaCl2•10H2O) with Cl- in the geopolymer. The charge density difference and density of states (DOS) of Friedel's salt were analyzed by first-principles calculations, confirming that the existence of strong interactions between Ca-s, Al-p, O-p, and Cl-p states was the chemical mechanism of Cl- immobilization. The Friedel's salt and HMs were encapsulated by geopolymers with dense silica-alumina tetrahedral frameworks, achieving the solidification/stabilization (S/S) of HMs and Cl-. This work provided a new approach for the environmentally sound and resourceful treatment of MSWIFA.
Collapse
Affiliation(s)
- Weichen Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xing Cao
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qiushi Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shiwei Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Li Y, Yang Z, Yang K, Wei J, Li Z, Ma C, Yang X, Wang T, Zeng G, Yu G, Yu Z, Zhang C. Removal of chloride from water and wastewater: Removal mechanisms and recent trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153174. [PMID: 35051452 DOI: 10.1016/j.scitotenv.2022.153174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Increased chloride concentration can cause salinization, which has become a serious and widespread environmental problem nowadays. This review aims at providing comprehensive and state-of-the-art knowledge and insights of technologies for chloride removal. Mechanisms for chloride removal mainly include chemical precipitation, adsorption, oxidation and membrane separation. In chemical precipitation, chloride removal by forming CuCl, AgCl, BiOCl and Friedel's salt. Adsorbents used in chloride removal mainly include ion exchangers, bimetal oxides and carbon-based electrodes. Oxidation for chloride removal contains ozone-based, electrochemical and sulfate radical-based oxidation. Membrane separation for chloride removal consists of diffusion dialysis, nanofiltration, reverse osmosis and electrodialysis. In this review, we specifically proposed the factors that affect chloride removal process and the corresponding strategies for improving removal efficiency. In the last section, the remaining challenges of method explorations and material developments were stated to provide guidelines for future development of chloride removal technologies.
Collapse
Affiliation(s)
- Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jingjing Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410014, PR China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
14
|
Cao KF, Chen Z, Wu YH, Mao Y, Shi Q, Chen XW, Bai Y, Li K, Hu HY. The noteworthy chloride ions in reclaimed water: Harmful effects, concentration levels and control strategies. WATER RESEARCH 2022; 215:118271. [PMID: 35298995 DOI: 10.1016/j.watres.2022.118271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Chloride ions (Cl-), which are omnipresent in reclaimed water, can cause various problems in water reuse systems, especially during water transmission and at end use sites. Although reverse osmosis (RO) is considered as an effective technology to reduce chloride, its high investment and complex maintenance requirements hinder its application in many water reclamation plants (WRPs). Recently, several technologies bringing new options to better deal with chloride have gained increased attention. This review provides detailed information on the harmful effects, concentration levels, and sources of chloride in reclaimed water and summarizes and discusses various chloride removal technologies, including non-selective methods (e.g., membrane filtration, adsorption and ion exchange, oxidation, and electrochemical methods) and selective methods (e.g. precipitation and specially designed electrochemical methods). Among these, Friedel's salt precipitation and capacitive deionization showed attractive development potential. This review also proposes a holistic framework for chloride control from aspects of "Fit-for-Purpose" planning, technical system development, and whole process optimization, which could facilitate the planning and operation of long-term sustainable water reuse practices.
Collapse
Affiliation(s)
- Ke-Fan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiao-Wen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu Bai
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Kuixiao Li
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China
| |
Collapse
|