1
|
Tao M, Cheng W, Wu C, Shi Y. Environmental life cycle assessment of large-scale coal mining with annual output of more than one million tonnes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64744-64759. [PMID: 39556227 DOI: 10.1007/s11356-024-34899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2024] [Indexed: 11/19/2024]
Abstract
Coal occupies an absolute advantage in the primary energy structure of China. However, the production of coal poses a serious threat to the ecological environment and human health. In order to quantify the environmental impact of coal mining, this study used the life cycle assessment (LCA) method to analyse the life cycle of coal mining from the cradle-to-gate. Midpoint results based on ReCiPe 2016 indicated that coal mining had a remarkable impact on human carcinogenic toxicity, marine ecotoxicity, freshwater ecotoxicity, fossil resource scarcity, and human non-carcinogenic toxicity. The contribution analysis revealed that material production was identified as the main cause of environmental impacts, followed by energy consumption and process emissions. Steel consumption, electricity production, and wastewater discharge were identified as key environmental pollution processes. In addition, specific environmental pollution substances and their contributions were recognized from the source, and a sensitivity analysis between key processes and key impact categories was carried out. At the endpoint level, coal mining led to the most damage to human health, followed by ecosystems and resources. This study is of reference significance in guiding the construction of green mines and achieving sustainable development of coal resources.
Collapse
Affiliation(s)
- Ming Tao
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Wenqing Cheng
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Chengqing Wu
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ying Shi
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
2
|
Yang X, Yin ML, Huan ZL, Zhu YB, Zhao SP, Xi HL. Microecological characteristics of water bodies/sediments and microbial remediation strategies after 50 years of pollution exposure in ammunition destruction sites in China. ENVIRONMENTAL RESEARCH 2024; 251:118640. [PMID: 38479720 DOI: 10.1016/j.envres.2024.118640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The effects of long-term ammunition pollution on microecological characteristics were analyzed to formulate microbial remediation strategies. Specifically, the response of enzyme systems, N/O stable isotopes, ion networks, and microbial community structure/function levels were analyzed in long-term (50 years) ammunition-contaminated water/sediments from a contamination site, and a compound bacterial agent capable of efficiently degrading trinitrotoluene (TNT) while tolerating many heavy metals was selected to remediate the ammunition-contaminated soil. The basic physical and chemical properties of the water/sediment (pH (up: 0.57-0.64), nitrate (up: 1.31-4.28 times), nitrite (up: 1.51-5.03 times), and ammonium (up: 7.06-70.93 times)) were changed significantly, and the significant differences in stable isotope ratios of N and O (nitrate nitrogen) confirmed the degradability of TNT by indigenous microorganisms exposed to long-term pollution. Heavy metals, such as Pb, Zn, Cu, Cd, Cs, and Sb, have synergistic toxic effects in ammunition-contaminated sites, and significantly decreased the microbial diversity and richness in the core pollution area. However, long-term exposure in the edge pollution area induced microorganisms to use TNT as a carbon and nitrogen sources for life activities and growth and development. The Bacteroidales microbial group was significantly inhibited by ammunition contamination, whereas microorganisms such as Proteobacteria, Acidobacteriota, and Comamonadaceae gradually adapted to this environmental stress by regulating their development and stress responses. Ammunition pollution significantly affected DNA replication and gene regulation in the microecological genetic networks and increased the risk to human health. Mg and K were significantly involved in the internal mechanism of microbial transport, enrichment, and metabolism of TNT. Nine strains of TNT-utilizing microbes were screened for efficient TNT degradation and tolerance to typical heavy metals (copper, zinc and lead) found in contaminated sites, and a compound bacterial agent prepared for effective repair of ammunition-contaminated soil significantly improved the soil ecological environment.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mao-Ling Yin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zheng-Lai Huan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yong-Bing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
3
|
Li J, Huang Y, Li Y, Ouyang S, Wang S, Ding Z. Research on long-term migration behaviors of heavy metals after close-distance coal seam backfill mining. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134140. [PMID: 38574658 DOI: 10.1016/j.jhazmat.2024.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The backfill mining of coal-based solid waste in goaf poses a potential risk of heavy metal pollution to the groundwater environment, and the migration behavior of heavy metals differs significantly under the disturbance of backfill mining in close-distance multi-layer coal seams and single-layer coal seams. In this study, a migration model of heavy metals after solid backfilling in the goaf of shallow-buried close-distance thick coal seams was established, and the impact of the overburden damage and the layered distribution of the filling body on the long-term migration behavior of heavy metals were analyzed. The results show that the migration of heavy metals after close-distance coal seam backfill mining exhibits a higher risk of heavy metal pollution. The peak permeability of overburden after close-distance coal seam backfill mining is about 600 × 10-19 m2 higher than that after single-layer coal seam backfill mining. The migration distance of heavy metals in the floor after backfill mining of close-distance coal seams is 7.41 m farther than that of single-layer coal seam backfill mining, and its migration time of heavy metals to the surface is 27 a earlier than that of single-layer coal seam. This research provides theoretical and empirical support for the ecological risk assessment and heavy metal pollution control in close-distance coal seam backfill mining. ENVIRONMENTAL IMPLICATION: The main filling material of close-distance coal seams backfill mining is coal gangue. Heavy metal elements such as Mn and Cr will be released in the underground environment for a long time, and the migration behavior of heavy metal elements will have an impact on the groundwater environment for more than 1000 years. This research provides theoretical and empirical support for the ecological risk assessment of close-distance coal seam backfill mining and the mitigation of heavy metal pollution.
Collapse
Affiliation(s)
- Junmeng Li
- School of Mines, China University of Mining & Technology, Xuzhou 221116, China; Key Laboratory of Coal Resources and Green Mining in Xinjiang, Ministry of Education, Xinjiang Institute of Engineering, Urumqi 830000, China; Key Laboratory of Deep Coal Resource Mining of Ministry of Education, China University of Mining & Technology, Xuzhou 221116, China
| | - Yanli Huang
- School of Mines, China University of Mining & Technology, Xuzhou 221116, China; Key Laboratory of Coal Resources and Green Mining in Xinjiang, Ministry of Education, Xinjiang Institute of Engineering, Urumqi 830000, China; Key Laboratory of Deep Coal Resource Mining of Ministry of Education, China University of Mining & Technology, Xuzhou 221116, China.
| | - Yingshun Li
- School of Mines, China University of Mining & Technology, Xuzhou 221116, China
| | - Shenyang Ouyang
- School of Mines, China University of Mining & Technology, Xuzhou 221116, China
| | - Shiqi Wang
- School of Mines, China University of Mining & Technology, Xuzhou 221116, China
| | - Zizhao Ding
- School of Mines, China University of Mining & Technology, Xuzhou 221116, China
| |
Collapse
|
4
|
Wongkiew S, Aksorn S, Amnuaychaichana S, Polprasert C, Noophan PL, Kanokkantapong V, Koottatep T, Surendra KC, Khanal SK. Bioponic systems with biochar: Insights into nutrient recovery, heavy metal reduction, and microbial interactions in digestate-based bioponics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:267-279. [PMID: 38422680 DOI: 10.1016/j.wasman.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Bioponics is a nutrient-recovery technology that transforms nutrient-rich organic waste into plant biomass/bioproducts. Integrating biochar with digestate from anaerobic wastewater treatment process can improve resource recovery while mitigating heavy metal contamination. The overarching goal of this study was to investigate the application of biochar in digestate-based bioponics, focusing on its efficacy in nutrient recovery and heavy metal removal, while also exploring the microbial community dynamics. In this study, biochar was applied at 50 % w/w with 500 g dry weight of digestate during two 28-day crop cycles (uncontrolled pH and pH 5.5) using white stem pak choi (Brassica rapa var. chinensis) as a model crop. The results showed that the digestate provided sufficient phosphorus and nitrogen, supporting plant growth. Biochar amendment improved plant yield and phosphate solubilization and reduced nitrogen loss, especially at the pH 5.5. Furthermore, biochar reduced the heavy metal accumulation in plants, while concentrating these metals in the residual sludge. However, owing to potential non-carcinogenic and carcinogenic health risks, it is still not recommended to directly consume plants cultivated in digestate-based bioponic systems. Additionally, biochar amendment exhibited pronounced impact on the microbial community, promoting microbes responsible for nutrient solubilization and cycling (e.g., Tetrasphaera, Herpetosiphon, Hyphomicrobium, and Pseudorhodoplanes) and heavy metal stabilization (e.g., Leptolinea, Fonticella, Romboutsia, and Desulfurispora) in both the residual sludge and plants. Overall, the addition of biochar enhanced the microbial community and facilitated the metal stabilization and the cycling of nutrients within both residual sludge and root systems, thereby improving the overall efficiency of the bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Satja Aksorn
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suchana Amnuaychaichana
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Department of Environmental Engineering, Korea University Sejong Campus, Sejong-ro 2511, Sejong, Korea (Affiliate Faculty)
| |
Collapse
|
5
|
Wang YW, Bai DS, Luo XG, Zhang Y. Effects of Setaria viridis on heavy metal enrichment tolerance and bacterial community establishment in high-sulfur coal gangue. CHEMOSPHERE 2024; 351:141265. [PMID: 38246497 DOI: 10.1016/j.chemosphere.2024.141265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Plant enrichment and tolerance to heavy metals are crucial for the phytoremediation of coal gangue mountain. However, understanding of how plants mobilize and tolerate heavy metals in coal gangue is limited. This study conducted potted experiments using Setaria viridis as a pioneer remediation plant to evaluate its tolerance to coal gangue, its mobilization and enrichment of metals, and its impact on the soil environment. Results showed that the addition of 40% gangue enhanced plant metal and oxidative stress resistance, thereby promoting plant growth. However, over 80% of the gangue inhibited the chlorophyll content, photoelectron conduction rate, and biomass of S. viridis, leading to cellular peroxidative stress. An analysis of metal resistance showed that endogenous S in coal gangue promoted the accumulation of glutathione, plant metal chelators, and non-protein thiols, thereby enhancing its resistance to metal stress. Setaria viridis cultivation affected soil properties by decreasing nitrogen, phosphorus, conductivity, and urease and increasing sucrase and acid phosphatase in the rhizosphere soil. In addition, S. viridis planting increased V, Cr, Ni, As, and Zn in the exchangeable and carbonate-bound states within the gangue, effectively enriching Cd, Cr, Fe, S, U, Cu, and V. The increased mobility of Cd and Pb was correlated with a higher abundance of Proteobacteria and Acidobacteria. Heavy metals, such as As, Fe, V, Mn, Ni, and Cu, along with environmental factors, including total nitrogen, total phosphorus, urease, and acid phosphatase, were the primary regulatory factors for Sphingomonas, Gemmatimonas, and Bryobacter. In summary, S. viridis adapted to gangue stress by modulating antioxidant and elemental enrichment systems and regulating the release and uptake of heavy metals through enhanced bacterial abundance and the recruitment of gangue-tolerant bacteria. These findings highlight the potential of S. viridis for plant enrichment in coal gangue areas and will aid the restoration and remediation of these environments.
Collapse
Affiliation(s)
- Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | | | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
6
|
Wang Y, Chen L, Li Z, Duan S, Zhang X, Fang J, Xiao Y. The role of iron-rich organic fertilizer in promoting the growth of Chinese cabbage and inhibiting the transformation of cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168430. [PMID: 37949134 DOI: 10.1016/j.scitotenv.2023.168430] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The issue of heavy metal pollution caused by human production and living activities is progressively worsening. This study explored the effect of iron-rich organic fertilizer on the growth, quality, and cadmium (Cd) absorption of Chinese cabbage under Cd stress. The results showed that iron-rich organic fertilizer could increase the soluble protein content and root length of Chinese cabbage. Meanwhile, it could change the form of Cd to inhibit the enrichment of Cd in Chinese cabbage. The alkali hydrolyzed nitrogen (AN), total potassium (TK), organic matter (OM), and moisture content (MC) of the Z3 treatment group (2 % ferrous sulfate heptahydrate) were significantly higher than those of other treatment groups. The microbial network of Z3 was more complex than the other three groups. PICRUSt analysis and correlation analysis showed that the genes related to protein synthesis (e.g., glutathione S-transferase, zinc and Cd transporter, outer membrane protein, ArsR family transcriptional regulator, catalase, etc.) can also promote microbial absorption. This study aims to provide theoretical insights into soil Cd pollution immobilization techniques.
Collapse
Affiliation(s)
- Ying Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zhihuan Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shuyang Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xuerong Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Yang X, Zhao SP, Xi HL. Defense mechanisms of alfalfa against cyclic tetramethylene tetranitramine (HMX) stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165585. [PMID: 37467987 DOI: 10.1016/j.scitotenv.2023.165585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Much attention has been paid to the environmental toxicity and ecological risk caused by cyclic tetramethylene tetranitramine (HMX) pollution in military activity sites. In this study, the response mechanism of alfalfa plants to HMX was analyzed from the aspects of the photosynthetic system, micromorphology, antioxidant enzyme system, mineral metabolism, and secondary metabolism, in order to improve the efficiency of plant restoration. Exposure to 5 mg·L-1 HMX resulted in a significant increase in leaf N content and a significant increase and drift of the Fourier transform infrared protein peak area. Transmission electron microscopy images revealed damage to the root system subcellular morphology, but the plant leaves effectively resisted HMX pressure, and the photosynthetic parameters essentially maintained steady-state levels. The root proline content decreased significantly by 23.1-47.2 %, and the root reactive oxygen species content increased significantly by 1.66-1.80 fold. The roots regulate the transport/absorption of many elements that impart stress resistance, and Cu, Mn, and Na uptake is significantly associated with secondary metabolism. The metabolism of roots was upregulated in general by HMX exposure, with the main differences appearing in the content of lipids and lipid-like molecules, further confirming damage to the root biofilm structure. HMX causes an imbalance in the energy supply from oxidative phosphorylation in roots and generates important biomarkers in the form of pyrophosphate and dihydrogen phosphate. Interestingly, HMX had no significant effect on basic metabolic networks (i.e., glycolysis/gluconeogenesis and the tricarboxylic acid cycle), confirming that alfalfa has good stress resistance. Alfalfa plants apparently regulate multiple network systems to resist/overcome HMX toxicity. These findings provide a scientific basis for improving plant stress tolerance and understanding the HMX toxicity mechanism.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
8
|
Zheng S, Wang YW, Lai JL, Zhang Y, Luo XG. Effects of long-term herbaceous plant restoration on microbial communities and metabolic profiles in coal gangue-contaminated soil. ENVIRONMENTAL RESEARCH 2023; 234:116491. [PMID: 37394168 DOI: 10.1016/j.envres.2023.116491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
The soil microbial diversity in the gangue accumulation area is severely stressed by a variety of heavy metals, while the influence of long-term recovery of herbaceous plants on the ecological structure of gangue-contaminated soil is to be explored. Therefore, we analysed the differences in physicochemical properties, elemental changes, microbial community structure, metabolites and expression of related pathways in soils in the 10- and 20-year herbaceous remediation areas of coal gangue. Our results showed that phosphatase, soil urease, and sucrase activities of gangue soils significantly increased in the shallow layer after herbaceous remediation. However, in zone T1 (10-year remediation zone), the contents of harmful elements, such as Thorium (Th; 1.08-fold), Arsenic (As; 0.78-fold), lead (Pb; 0.99-fold), and uranium (U; 0.77-fold), increased significantly, whereas the soil microbial abundance and diversity also showed a significant decreasing trend. Conversely, in zone T2 (20-year restoration zone), the soil pH significantly increased by 1.03- to 1.06-fold and soil acidity significantly improved. Moreover, the abundance and diversity of soil microorganisms increased significantly, the expression of carbohydrates in soil was significantly downregulated, and sucrose content was significantly negatively correlated with the abundance of microorganisms, such as Streptomyces. A significant decrease in heavy metals was observed in the soil, such as U (1.01- to 1.09-fold) and Pb (1.13- to 1.25-fold). Additionally, the thiamin synthesis pathway was inhibited in the soil of the T1 zone; the expression level of sulfur (S)-containing histidine derivatives (Ergothioneine) was significantly up-regulated by 0.56-fold in the shallow soil of the T2 zone; and the S content in the soil significantly reduced. Aromatic compounds were significantly up-regulated in the soil after 20 years of herbaceous plant remediation in coal gangue soil, and microorganisms (Sphingomonas) with significant positive correlations with benzene ring-containing metabolites, such as Sulfaphenazole, were identified.
Collapse
Affiliation(s)
- Sheng Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
9
|
Xiao Y, Chen L, Teng K, Ma J, Xiang S, Jiang L, Liu G, Yang B, Fang J. Potential roles of the rhizospheric bacterial community in assisting Miscanthus floridulus in remediating multi-metal(loid)s contaminated soils. ENVIRONMENTAL RESEARCH 2023; 227:115749. [PMID: 36965787 DOI: 10.1016/j.envres.2023.115749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Phytoremediation technology is an important approach applied to heavy metal remediation, and how to improve its remediation efficiency is the key. In this study, we compared the rhizospheric bacterial communities and metals contents in Miscanthus floridulus (M. floridulus) of four towns, including Huayuan Town (HY), Longtan Town (LT), Maoer Village (ME), and Minle Town (ML) around the lead-zinc mining area in Huayuan County, China. The roles of rhizospheric bacterial communities in assisting the phytoremediation of M. floridulus were explored. It was found that the compositions of the rhizospheric bacterial community of M. floridulus differed in four regions, but majority of them were heavy metal-resistant bacteria that could promote plant growth. Results of bioconcentration factors showed the enrichment of Cu, Zn, and Pb by M. floridulus in these four regions were significantly different. The Zn enrichment capacity of ML was the strongest for Cu and stronger than LT and ME for Pb. The enrichment capacity of LT and ML was stronger than HY and ME. These bacteria may influence the different heavy metals uptake of M. floridulus by altering the soil physiochemical properties (e.g., soil peroxidase, pH and moisture content). In addition, co-occurrence network analysis also showed that LT and ML had higher network stability and complexity than HY and ME. Functional prediction analysis of the rhizospheric bacterial community showed that genes related to protein synthesis (e.g., zinc-binding alcohol dehydrogenase/oxidoreductase, Dtx R family transcriptional regulators and ACC deaminase) also contributed to phytoremediation in various ways. This study provides theoretical guidance for selecting suitable microorganisms to assist in the phytoremediation of heavy metals.
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Kai Teng
- Hunan Tobacco Science Institute, Changsha, 410004, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Sha Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Zhang C, Yang B, Wang H, Xu X, Shi J, Qin G. Metal tolerance capacity and antioxidant responses of new Salix spp. clones in a combined Cd-Pb polluted system. PeerJ 2022; 10:e14521. [PMID: 36545381 PMCID: PMC9762249 DOI: 10.7717/peerj.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
To investigate the physiochemical characteristics of two new clones, Salix matsudana 'J172' (A7) and Salix matsudana 'Yankang1' (A64) in combined Cd-Pb contaminated systems, a hydroponic experiment was designed. The plant biomass, photosynthesis, antioxidant responses and the accumulation of metals in different plant parts (leaf, stem, and root) were measured after 35-day treatments with Cd (15, 30 µM) and Pb (250, 500 µM). The results showed that exposure to Cd-Pb decreased the biomass but increased the net photosynthetic rate for both A7 and A64, demonstrating that photosynthesis may be one of the metabolic processes used to resist Cd-Pb stress. Compared with control, roots exposed to Cd-Pb had higher activity of superoxide dismutase and more malondialdehyde concentrations, which indicated the roots of both clones were apt to be damaged. The concentrations of soluble protein were obviously higher in the roots of A64 than A7, indicating the roles of the antioxidative substance were different between two willow clones. Soluble protein also had significant relationship with translocation factors from accumulation in roots of A64, which illustrated it played important roles in the tolerance of A64 roots to heavy metals. The roots could accumulate more Pb rather than transport to the shoots compared with Cd. The tolerance index was more than 85% on average for both clones under all the treatments, indicating their tolerance capacities to the combined stress of Cd and Pb are strong under the tested metal levels. Both clones are the good candidates for phytoremediation of Cd and Pb by the root filtration in the combined contamination environment.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China,Shaanxi Key Laboratory of Land Consolidation, Xi’an, Chian,Chang’an University, Xi’an, China
| | - Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu province, China
| | - Jiaxing Shi
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Guanghua Qin
- Shandong Academy of Forestry, Jinan, Shandong province, China
| |
Collapse
|
11
|
Xue C, Sun L, Qu B, Gao Y, Liu Z, Guo C, Liu W, Chang W, Tai P. Grafting with an invasive Xanthium strumarium improves tolerance and phytoremediation of native congener X. sibiricum to cadmium/copper/nickel tailings. CHEMOSPHERE 2022; 308:136561. [PMID: 36155022 DOI: 10.1016/j.chemosphere.2022.136561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Invasive plants could play an important role in the restoration of tailings, but their invasiveness limits their practical application. In this study, the phytoremediation potentials and invasive risks of an exotic invasive plant (Xanthium strumarium, LT), a native plant (X. sibiricum, CR), and combinations of inoculations (EG, with CR as the scion and LT as the rootstock; SG, with CR as both the scion and rootstock) were evaluated on Cd/Cu/Ni tailings. LT rootstock has a stronger nutrient and metal transport capacity, compared with CR. EG not only had higher biomass and Cd/Cu/Ni accumulation, but also abundant rhizosphere microbial communities. Hydroponic and common garden experiments showed that the growth and metal enrichment characteristics of EG are not inherited by plant offspring, which reduces the risk of the biological diffusion in the process of using exotic species. Transcriptome analysis shows that a large number of differentially-expressed genes in EG leaves and roots are involved in phenylpropanoid biosynthesis, secondary metabolite generation, and signal transduction. The genes induced in EG leaves, including cyclic nucleotide-gated ion channel, calcium-binding protein, and WRKY transcription factor, were found to be differentially expressed compared to CR. The genes induced in EG roots, included phenylalanine ammonia-lyase, cinnamoyl-CoA reductase, caffeoyl-CoA O-methyltransferase, and beta-glucosidase. We speculate that lignin and glucosinolates play an important role in the metal accumulation and transportation of EG. The results demonstrate that grafting with LT not only improved CR tolerance and accumulation of Cd, Cu, and Ni, but also created a beneficial microbial environment for plants in tailings. More importantly, grafting with LT did not enhance the invasiveness of CR. Our results provide an example of the safe use of invasive plants in the restoration of Cd/Cu/Ni tailings.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China; College of Biological Technology, Shenyang Agricultural University, Shenyang, 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Qu
- College of Biological Technology, Shenyang Agricultural University, Shenyang, 110016, China
| | - Yingmei Gao
- College of Biological Technology, Shenyang Agricultural University, Shenyang, 110016, China
| | - Zhi Liu
- Shenyang Academy of Environmental Sciences, Shenyang, 110016, China
| | - Cheng Guo
- Liaoning Shihua University, Fushun, 113000, China
| | - Wanbin Liu
- Dengta Agricultural and Rural Service Center, China
| | - Wenyue Chang
- Shenyang Academy of Environmental Sciences, Shenyang, 110016, China.
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
12
|
Zhang Y, Zhang Y, Shi X, Liu S, Shu P, Xia S. Investigation of thermal behavior and hazards quantification in spontaneous combustion fires of coal and coal gangue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157072. [PMID: 35780872 DOI: 10.1016/j.scitotenv.2022.157072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
To explore the thermal behavior and hazard during the spontaneous combustion fires (SCFs) of coal and coal gangue (CG), the characteristics of heat release and thermal transfer during the SCFs of coal and CG were tested. The results indicate that coal contains more combustibles and aromatic hydrocarbons, while CG possesses higher contents of ash and inorganic silicate. Coal has a stronger heat release capacity, while CG owns a smaller specific heat capacity, a larger thermal diffusivity and a greater thermal conductivity. Thus, CG performs better with respect to heat transfer. The apparent activation energy of coal is larger in the endothermic stage, whereas that of CG is more notable in the exothermic stage. Based on heat release and heat transfer performance, hazardous zones during the SCFs of coal and CG were identified, and the combustion growth index was established to quantify the hazard of SCF disasters. The results show that the hazard is determined by both heat release and thermal transfer capacities. Coal or CG with a combustible component of 31.3 %, which not only releases massive heat but also transfers heat quickly, corresponds to the most considerable hazard of SCF disasters.
Collapse
Affiliation(s)
- Yuanbo Zhang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, China
| | - Yutao Zhang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, China.
| | - Xueqiang Shi
- School of Safety Science and Engineering, Xi'an University of Science and Technology, China
| | - Shangming Liu
- School of Safety Science and Engineering, Xi'an University of Science and Technology, China
| | - Pan Shu
- School of Safety Science and Engineering, Xi'an University of Science and Technology, China
| | - Shangwen Xia
- School of Safety Science and Engineering, Xi'an University of Science and Technology, China
| |
Collapse
|