1
|
Cheng M, Xu Y, Xu X, Yan B, Zhang X, Borijihan G, Wang Y, Li Y. Quick separation and enrichment of chlorogenic acid and its analogues by a high-efficient molecularly imprinted nanoparticles and evaluation of antioxidant and hypoglycemic activities. Food Chem 2025; 480:143902. [PMID: 40120308 DOI: 10.1016/j.foodchem.2025.143902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Multiple interaction strategy to target was tried to use in the design of surface imprinting polymer. To validate this, active chlorogenic acid, a representative phenolic acid compound existing in many natural products, was selected as the template molecule and a magnetic molecularly imprinted nanoparticles (CGA-MMIPs) was synthesized. The characterizations indicated CGA-MMIPs was 20-50 nm, stable below 229.56 °C and had a saturation magnetic intensity of 17.90 emu/g. The prepared CGA-MMIPs exhibited high adsorption capacity (441.81 mg/g) and fast adsorption equilibrium for chlorogenic acid. It also was easy separation, high selectivity and good reusability, which was successfully used in quick separation of chlorogenic acid from Orthosiphon aristatus and Taraxacum mongolicum and Salvia miltiorrhiza. Moreover, the isolated substances possessed great antioxidant and hypoglycemic activities. These verified the strategy was useful and had huge prospects in the quick separation of chlorogenic acid or other phenolic acid compounds from natural products.
Collapse
Affiliation(s)
- Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanmei Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Hebei Institute for Drug and Medical Device Control, Hebei 050033, China
| | - Xinyu Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Bangqi Yan
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Guirong Borijihan
- Department of Chemistry and Environment, Hohhot Minzu College, Hohhot, Inner Mongolia 010051, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China..
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Neurocritical Care Medicine Innovation Center, Ministry of Education, Tianjin University, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, China.
| |
Collapse
|
2
|
Zhou Y, Tan Z. Application of green waste polyphenols in natural antimicrobial materials for the environmental fields: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114800. [PMID: 40294565 DOI: 10.1016/j.wasman.2025.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
In recent years, green waste polyphenols (GWPs) have attracted global attention due to their abundant renewable resources and excellent antibacterial properties. We analyzed the research progress on the antimicrobial properties of natural polyphenol composites (including polyphenol-metal nanoparticles, polyphenol nanofiber membranes, polyphenol-polymer membranes, and polyphenol hydrogels) in environmental applications. The waste sources of polyphenols and the latest extraction technologies were systematically summarized, and a universal hydrodynamic cavitation-integrated membrane technology combined with polyphenol extraction and purification process was initially constructed. The inhibitory effects of GWPs on pathogenic bacteria and the antibacterial properties of polyphenol composites in the environmental field were systematically analyzed. These composites exhibited outstanding antimicrobial performance, effectively inhibiting E. coli and S. aureus by up to 100%, especially in water treatment and air filtration. In addition, the advantages, challenges, and prospects for the application of green waste polyphenol antibacterial materials (GWPAMs) in the environmental field are discussed. With high efficiency, low toxicity, antimicrobial resistance, and sustainable antimicrobial properties, GWPs exhibit significant application potential in the "resource recycling-pollution control-ecological restoration" synergistic system within the environmental field. Future work should focus on the green synthesis of polyphenol composites, conducting systematic and thorough investigations on their antibacterial mechanisms, and enhancing their antibacterial properties in agriculture, waste treatment, and soil remediation, to improve their environmental adaptability and sustainable application value.
Collapse
Affiliation(s)
- Yuqian Zhou
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1, ShizishanStreet, Hongshan District, Wuhan 430070, People's Republic of China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1, ShizishanStreet, Hongshan District, Wuhan 430070, People's Republic of China.
| |
Collapse
|
3
|
Pini Pereira P, Pacola Gonçalves I, Molina LCA, Delcolle R, Dzyazko YS, Moser Paraiso C, Batista Neto GL, Diório A, Marquetotti Salcedo Vieira A, Bergamasco R. Membrane for Pressure-Driven Separation Prepared with a Method of 3D Printing: Performance in Concentrating Orange Peel Extract. MEMBRANES 2025; 15:105. [PMID: 40277975 PMCID: PMC12028563 DOI: 10.3390/membranes15040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
3D-printing enables the fabrication of membranes with desired shapes and geometrical parameters. In this study, a membrane for pressure-driven processes was manufactured in a single step using the fused deposition modeling (FDM) technique. The membrane was produced from a mixture of polylactic acid (PLA) with sucrose as a pore-forming agent. Sucrose was removed from the final membrane by washing it with water. The membrane consists of three layers, and this sandwich-like structure ensures its mechanical stability. The material obtained was characterized using SEM and AFM imaging, as well as nitrogen adsorption-desorption and contact angle measurements. The porosity of each layer of the membrane is due to a loose region, which is coated on both sides with a dense film formed during printing. The pores responsible for rejection capability can be found in grooves between the polymer stripes in the dense layer. The membrane exhibits a water permeability of 64 L m-2h-1bar-1, with a molecular weight cut-off of 69 kDa. The PLA membrane can be used for polyphenol concentration, demonstrating a permeability of 2-3.4 L m-2h-1bar-1 and a selectivity towards these compounds of 78-98% at 0.5 bar, with a flux decline ratio of up to 50%.
Collapse
Affiliation(s)
- Priscila Pini Pereira
- Department of Chemical Engineering, State University of Maringá, 5790 Colombo Ave., Maringá 87020-900, PR, Brazil
| | - Isabela Pacola Gonçalves
- Department of Chemical Engineering, State University of Maringá, 5790 Colombo Ave., Maringá 87020-900, PR, Brazil
| | - Luiza C. A. Molina
- Department of Chemical Engineering, State University of Maringá, 5790 Colombo Ave., Maringá 87020-900, PR, Brazil
| | - Roberta Delcolle
- Department of Chemical Engineering, State University of Maringá, 5790 Colombo Ave., Maringá 87020-900, PR, Brazil
| | - Yuliya S. Dzyazko
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the National Academy of Science of Ukraine, Palladin Ave. 32/34, 03142 Kyiv, Ukraine
| | - Carolina Moser Paraiso
- Department of Food Engineering, State University of Maringá, 5790 Colombo Ave., Maringá 87020-900, PR, Brazil
| | - Guilherme L. Batista Neto
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., Maringá 87020-900, PR, Brazil
| | - Alexandre Diório
- Department of Chemical Engineering, State University of Maringá, 5790 Colombo Ave., Maringá 87020-900, PR, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, 5790 Colombo Ave., Maringá 87020-900, PR, Brazil
| |
Collapse
|
4
|
Mandalika AS, Runge TM, Ragauskas AJ. Membrane Separations in Biomass Processing. Chempluschem 2025; 90:e202400497. [PMID: 39466007 PMCID: PMC11826140 DOI: 10.1002/cplu.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
The development of integrated biorefineries and the greater utilization of biomass resources to reduce dependence on fossil fuel-derived products require research emphasis not just on conversion strategies but also on improving separations associated with biorefining. A significant roadblock towards developing biorefineries is the lack of effective separation techniques evidenced by the relative deficiency of literature in this area. Additionally, high conversion yields may only be realized if effective separations generate feedstock of sufficient purity - this makes research into biomass conversion strategies all the more critical. In this review, the challenges associated with biomass separations are discussed, followed by an overview of the most appropriate separation strategies for processing biomass. One of the unit operations most appealing for biorefining, membrane separations (MS), is then considered along with a review of the recent literature utilizing this technique in biomass processing.
Collapse
Affiliation(s)
- Anurag S. Mandalika
- Assistant Research Professor, Center for Energy StudiesLouisiana State University93 S Quad Dr, 1115Baton RougeLA 70803
| | - Troy M. Runge
- Professor of Biological Systems Engineering and CALS Associate Dean for Research, 2121 Wisconsin Energy Institute BuildingUniversity of Wisconsin-Madison1552 University AveMadisonWI 53726
| | - Arthur J. Ragauskas
- Governor's Chair for Biorefining, Joint Institute for Biological Sciences, Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RoadOak RidgeTN 37831
| |
Collapse
|
5
|
Karanicola P, Patsalou M, Christou P, Panagiotou G, Constantinides G, Koutinas M. Advanced manufacture of polyphenols, essential oils and bacterial cellulose in a novel citrus processing wastewater biorefinery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124106. [PMID: 39837145 DOI: 10.1016/j.jenvman.2025.124106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Herein, a citrus processing wastewater-based biorefinery has been developed manufacturing essential oils, polyphenols and bacterial cellulose. Liquid-liquid extraction was evaluated for isolation of essential oils assessing different organic solvents, recovering 0.45 kg of essential oils per m3 of wastewater using n-heptane. Amberilte® XAD4, XAD16N and XAD7HP, PurSorb™ PAD900, biochar and activated biochar were compared as adsorbents for polyphenols recovery, demonstrating that the adsorption isotherms of the resins applied could be closely predicted using the Langmuir model. Adsorption and desorption density experiments exhibited that the phenolic content present in citrus processing wastewater could be efficiently recovered using PAD900, yielding 0.78 kg of polyphenols per m3 of wastewater. The sugar content remaining following polyphenols adsorption was applied for bacterial cellulose production employing Komagataeibacter sucrofermentans DSM 15973 determining the biopolymer's production efficiency as well as morphological and structural properties at different carbon to free amino nitrogen ratios. The higher content of the biomaterial was obtained employing 15.0 carbon to free amino nitrogen ratio, which yielded 4.4 kg of biopolymer per m3 of wastewater. The study has shown that by decreasing the carbon to free amino nitrogen ratio could enable enhancing the water-holding capacity of bacterial cellulose, exhibiting that the control of fermentation conditions could potentially enable tailoring the properties of the biomaterial for certain industrial applications. The bioactive, antioxidant and preservative properties of essential oils and polyphenols constitute the aforementioned products significant for a range of industrial applications within the pharmaceutical, cosmetics and food sectors.
Collapse
Affiliation(s)
- Panayiota Karanicola
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus; Kean Soft Drinks Ltd, 35 Promachon Eleftherias, Agios Athanasios, 4103, Limassol, Cyprus
| | - Maria Patsalou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Panayiotis Christou
- Kean Soft Drinks Ltd, 35 Promachon Eleftherias, Agios Athanasios, 4103, Limassol, Cyprus
| | - George Panagiotou
- Kean Soft Drinks Ltd, 35 Promachon Eleftherias, Agios Athanasios, 4103, Limassol, Cyprus
| | - Georgios Constantinides
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Michalis Koutinas
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| |
Collapse
|
6
|
Sorita GD, Favaro SP, Gambetta R, Ambrosi A, Di Luccio M. Macauba (Acrocomia ssp.) fruits: A comprehensive review of nutritional and phytochemical profiles, health benefits, and sustainable oil production. Compr Rev Food Sci Food Saf 2025; 24:e70097. [PMID: 39776255 DOI: 10.1111/1541-4337.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Macauba is an underexplored palm with significant potential for food-grade vegetable oil production. Its fruits yield two distinct sources of oil, the pulp and the kernel, each with its unique composition, emerging as a potential vegetable oil source with high competitiveness with well-established conventional oil sources. Besides the oil, macauba fruits are rich in essential nutrients, including proteins, minerals, vitamins, dietary fiber, and phytochemicals, with outstanding health benefits. Macauba processing generates valuable co-products, including the epicarp, pulp and kernel cakes, and endocarp, which have considerable potential for enhancing the macauba production chain. This review explores the nutritional and phytochemical profile of macauba, its health benefits, and the potential for exploiting its co-products. Innovative extraction methods and a comprehensive strategy for producing multiple products from macauba co-products are also highlighted as opportunities to achieve sustainable development goals and a circular economy in macauba fruit processing.
Collapse
Affiliation(s)
- Guilherme Dallarmi Sorita
- Laboratory of Membrane Processes (LABSEM), Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergia, Brasília, Federal District, Brazil
| | - Simone Palma Favaro
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergia, Brasília, Federal District, Brazil
| | - Rossano Gambetta
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergia, Brasília, Federal District, Brazil
| | - Alan Ambrosi
- Laboratory of Membrane Processes (LABSEM), Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Marco Di Luccio
- Laboratory of Membrane Processes (LABSEM), Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
7
|
Bi Y, Dong J, Zhou Y, Zhang M, Chen X, Zhang Y. Application of membrane separation technology in the purification of pharmaceutical components. Prep Biochem Biotechnol 2024; 54:1107-1115. [PMID: 38526323 DOI: 10.1080/10826068.2024.2328673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Traditional Chinese medicine (TCM) is often composed of a variety of natural medicines. Its composition is complex, and many of its components can not be analyzed and identified. The first step in the rational application of TCM is to successfully separate the effective components which is also a great inspiration for the development of new drugs. Among the many separation technologies of TCM, the traditional heating concentration separation technology has high energy consumption and low efficiency. As a new separation technology, membrane separation technology has the characteristics of simple operation, high efficiency, environment-friendly and so on. The separation effect of high molecular weight difference solution is better. The applications of several main membrane separation technologies such as microfiltration, nanofiltration, ultrafiltration and reverse osmosis are reviewed, the methods of restoring membrane flux after membrane fouling are discussed, and their large-scale industrial applications in the future are prospected and summarized.
Collapse
Affiliation(s)
- Yun Bi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhou
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Manyue Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingying Chen
- Jiaxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Sánchez-Arévalo CM, Aldegheri F, Vincent-Vela MC, Álvarez-Blanco S. Integrated Membrane Process in Organic Media: Combining Organic Solvent Ultrafiltration, Nanofiltration, and Reverse Osmosis to Purify and Concentrate the Phenolic Compounds from Wet Olive Pomace. Int J Mol Sci 2024; 25:5233. [PMID: 38791271 PMCID: PMC11121570 DOI: 10.3390/ijms25105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Phenolic compounds from a hydroalcoholic extract of wet olive pomace were purified and concentrated by an integrated membrane process in organic media. First, UF010104 (Solsep BV) and UP005 (Microdyn Nadir) membranes were tested to be implemented in the ultrafiltration stage, with the aim of purifying the extract and obtaining a permeate enriched in phenolic compounds. Despite the high flux observed with the UF010104 membrane (20.4 ± 0.7 L·h-1·m-2, at 2 bar), the UP005 membrane was selected because of a more suitable selectivity. Even though some secoiridoids were rejected, the permeate stream obtained with this membrane contained high concentrations of valuable simple phenols and phenolic acids, whereas sugars and macromolecules were retained. Then, the ultrafiltration permeate was subjected to a nanofiltration step employing an NF270 membrane (DuPont) for a further purification and fractionation of the phenolic compounds. The permeate flux was 50.2 ± 0.2 L·h-1·m-2, working at 15 bar. Hydroxytyrosol and some phenolic acids (such as vanillic acid, caffeic acid, and ferulic acid) were recovered in the permeate, which was later concentrated by reverse osmosis employing an NF90 membrane. The permeate flux obtained with this membrane was 15.3 ± 0.3 L·h-1·m-2. The concentrated phenolic mixture that was obtained may have important applications as a powerful antioxidant and for the prevention of diabetes and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmen M. Sánchez-Arévalo
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.M.S.-A.); (F.A.); (M.C.V.-V.)
| | - Fausto Aldegheri
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.M.S.-A.); (F.A.); (M.C.V.-V.)
| | - M. Cinta Vincent-Vela
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.M.S.-A.); (F.A.); (M.C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Álvarez-Blanco
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.M.S.-A.); (F.A.); (M.C.V.-V.)
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
9
|
Tapia-Quirós P, Granados M, Sentellas S, Saurina J. Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168716. [PMID: 38036116 DOI: 10.1016/j.scitotenv.2023.168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Agrifood industries generate large amounts of waste that may result in remarkable environmental problems, such as soil and water contamination. Therefore, proper waste management and treatment have become an environmental, economic, and social challenge. Most of these wastes are exceptionally rich in bioactive compounds (e.g., polyphenols) with potential applications in the food, cosmetic, and pharmaceutical industries. Indeed, the recovery of polyphenols from agrifood waste is an example of circular bioeconomy, which contributes to the valorization of waste while providing solutions to environmental problems. In this context, unconventional extraction techniques at the industrial scale, such as microwave-assisted extraction (MAE), which has demonstrated its efficacy at the laboratory level for analytical purposes, have been suggested to search for more efficient recovery procedures. On the other hand, natural deep eutectic solvents (NADES) have been proposed as an efficient and green alternative to typical extraction solvents. This review aims to provide comprehensive insights regarding the extraction of phenolic compounds from agrifood waste. Specifically, it focuses on the utilization of MAE in conjunction with NADES. Moreover, this review delves into the possibilities of recycling and reusing NADES for a more sustainable and cost-efficient industrial application. The results obtained with the MAE-NADES approach show its high extraction efficiency while contributing to green practices in the field of natural product extraction. However, further research is necessary to improve our understanding of these extraction strategies, optimize product yields, and reduce overall costs, to facilitate the scaling-up.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Eduard Maristany 10-14, Campus Diagonal-Besòs, E08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain; Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, E-08003 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
10
|
Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan SMK. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. BIORESOUR BIOPROCESS 2024; 11:10. [PMID: 38647952 PMCID: PMC10991904 DOI: 10.1186/s40643-023-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
A significant portion of the human diet is comprised of fruits, which are consumed globally either raw or after being processed. A huge amount of waste and by-products such as skins, seeds, cores, rags, rinds, pomace, etc. are being generated in our homes and agro-processing industries every day. According to previous statistics, nearly half of the fruits are lost or discarded during the entire processing chain. The concern arises when those wastes and by-products damage the environment and simultaneously cause economic losses. There is a lot of potential in these by-products for reuse in a variety of applications, including the isolation of valuable bioactive ingredients and their application in developing healthy and functional foods. The development of novel techniques for the transformation of these materials into marketable commodities may offer a workable solution to this waste issue while also promoting sustainable economic growth from the bio-economic viewpoint. This approach can manage waste as well as add value to enterprises. The goal of this study is twofold based on this scenario. The first is to present a brief overview of the most significant bioactive substances found in those by-products. The second is to review the current status of their valorization including the trends and techniques, safety assessments, sensory attributes, and challenges. Moreover, specific attention is drawn to the future perspective, and some solutions are discussed in this report.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Science and Nutrition, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh.
| |
Collapse
|
11
|
Romeu MFC, Bernardo J, Daniel CI, Costa N, Crespo JG, Silva Pinto L, Nunes da Ponte M, Nunes AVM. Hydroxytyrosol recovery from olive pomace: a simple process using olive mill industrial equipment and membrane technology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:161-168. [PMID: 38192711 PMCID: PMC10771484 DOI: 10.1007/s13197-023-05832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 01/10/2024]
Abstract
In this work, pilot-scale nanofiltration was used to obtain aqueous solutions rich in hydroxytyrosol and tyrosol from olive oil by-products. A large-scale simple process involving olive mill standard machinery (blender and decanter) was used for the olive pomace pre-treatment with water. The aqueous extract was then directly fed to a nanofiltration unit and concentrated by reverse osmosis. Final concentration factors ranged between 7 and 9 for hydroxytyrosol and between 4 and 7 for tyrosol. The final aqueous solution, obtained as retentate stream of reverse osmosis, was highly concentrated in hydroxytyrosol and tyrosol and their concentrations remained stable over at least 14 months.
Collapse
Affiliation(s)
- Maria F. C. Romeu
- Zeyton Nutraceuticals, Parque Industrial do Penique, Estrada Nacional 2, Km 585, Odivelas, Ferreira do Alentejo, Portugal
| | - Jorge Bernardo
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carla I. Daniel
- Zeyton Nutraceuticals, Parque Industrial do Penique, Estrada Nacional 2, Km 585, Odivelas, Ferreira do Alentejo, Portugal
| | - Nuno Costa
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João G. Crespo
- Zeyton Nutraceuticals, Parque Industrial do Penique, Estrada Nacional 2, Km 585, Odivelas, Ferreira do Alentejo, Portugal
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís Silva Pinto
- Azal Azeites do Alentejo, Estrada Nacional 254, 7170-107 Redondo, Portugal
| | - Manuel Nunes da Ponte
- Zeyton Nutraceuticals, Parque Industrial do Penique, Estrada Nacional 2, Km 585, Odivelas, Ferreira do Alentejo, Portugal
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana V. M. Nunes
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
Padhan B, Ray M, Patel M, Patel R. Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products. MEMBRANES 2023; 13:673. [PMID: 37505039 PMCID: PMC10384387 DOI: 10.3390/membranes13070673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The demand for bioactive molecules with nutritional benefits and pharmaceutically important properties is increasing, leading researchers to develop modified production strategies with low-cost purification processes. Recent developments in bioreactor technology can aid in the production of valuable products. Enzyme membrane bioreactors (EMRs) are emerging as sustainable synthesis processes in various agro-food industries, biofuel applications, and waste management processes. EMRs are modified reactors used for chemical reactions and product separation, particularly large-molecule hydrolysis and the conversion of macromolecules. EMRs generally produce low-molecular-weight carbohydrates, such as oligosaccharides, fructooligosaccharides, and gentiooligosaccharides. In this review, we provide a comprehensive overview of the use of EMRs for the production of valuable products, such as oligosaccharides and oligodextrans, and we discuss their application in the bioconversion of inulin, lignin, and sugars. Furthermore, we critically summarize the application and limitations of EMRs. This review provides important insights that can aid in the production of valuable products by food and pharmaceutical industries, and it is intended to assist scientists in developing improved quality and environmentally friendly prebiotics using EMRs.
Collapse
Affiliation(s)
- Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Madhubanti Ray
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| |
Collapse
|
13
|
Mir-Cerdà A, Carretero I, Coves JR, Pedrouso A, Castro-Barros CM, Alvarino T, Cortina JL, Saurina J, Granados M, Sentellas S. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159623. [PMID: 36283524 DOI: 10.1016/j.scitotenv.2022.159623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Winery wastes are rich in polyphenols with high added value to be used in cosmetics, pharmaceuticals, and food products. This work aims at recovering and purifying the polyphenolic fraction occurring in the malolactic fermentation lees generated during the production of Albariño wines. Phenolic acids, flavonoids, and related compounds were recovered from this oenological waste by green liquid extraction using water as the solvent. The resulting extract solution was microfiltered to remove microparticles and further treated by ultrafiltration (UF) using membranes of 30 kDa and 5 kDa molecular weight cut-offs (MWCOs). The feed sample and the filtrate and retentate solutions from each membrane system were analyzed by reversed-phase liquid chromatography (HPLC) with UV and mass spectrometric (MS) detection. The most abundant polyphenols in the extracts were identified and quantified, namely: caftaric acid with a concentration of 200 µg g-1 and trans-coutaric acid, cis-coutaric acid, gallic acid, and astilbin with concentrations between 15 and 40 µg g-1. Other minor phenolic acids and flavanols were also found. The UF process using the 30 kDa membrane did not modify the extract composition, but filtration through the 5 kDa poly-acrylonitrile membrane elicited a decrease in polyphenolic content. Hence, the 30 kDa membrane was recommended to further pre-process the extracts. The combined extraction and purification process presented here is environmentally friendly and demonstrates that malolactic fermentation lees of Albariño wines are a valuable source of phenolic compounds, especially phenolic acids.
Collapse
Affiliation(s)
- Aina Mir-Cerdà
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain
| | - Iris Carretero
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - José Rubén Coves
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Alba Pedrouso
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Celia María Castro-Barros
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Teresa Alvarino
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - José Luis Cortina
- Department of Chemical Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Eduard Maristany 10-14, Campus Diagonal-Besòs, E08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, E-08930 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain; Serra Húnter Lecturer, Generalitat de Catalunya, Rambla de Catalunya 19-21, E08007 Barcelona, Spain.
| |
Collapse
|
14
|
Sánchez-Arévalo CM, Pérez García-Serrano A, Vincent-Vela MC, Álvarez-Blanco S. Combining Ultrafiltration and Nanofiltration to Obtain a Concentrated Extract of Purified Polyphenols from Wet Olive Pomace. MEMBRANES 2023; 13:119. [PMID: 36837622 PMCID: PMC9968206 DOI: 10.3390/membranes13020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Despite the environmental concerns raised every year by the generation of high volumes of wet olive pomace, it contains valuable phenolic compounds that are essential for the valorization of this by-product. In this work, an integrated process to recover phenolic compounds from wet olive pomace is proposed. It consists of ultrasound-assisted solid-liquid extraction, followed by ultrafiltration and nanofiltration. Several commercial membranes were studied at different operational conditions. The ultrafiltration stage allowed the purification of biophenols, which were obtained in the permeate stream. Regarding organic matter, satisfactory rejection values were obtained with both commercial UH030 and UP005 membranes (Microdyn Nadir), but the latter provided more efficient purification and higher values of permeate flux, above 18 L·h-1·m-2 at 2.5 bar and 1.5 m·s-1. Later, this permeate stream was concentrated by means of a nanofiltration process, obtaining polyphenol rejection values that surpassed 85% with the commercial NF270 membrane (DuPont), then achieving the concentration of the previously purified polyphenols.
Collapse
Affiliation(s)
- Carmen M. Sánchez-Arévalo
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Ane Pérez García-Serrano
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - María Cinta Vincent-Vela
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Álvarez-Blanco
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
15
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
16
|
A Pioneering Study on the Recovery of Valuable Functional Compounds from Olive Pomace by using Supercritical Carbon Dioxide Extraction: Comparison of Perlite Addition and Drying. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Mondor M, Plamondon P, Drolet H. Valorization of Agri-Food By-Products from Plant Sources Using Pressure-Driven Membrane Processes to Recover Value-Added Compounds: Opportunities and Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Martin Mondor
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, St-Hyacinthe, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
| | - Philippe Plamondon
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, St-Hyacinthe, Quebec, Canada
| | - Hélène Drolet
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
18
|
Murugesan VP, Ghosh S, Tulshyan A, Ahmed AA, Sivasamy B, Kapoor A, Karuppasamy S. Modeling and multi-objective optimization of parameters in fabrication and performance analysis of polyvinylidene fluoride spiral-wound membrane modules. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Terholsen H, Kaur J, Kaloudis N, Staudt A, Müller H, Pavlidis IV, Bornscheuer UT. Recovery of Hydroxytyrosol from Olive Mill Wastewater Using the Promiscuous Hydrolase/Acyltransferase PestE. Chembiochem 2022; 23:e202200254. [PMID: 35579388 PMCID: PMC9400952 DOI: 10.1002/cbic.202200254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Indexed: 11/21/2022]
Abstract
Olive mill wastewater (OMWW) is produced annually during olive oil extraction and contains most of the health-promoting 3-hydroxytyrosol of the olive fruit. To facilitate its recovery, enzymatic transesterification of hydroxytyrosol (HT) was directly performed in an aqueous system in the presence of ethyl acetate, yielding a 3-hydroxytyrosol acetate rich extract. For this, the promiscuous acyltransferase from Pyrobaculum calidifontis VA1 (PestE) was engineered by rational design. The best mutant for the acetylation of hydroxytyrosol (PestE_I208A_L209F_N288A) was immobilized on EziG2 beads, resulting in hydroxytyrosol conversions between 82 and 89 % in one hour, for at least ten reaction cycles in a buffered hydroxytyrosol solution. Due to inhibition by other phenols in OMWW the conversions of hydroxytyrosol from this source were between 51 and 62 %. In a preparative scale reaction, 13.8 mg (57 %) of 3-hydroxytyrosol acetate was extracted from 60 mL OMWW.
Collapse
Affiliation(s)
- Henrik Terholsen
- Department of Biotechnology and Enzyme CatalysisUniversity GreifswaldFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Jasmin Kaur
- Department of Biotechnology and Enzyme CatalysisUniversity GreifswaldFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Nikolaos Kaloudis
- Department of ChemistryUniversity of Crete, Voutes University Campus70013HeraklionGreece
| | - Amanda Staudt
- Department of Biotechnology and Enzyme CatalysisUniversity GreifswaldFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Henrik Müller
- Department of Biotechnology and Enzyme CatalysisUniversity GreifswaldFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Ioannis V. Pavlidis
- Department of ChemistryUniversity of Crete, Voutes University Campus70013HeraklionGreece
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme CatalysisUniversity GreifswaldFelix-Hausdorff-Straße 417487GreifswaldGermany
| |
Collapse
|
20
|
Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Granados M, Farran A, Cortina JL, Saurina J, Valderrama C. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes. MEMBRANES 2022; 12:669. [PMID: 35877872 PMCID: PMC9317247 DOI: 10.3390/membranes12070669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Spinach and orange by-products are well recognized for their health benefits due to the presence of natural polyphenols with antioxidant activity. Therefore, the demand to produce functional products containing polyphenols recovered from vegetables and fruits has increased in the last decade. This work aims to use the integrated membrane process for the recovery of polyphenols from spinach and orange wastes, implemented on a laboratory scale. The clarification (microfiltration and ultrafiltration, i.e., MF and UF), pre-concentration (nanofiltration, NF), and concentration (reverse osmosis, RO) of the spinach and orange extracts were performed using membrane technology. Membrane experiments were carried out by collecting 1 mL of the permeate stream after increasing the flow rate in 1 mL/min steps. The separation and concentration factors were determined by HPLC-DAD in terms of total polyphenol content and by polyphenol families: hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. The results show that the transmembrane flux depended on the feed flow rate for MF, UF, NF, and RO techniques. For the spinach and orange matrices, MF (0.22 µm) could be used to remove suspended solids; UF membranes (30 kDa) for clarification; NF membranes (TFCS) to pre-concentrate; and RO membranes (XLE for spinach and BW30 for orange) to concentrate. A treatment sequence is proposed for the two extracts using a selective membrane train (UF, NF, and RO) to obtain polyphenol-rich streams for food, pharmaceutical, and cosmetic applications, and also to recover clean water streams.
Collapse
Affiliation(s)
- María Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, School of Industrial Engineering—Research Center in Technologies, Energy and Industrial Processes (CINTECX), Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - Mónica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (M.G.); (J.S.)
| | - Adriana Farran
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Centre (CETAQUA), Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (M.G.); (J.S.)
| | - César Valderrama
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)—BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (P.T.-Q.); (X.V.); (M.R.); (A.F.); (J.L.C.); (C.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| |
Collapse
|
21
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Saurina J, Granados M, Cortina JL. Integration of Nanofiltration and Reverse Osmosis Technologies in Polyphenols Recovery Schemes from Winery and Olive Mill Wastes by Aqueous-Based Processing. MEMBRANES 2022; 12:339. [PMID: 35323814 PMCID: PMC8954601 DOI: 10.3390/membranes12030339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
More sustainable waste management in the winery and olive oil industries has become a major challenge. Therefore, waste valorization to obtain value-added products (e.g., polyphenols) is an efficient alternative that contributes to circular approaches and sustainable environmental protection. In this work, an integration scheme was purposed based on sustainable extraction and membrane separation processes, such as nanofiltration (NF) and reverse osmosis (RO), for the recovery of polyphenols from winery and olive mill wastes. Membrane processes were evaluated in a closed-loop system and with a flat-sheet membrane configuration (NF270, NF90, and Duracid as NF membranes, and BW30LE as RO membrane). The separation and concentration efficiency were evaluated in terms of the total polyphenol content (TPC), and by polyphenol families (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), using high-performance liquid chromatography. The water trans-membrane flux was dependent on the trans-membrane pressure for the NF and RO processes. NF90 membrane rejected around 91% of TPC for the lees filters extracts while NF270 membrane rejected about 99% of TPC for the olive pomace extracts. Otherwise, RO membranes rejected more than 99.9% of TPC for both types of agri-food wastes. Hence, NF and RO techniques could be used to obtain polyphenol-rich streams, and clean water for reuse purposes.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - María Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Centro de Investigación en Tecnologías, Energía y Procesos Industriales (CINTECX), Chemical Engineering Department, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (J.S.); (M.G.)
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (J.S.); (M.G.)
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10–14, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Centre (CETAQUA), Carretera d’Esplugues 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|