1
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
2
|
Milano F, Giotta L, Lambreva MD. Perspectives on nanomaterial-empowered bioremediation of heavy metals by photosynthetic microorganisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109090. [PMID: 39243581 DOI: 10.1016/j.plaphy.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Environmental remediation of heavy metals (HMs) is a crucial aspect of sustainable development, safeguarding natural resources, biodiversity, and the delicate balance of ecosystems, all of which are critical for sustaining life on our planet. The bioremediation of HMs by unicellular phototrophs harnesses their intrinsic detoxification mechanisms, including biosorption, bioaccumulation, and biotransformation. These processes can be remarkably effective in mitigating HMs, particularly at lower contaminant concentrations, surpassing the efficacy of conventional physicochemical methods and offering greater sustainability and cost-effectiveness. Here, we explore the potential of various engineered nanomaterials to further enhance the capacity and efficiency of HM bioremediation based on photosynthetic microorganisms. The critical assessment of the interactions between nanomaterials and unicellular phototrophs emphasised the ability of tailored nanomaterials to sustain photosynthetic metabolism and the defence system of microorganisms, thereby enhancing their growth, biomass accumulation, and overall bioremediation capacity. Key factors that could shape future research efforts toward sustainable nanobioremediation of HM are discussed, and knowledge gaps in the field have been identified. This study sheds light on the potential of nanobioremediation by unicellular phototrophs as an efficient, scalable, and cost-effective solution for HM removal.
Collapse
Affiliation(s)
- Francesco Milano
- Institute of Sciences of Food Production, National Research Council (CNR), Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Maya D Lambreva
- Institute for Biological Systems, National Research Council (CNR), Strada Provinciale 35d, N. 9, 00010, Montelibretti, Rome, Italy.
| |
Collapse
|
3
|
El-Sayyad GS, Abd Elkodous M, El-Bastawisy HS, El Rouby WMA. Potential antibacterial, antibiofilm, and photocatalytic performance of gamma-irradiated novel nanocomposite for enhanced disinfection applications with an investigated reaction mechanism. BMC Microbiol 2023; 23:270. [PMID: 37752448 PMCID: PMC10521429 DOI: 10.1186/s12866-023-03016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Water scarcity is now a global challenge due to the population growth and the limited amount of available potable water. In addition, modern industrialization, and microbial pathogenesis is resulting in water pollution on a large scale. METHODS In the present study, reusable Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix was incorporated with CdS NPs to develop an efficient photocatalyst, and antimicrobial agents for wastewater treatment, and disinfection purpose. The antibacterial performance of the gamma-irradiated samples was evaluated against various types of Gram-positive bacteria using ZOI, MIC, antibiofilm, and effect of UV-exposure. Antibacterial reaction mechanism was assessed by bacterial membrane leakage assay, and SEM imaging. In addition, their photocatalytic efficiency was tested against MB cationic dye as a typical water organic pollutant. RESULTS Our results showed that, the formed CdS NPs were uniformly distributed onto the surface of the nanocomposite matrix. While, the resulted CdS-based nanocomposite possessed an average particle size of nearly 90.6 nm. The antibacterial performance of the prepared nanocomposite was significantly increased after activation with gamma and UV irradiations. The improved antibacterial performance was mainly due to the synergistic effect of both TiO2 and CdS NPs; whereas, the highest photocatalytic efficiency of MB removal was exhibited in alkaline media due to the electrostatic attraction between the cationic MB and the negatively-charged samples. In addition, the constructed heterojunction enabled better charge separation and increased the lifetime of the photogenerated charge carriers. CONCLUSION Our results can pave the way towards the development of efficient photocatalysts for wastewater treatment and promising antibacterial agents for disinfection applications.
Collapse
Affiliation(s)
- Gharieb S El-Sayyad
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - M Abd Elkodous
- Center for Nanotechnology (CNT), School of Engineering and Applied Science, Nile University, Sheikh Zayed, Giza, 16453, Egypt.
| | - Hanan S El-Bastawisy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Waleed M A El Rouby
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
4
|
Ortelli S, Vespignani M, Zanoni I, Blosi M, Vineis C, Piancastelli A, Baldi G, Dami V, Albonetti S, Costa AL. Design of TiO 2-Based Hybrid Systems with Multifunctional Properties. Molecules 2023; 28:1863. [PMID: 36838853 PMCID: PMC9967613 DOI: 10.3390/molecules28041863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent years, multifunctional inorganic-organic hybrid materials have been widely investigated in order to determine their potential synergetic, antagonist, or independent effects in terms of reactivity. The aim of this study was to design and characterize a new hybrid material by coupling well-known photocatalytic TiO2 nanoparticles with a mixture of lipopeptides (LP), to exploit its high binding affinity for metal cations as well as the ability to interact with bacterial membranes and disrupt their integrity. We used both chemical and colloidal synthesis methodologies and investigated how different TiO2:LP weight ratios affected colloidal, physicochemical, and functional properties. We discovered a clear breaking point between TiO2 and LP single-component trends and identified different ranges of applicability by considering different functional properties such as photocatalytic, heavy metal sorption capacity, and antibacterial properties. At low LP contents, the photocatalytic properties of TiO2 are preserved (conversion of organic dye = 99% after 40 min), and the hybrid system can be used in advanced oxidation processes, taking advantage of the additional antimicrobial LP properties. Around the breaking point (TiO2:LP 1:1), the hybrid material preserves the high surface area of TiO2 (specific surface area around 180 m2/g) and demonstrates NOx depletion of up to 100% in 80 min, together with improved adhesion of hybrid antibacterial coating. The last design demonstrated the best results for the concurrent removal of inorganic, organic, and biological pollutants in water/soil remediation applications.
Collapse
Affiliation(s)
- Simona Ortelli
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
| | - Maurizio Vespignani
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Ilaria Zanoni
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
| | - Magda Blosi
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
| | - Claudia Vineis
- CNR-STIIMA, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing–Italian National Research Council, Corso Pella 16, 13900 Biella, Italy
| | - Andreana Piancastelli
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
| | - Giovanni Baldi
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana-Vinci, Italy
| | - Valentina Dami
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana-Vinci, Italy
| | - Stefania Albonetti
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Anna Luisa Costa
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
5
|
Javed R, Ain NU, Gul A, Arslan Ahmad M, Guo W, Ao Q, Tian S. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol 2022; 16:171-189. [PMID: 35411585 PMCID: PMC9178655 DOI: 10.1049/nbt2.12085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are one of the topmost widely used metallic oxide nanoparticles. Whether present in naked form or doped with metals or polymers, TiO2 NPs perform immensely important functions. However, the alteration in size and shape by doping results in improving the physical, chemical, and biological behaviour of TiO2 NPs. Hence, the differential effects of various TiO2 nanostructures including nanoflakes, nanoflowers, and nanotubes in various domains of biotechnology have been elucidated by researchers. Recently, the exponential growth of research activities regarding TiO2 NPs has been observed owing to their chemical stability, low toxicity, and multifaceted properties. Because of their enormous abundance, plants, humans, and environment are inevitably exposed to TiO2 NPs. These NPs play a significant role in improving agricultural attributes, removing environmental pollution, and upgrading the domain of nanomedicine. Therefore, the currently ongoing studies about the employment of TiO2 NPs in enhancement of different aspects of agriculture, environment, and medicine have been extensively discussed in this review.
Collapse
Affiliation(s)
- Rabia Javed
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Noor Ul Ain
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Gul
- NANOCAT Research Center, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weihong Guo
- Fuwai Hospial, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Shen Tian
- Department of Neurology, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|