1
|
Lv L, Zhang S, Heng S, Wang J, Xia M, Tian J, Wang J, Su J, Lu X, Zhen G. Carbon dots coupled bioelectrocatalysis for enhanced methane productivity in anaerobic co-digestion of sewage sludge and food waste: Focusing on enhancement mechanisms and microbial community succession. BIORESOURCE TECHNOLOGY 2025; 424:132290. [PMID: 39993660 DOI: 10.1016/j.biortech.2025.132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 02/26/2025]
Abstract
The limited electron transfer efficiency and poor stability of microorganisms are challenges in traditional bioelectrocatalytic food waste treatment. Herein, carbon dots (CDs) possess excellent biocompatibility and electrochemical properties. When combined with bioelectrocatalysis, CDs can regulate microbial community structure and enhance electron exchange capacity. The results demonstrated that compared with the control group (28.1 mL/g-VS/d), the CDs at a dosage of 0.50 g/g VS could increase CH4 production by a factor of 7.8. CDs not only increase CH4 production but also improve the digestate's stability, making it suitable for use as bio-fertilizer. Moreover, a significantly high Methanobacterium richness (11.6 %) signified an intensified utilization of hydrogen and formic acid pathways in CH4 production. Particularly, the biocompatible CDs could be absorbed by microorganisms, forming an environmental network that was more conducive to electron transfer with unabsorbed CDs and accelerating interspecies electron transfer. This work provides mechanistic insights into boosting CH4 production in AD.
Collapse
Affiliation(s)
- Lei Lv
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shuting Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shiliang Heng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiandong Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Mengting Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Tian
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinghan Su
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
2
|
Wang Z, Li L, Hong Y. Trilogy of comprehensive treatment of kitchen waste by bacteria-microalgae-fungi combined system: Pretreatment, water purification and resource utilization, and biomass harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175160. [PMID: 39084368 DOI: 10.1016/j.scitotenv.2024.175160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Given its profound disservice, a bacteria-microalgae-fungi combined system was designed to treat kitchen waste. Firstly, a new type of microbial agent homemade compound microorganisms (HCM) (composed of Serratia marcescens, Bacillus subtilis and other 11 strains) with relatively high bio-security were developed for pretreating kitchen waste, and HCM efficiently degraded 85.2 % cellulose, 94.3 % starch, and 59.0 % oil. HCM also accomplished brilliantly the initial nutrients purification and liquefaction conversion of kitchen waste. Under mono-culture mode (fungi and microalgae were inoculated separately in the pre - and post-stages) and co-culture mode (fungi and microalgae were inoculated simultaneously in the early stage), microalgae-fungi consortia were then applied for further water purification and resource utilization of kitchen waste liquefied liquid (KWLL) produced in the pretreatment stage. Two kinds of microalgae-fungi consortia (Chlorella sp. HQ and Chlorella sp. MHQ2 form consortia with pellet-forming fungi Aspergillus niger HW8-1, respectively) removed 79.5-83.0 % chemical oxygen demand (COD), 44.0-56.5 % total nitrogen (TN), 90.3-96.4 % total phosphorus (TP), and 64.9-71.0 % NH4+-N of KWLL. What's more, the microalgae-fungi consortia constructed in this study accumulated abundant high-value substances at the same time of efficiently purifying KWLL. Finally, in the biomass harvesting stage, pellet-forming fungi efficiently harvested 81.9-82.1 % of microalgal biomass in a low-cost manner through exopolysaccharides adhesion, surface proteins interaction and charge neutralization. Compared with conventional microalgae-bacteria symbiosis system, the constructed bacteria-microalgae-fungi new-type combined system achieves the triple purpose of efficient purification, resource utilization, and biomass recovery on raw kitchen waste through the trilogy strategy, providing momentous technical references and more treatment systems selection for future kitchen waste treatment.
Collapse
Affiliation(s)
- Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lihua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Xiang X, Huang Y, Shen Y, Lv J, Li W, Dong M, Sun Y, Xu J, Cui M, Huang Y, Xia J. Radix Isatidis polysaccharide (RIP) alleviates QX-genotype infectious bronchitis virus-induced interstitial nephritis through the Nrf2/NLRP3/Caspase-3 signaling pathway. Int J Biol Macromol 2024; 278:134571. [PMID: 39147344 DOI: 10.1016/j.ijbiomac.2024.134571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/05/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Interstitial nephritis is the primary cause of mortality in IBV-infected chickens. Our previous research has demonstrated that Radix Isatidis polysaccharide (RIP) could alleviate this form of interstitial nephritis. To explore the mechanism, SPF chickens and chicken embryonic kidney cells (CEKs) were pre-treated with RIP and subsequently infected with QX-genotype IBV strain. Kidneys were sampled for transcriptomic and metabolomic analyses, and the cecum contents were collected for 16S rRNA gene sequencing. Results showed that pre-treatment with RIP led to a 50 % morbidity reduction in infected-chickens, along with decreased tissue lesion and viral load in the kidneys. Multi-omics analysis indicated three possible pathways (including antioxidant, anti-inflammatory and anti-apoptosis) which associated with RIP's efficacy against interstitial nephritis. Following further validation both in vivo and in vitro, the results showed that pre-treatment with RIP could activate the antioxidant transcription factor Nrf2, stimulate antioxidant enzyme expression, and consequently inhibit oxidative stress. Pre-treatment with RIP could also significantly reduce the expression of NLRP3 inflammasome and apoptosis-associated proteins (including Bax, Caspase-3, and Caspase-9). Additionally, RIP was also observed to promote the growth of beneficial bacteria in the intestine. Overall, pretreatment with RIP can alleviate QX-genotype IBV-induced interstitial nephritis via the Nrf2/NLRP3/Caspase-3 signaling pathway. This study lays the groundwork for the potential use of RIP in controlling avian infectious bronchitis (IB).
Collapse
Affiliation(s)
- Xuelian Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yamei Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yuxi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Jiadai Lv
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Wenwen Li
- Agricultural Service Center, Shanghe Town, Tongnan District, Chongqing 402671, China
| | - Mengyi Dong
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yi Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
4
|
Ren L, Chen X, Wu J, Huang S, Williams A, Su Q. Study on membrane fouling mechanisms and mitigation strategies in a pilot-scale anaerobic membrane bioreactor (P-AnMBR) treating digestate. WATER RESEARCH 2024; 263:122166. [PMID: 39088880 DOI: 10.1016/j.watres.2024.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Anaerobic Membrane Bioreactor (AnMBR) are employed for solid-liquid separation in wastewater treatment, enhancing process efficiency of digestion systems treating digestate. However, membrane fouling remains a primary challenge. This study operated a pilot-scale AnMBR (P-AnMBR) to treat high-concentration organic digestate, investigating system performance and fouling mechanisms. P-AnMBR operation reduced acid-producing bacteria and increased methane-producing bacteria on the membrane, preventing acid accumulation and ensuring stable operation. The P-AnMBR effectively removed COD and VFA, achieving removal rates of 82.3 % and 92.0 %, respectively. Higher retention of organic nitrogen and lower retention of ammonia nitrogen were observed. The membrane fouling consisted of organic substances (20.3 %), predominantly polysaccharides, and inorganic substances (79.7 %), primarily Mg ions (10.1 %) and Ca ions (4.5 %). To reduce the increased transmembrane pressure (TMP) caused by fouling (a 10.6-fold increase in filtration resistance), backwash frequency experiment was conducted. It revealed a 30-min backwash frequency minimized membrane flux decline, facilitating recovery to higher flux levels. The water produced amounted to 70.3 m³ over 52 days. The research provided theoretical guidance and practical support for engineering applications, offering practical insights for scaling up P-AnMBR.
Collapse
Affiliation(s)
- Luotong Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Xiaoguang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China.
| | - Jian Wu
- Shanghai Liming Resources Reuse Co. Ltd., Shanghai 201209, China
| | - Shenglin Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Amankwah Williams
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Qianyi Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
| |
Collapse
|
5
|
Wang W, Zhao Z, Yang J, Lian X, Xie X, Chen H, Wang M, Zheng H. Application of oil-degrading agents consisted of thermophilic Bacillus subtilis and Bacillus glycinifermentans in food waste. ENVIRONMENTAL TECHNOLOGY 2024; 45:4704-4714. [PMID: 37953714 DOI: 10.1080/09593330.2023.2283064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/19/2023] [Indexed: 11/14/2023]
Abstract
This work aims to investigate the effective removal of oil in food waste (FW). Two bacteria, Bacillus subtilis and Bacillus glycinifermentans, were obtained under high temperature conditions and named YZQ-2 and YZQ-5, respectively. The oil degradation rate of two bacteria was explored under different pH value, temperature, and NaCl concentration. In addition, the lipase and emulsifying activity were evaluated. The maximum oil degradation rate was 83.41 ± 0.86% and the maximum lipase activity reached 89.73 ± 20.89 U L-1 with YZQ-2. The fermentation broth of YZQ-2 displayed exceptional emulsification activity. Subsequently, YZQ-2 and YZQ-5 were added to aerobic FW composting. The moisture content of the compost treated with inoculated strains decreased at a faster rate during the first three days of composting. The microbial quantity increased rapidly in the first three days, and the oil degradation rate reached 39.96% after five days. Due to the excellent adaptability to high temperature and ability to degrade oil, strains YZQ-2 and YZQ-5 exhibit superior potential for various applications.
Collapse
Affiliation(s)
- Wenfan Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Zhuoqun Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Jian Yang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Xiaojian Lian
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Xiaojie Xie
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Hengyuan Chen
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Min Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Huabao Zheng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Li B, Guo H, Deng Z, Chen L, Ji C, Xu X, Zhang Y, Cheng S, Wang Z. Investigating functional mechanisms in the Co-biodegradation of lignite and guar gum under the influence of salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121860. [PMID: 39025008 DOI: 10.1016/j.jenvman.2024.121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The biodegradation of guar gum by microorganisms sourced from coalbeds can result in low-temperature gel breaking, thereby reducing reservoir damage. However, limited attention has been given to the influence of salinity on the synergistic biodegradation of coal and guar gum. In this study, biodegradation experiments of guar gum and lignite were conducted under varying salinity conditions. The primary objective was to investigate the controlling effects and mechanisms of salinity on the synergistic biodegradation of lignite and guar gum. The findings revealed that salinity had an inhibitory effect on the biomethane production from the co-degradation of lignite and guar gum. The biomethane production declined with increasing salinity levels, decreasing from 120.9 mL to 47.3 mL. Even under 20 g/L salt stress conditions, bacteria in coalbeds could effectively break the gel and the viscosity decreased to levels below 5 mPa s. As salinity increased, the removal rate of soluble chemical oxygen demand (SCOD) decreased from 55.63% to 31.17%, and volatile fatty acids (VFAs) accumulated in the digestion system. High salt environment reduces the intensity of each fluorescence peak. Alterations in salinity led to changes in microbial community structure and diversity. Under salt stress, there was an increased relative abundance of Proteiniphilum and Methanobacterium, ensuring the continuity of anaerobic digestion. Hydrogentrophic methanogens exhibited higher salt tolerance compared to acetoclastic methanogens. These findings provide experimental evidence supporting the use of guar gum fracturing fluid in coalbeds with varying salinity levels.
Collapse
Affiliation(s)
- Bing Li
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; School of Life Science and Bioengineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, 454000, China.
| | - Ze Deng
- Research Institute of Petroleum Exploration & Development, Beijing, 100083, China.
| | - Linyong Chen
- State Key Laboratory of Coal and CBM Co-Mining, Jincheng, 048012, China.
| | - Changjiang Ji
- State Key Laboratory of Coal and CBM Co-Mining, Jincheng, 048012, China.
| | - Xiaokai Xu
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yawei Zhang
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Song Cheng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Zhenzhi Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
7
|
Chen L, Yu H, Wang X, Zhu H. Re-yellowing of chromium-contaminated soil after reduction-based remediation: Effects and mechanisms of extreme natural conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171538. [PMID: 38453066 DOI: 10.1016/j.scitotenv.2024.171538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Chromium (VI) in soil poses a significant threat to the environment and human health. Despite efforts to remediate Cr contaminated soil (Cr-soil), instances of re-yellowing have been observed over time. To understand the causes of re-yellowing as well as the influence of overdosed chemical reductant in remediating Cr-soil, experiments on excess reducing agent interference and soil re-yellowing mechanisms under different extreme conditions were conducted. The results show that the USEPA method 3060A & 7196A combined with K2S2O8 oxidation is an effective approach to eliminate interference from excess FeSO4 reducing agents. The main causes of re-yellowing include the failure of reducing agents, disruption of soil lattice, and interactions between manganese oxides and microorganisms. Under various extreme conditions simulated across the four seasons, high temperature and drought significantly accelerated the failure of reducing agents, resulting in the poorest remediation effectiveness for Cr-soil (91.75 %). Dry-wet cycles promoted the formation of soil aggregates, negatively affecting Cr(VI) removal. While these extreme conditions caused relatively mild re-yellowing (9.46 %-16.79 %) due to minimal soil lattice damage, the potential risk of re-yellowing increases with the failure of reducing agents and the release of Cr(VI) within the lattice. Prolonged exposure to acid rain leaching and freeze-thaw cycles disrupted soil structure, leading to substantial leaching and reduction of insoluble Cr, resulting in optimal remediation effectiveness (94.37 %-97.73 %). As reducing agents gradually and the involvement of the water medium, significant re-yellowing occurred in the remediated soil (51.52 %). Mn(II) in soil enriched relevant microorganisms, and the Mn(IV)-mediated biological oxidation process was also one of the reasons for soil re-yellowing.
Collapse
Affiliation(s)
- Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Huilin Yu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Xiao X, Hu H, Meng X, Huang Z, Feng Y, Gao Q, Ruan W. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession. BIORESOURCE TECHNOLOGY 2024; 399:130576. [PMID: 38479625 DOI: 10.1016/j.biortech.2024.130576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
In this study, a pilot-scale anaerobic membrane bioreactor (AnMBR) was developed to continuously produce volatile fatty acids (VFAs) from kitchen waste slurry under an alkaline condition. The alkaline fermentation effectively suppressed methanogenesis, thus achieving high VFAs production of 60.3 g/L. Acetic acid, propionic acid, and butyric acid accounted for over 95.0 % of the total VFAs. The VFAs yield, productivity, and chemical oxygen demand (COD) recovery efficiency reached 0.5 g/g-CODinfluent, 6.0 kg/m3/d, and 62.8 %, respectively. Moreover, the CODVFAs/CODeffluent ratio exceeded 96.0 %, and the CODVFAs/NH3-N ratio through ammonia distillation reached up to 192.5. The microbial community was reshaped during the alkaline fermentation with increasing salinity. The membrane fouling of the AnMBR was alleviated by chemical cleaning and sludge discharge, and membrane modules displayed a sustained filtration performance. In conclusion, this study demonstrated that high-quality VFAs could be efficiently produced from kitchen waste slurry using an AnMBR process via alkaline fermentation.
Collapse
Affiliation(s)
- Xiaolan Xiao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongmei Hu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xingyao Meng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yongrui Feng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qi Gao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenquan Ruan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
9
|
Zhang Z, Liu R, Lan Y, Zheng W, Chen L. Anaerobic co-fermentation of waste activated sludge with corn gluten meal enhanced phosphorus release and volatile fatty acids production: Critical role of corn gluten meal dosage on fermentation stages and microbial community traits. BIORESOURCE TECHNOLOGY 2024; 394:130275. [PMID: 38176597 DOI: 10.1016/j.biortech.2023.130275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The anaerobic co-fermentation of iron bound phosphorus (P) compounds (FePs)-bearing sludge with corn gluten meal (CGM) and the underlying mechanisms associated with P release and volatile fatty acids (VFAs) production were investigated. The optimal CGM dosage for P release was 0.6 g chemical oxygen demand (COD)/g total suspended solid (TSS), which resulted in an increase in efficiency from 7 % (control sample) to 39 %. However, the optimal CGM dosage for VFAs production was 0.4 g COD/g TSS, and the yield increased from 37.4 (control sample) to 331.7 mg COD/g volatile suspended solid. The addition of CGM enhanced hydrolysis and acidogenesis by supplying abundant organic substrates to promote the growth of hydrolytic and acidogenic bacteria. A higher VFAs/ammonium-nitrogen ratio resulted in a lower pH, which promoted greater FePs dissolution and P release from the sludge. This study provides novel insights into the effects of CGM on P release and VFAs production.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China.
| | - Yaqiong Lan
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Wei Zheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Ma K, Han X, Li Q, Kong Y, Liu Q, Yan X, Luo Y, Li X, Wen H, Cao Z. Improved anaerobic sludge fermentation mediated by a tryptophan-degrading consortium: Effectiveness assessment and mechanism deciphering. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119623. [PMID: 38029496 DOI: 10.1016/j.jenvman.2023.119623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
The hydrolysis of extracellular polymeric substances (EPS) represents a critical bottleneck in the anaerobic fermentation of waste activated sludge (WAS), while tryptophan is identified as an underestimated constituent of EPS. Herein, we harnessed a tryptophan-degrading microbial consortium (TDC) to enhance the hydrolysis efficiency of WAS. At TDC dosages of 5%, 10%, and 20%, a notable increase in SCOD was observed by factors of 1.13, 1.39, and 1.88, respectively. The introduction of TDC improved both the yield and quality of short chain fatty acids (SCFAs), the maximum SCFA yield increased from 590.6 to 1820.2, 1957.9 and 2194.9 mg COD/L, whilst the acetate ratio within SCFAs was raised from 34.1% to 61.2-70.9%. Furthermore, as TDC dosage increased, the relative activity of protease exhibited significant increments, reaching 116.3%, 168.0%, and 266.1%, respectively. This enhancement facilitated WAS solubilization and the release of organic substances from bound EPS into soluble EPS. Microbial analysis identified Tetrasphaera and Soehngenia as key participants in WAS solubilization and the breakdown of protein fraction. Metabolic analysis revealed that TDC triggered the secretion of enzymes associated with amino acid metabolism and fatty acid biosynthesis, thereby fostering the decomposition of proteins and production of SCFAs.
Collapse
Affiliation(s)
- Kaili Ma
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China.
| | - Xinxin Han
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Qiujuan Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Yu Kong
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Qiaoli Liu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Xu Yan
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Yahong Luo
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Xiaopin Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Huiyang Wen
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, 453000, China
| |
Collapse
|
11
|
Shi J, Zhang G, Ke W, Pan Y, Hou M, Chang C, Sa D, Lv M, Liu Y, Lu Q. Effect of endogenous sodium and potassium ions in plants on the quality of alfalfa silage and bacterial community stability during fermentation. FRONTIERS IN PLANT SCIENCE 2023; 14:1295114. [PMID: 38205017 PMCID: PMC10777314 DOI: 10.3389/fpls.2023.1295114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
This study investigated the impact of endogenous sodium and potassium ions in plants on the quality of alfalfa silage, as well as the stability of bacterial communities during fermentation. Silage was produced from the fermented alfalfa, and the chemical composition, fermentation characteristics, and microbiome were analyzed to understand their interplay and impact on silage fermentation quality. The alfalfa was cultivated under salt stress with the following: (a) soil content of <1‰ (CK); (b) 1‰-2‰ (LP); (c) 2‰-3‰ (MP); (d) 3‰-4‰ (HP). The results revealed that the pH of silage was negatively correlated with the lactic acid content. With the increase of lactic acid (LA) content increased (26.3-51.0 g/kg DM), the pH value decreased (4.9-5.3). With the increase of salt stress, the content of Na+ in silage increased (2.2-5.4 g/kg DM). The presence of endogenous Na+ and K+ ions in plants significantly affected the quality of alfalfa silage and the dynamics of bacterial communities during fermentation. Increased salt stress led to changes in microbial composition, with Lactococcus and Pantoea showing a gradual increase in abundance, especially under high salt stress. Low pH inhibited the growth of certain bacterial genera, such as Pantoea and Pediococcus. The abundance of Escherichia-Shigella and Comamonas negatively correlated with crude protein (CP) content, while Enterococcus and Lactococcus exhibited a positive correlation. Furthermore, the accumulation of endogenous Na+ in alfalfa under salt stress suppressed bacterial proliferation, thereby reducing protein degradation during fermentation. The pH of the silage was high, and the LA content was also high. Silages from alfalfa under higher salt stress had higher Na+ content. The alpha diversity of bacterial communities in alfalfa silages showed distinct patterns. Desirable genera like Lactococcus and Lactobacillus predominated in silages produced from alfalfa under salt stress, resulting in better fermentation quality.
Collapse
Affiliation(s)
- Jinhong Shi
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Guijie Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wencan Ke
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yongxiang Pan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Chun Chang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Mingju Lv
- Inner Mongolia Agriculture and Animal Husbandry Extension Center, Hohhot, China
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
12
|
Liu H, Zhen F, Wu D, Wang Z, Kong X, Li Y, Xing T, Sun Y. Co-production of lactate and volatile fatty acids through repeated-batch fermentation of fruit and vegetable waste: Effect of cycle time and replacement ratio. BIORESOURCE TECHNOLOGY 2023; 387:129678. [PMID: 37579859 DOI: 10.1016/j.biortech.2023.129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this study, repeated-batch fermentation was used to convert fruit and vegetable waste to lactate and volatile fatty acids (VFAs), which are essential carbon sources for medium-chain fatty acids (MCFAs) production. The effect of cycle time and replacement ratio on acidification in long-term fermentation was investigated. The results showed that they had a significant impact on product yield, productivity, and type of products. Considering the yield, productivity, and lactate/VFAs ratio, a replacement ratio of 30% and a cycle time of 2 d may be more suitable for further production of MCFAs. Its productivity and lactate/VFAs ratio were 4.07 ± 0.24 g/(L·d) and 5 ± 0.6, respectively. The lactic acid bacteria, such as Enterococcus (63%) and Lactobacillus (33%), stabilized in the reactor, resulting in the generation of both lactate and VFAs by heterolactic fermentation. The present study demonstrated a new strategy with the potential to recover high-value products from organic waste streams.
Collapse
Affiliation(s)
- Huiliang Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Di Wu
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhi Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Ying Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Tao Xing
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
13
|
Wang Y, Li J, Liu M, Gu L, Xu L, Li J, Ao L. Enhancement of anaerobic digestion of high salinity food waste by magnetite and potassium ions: Digestor performance, microbial and metabolomic analyses. BIORESOURCE TECHNOLOGY 2023; 388:129769. [PMID: 37722541 DOI: 10.1016/j.biortech.2023.129769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The study investigated the effectiveness of magnetite and potassium ions (K+) in enhancing anaerobic digestion of high salinity food waste. Results indicated that both magnetite and K+ improved anaerobic digestion in high-salt environments, and their combination yielded even better results. The combination of magnetite and K+ promoted microorganism activity, and resulted in increased abundance of DMER64, Halobacteria and Methanosaeta. Metabolomic analysis revealed that magnetite mainly influenced quorum sensing, while K+ mainly stimulated the synthesis of compatible solutes, aiding in maintaining osmotic balance. The combined additives regulated pathways such as ATP binding cassette transport, methane metabolism, and inhibitory substance metabolism, enabling cells to resist environmental stress and maintain normal metabolic activity. Overall, this study demonstrated the potential of magnetite and K+ to enhance food waste anaerobic digestion in high salt conditions and provided valuable insights into the molecular mechanism.
Collapse
Affiliation(s)
- Yi Wang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Jianhao Li
- Yangtze River Delta (jiaxing) Ecological Development Co.,LTD, 32 Qinyi Road, 314050, Zhejiang, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Lianggen Ao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| |
Collapse
|
14
|
Zhang X, Zhang D, Chu S, Khalid M, Wang R, Chi Y, Duan X, Yang X, Zhou P. Employing salt-tolerant bacteria Serratia marcescens subsp. SLS for biodegradation of oily kitchen waste. CHEMOSPHERE 2023; 329:138655. [PMID: 37059197 DOI: 10.1016/j.chemosphere.2023.138655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/14/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The high oil and salt content of kitchen waste (KW) inhibit bioconversion and humus production. To efficiently degrade oily kitchen waste (OKW), a halotolerant bacterial strain, Serratia marcescens subsp. SLS which could transform various animal fats and vegetable oils, was isolated from KW compost. Its identification, phylogenetic analysis, lipase activity assays, and oil degradation in liquid medium were assessed, and then it was employed to carry out a simulated OKW composting experiment. In liquid medium, the 24 h degradation rate of mixed oils (soybean oil: peanut oil: olive oil: lard = 1:1:1:1, v/v/v/v) was up to 87.37% at 30 °C, pH 7.0, 280 rpm, 2% oil concentration and 3% NaCl concentration. The ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS) method demonstrated that the mechanism of SLS strain metabolizing long-chain triglycerides (TAGs) (C53-C60), especially the biodegradation of TAG (C18:3/C18:3/C18:3) by the strain can reach more than 90%. Degradation of 5, 10, 15% concentrations of total mixed oil were also calculated to be 64.57, 71.25, 67.99% respectively after a simulated composting duration of 15 days. The results suggest that the isolated strain of S. marcescens subsp. SLS is suitable for OKW bioremediation in high NaCl concentration within a reasonably short period of time. The findings introduced a salt-tolerant and oil-degrading bacteria, providing insights into the mechanism of oil biodegradation and offering new avenues of study for OKW compost and oily wastewater treatment.
Collapse
Affiliation(s)
- Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Xiangyu Duan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Li J, Xu X, Chen C, Xu L, Du Z, Gu L, Xiang P, Shi D, Huangfu X, Liu F. Conductive materials enhance microbial salt-tolerance in anaerobic digestion of food waste: Microbial response and metagenomics analysis. ENVIRONMENTAL RESEARCH 2023; 227:115779. [PMID: 36967003 DOI: 10.1016/j.envres.2023.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition. Digester performances and related enzyme parameters were compared. Our data revealed that under normal and low salinity stress conditions, the anaerobic digester ran steady without significant inhibitions. Further, the presence of conductive materials promoted conversion rate of methanogenesis. This promotion effect was highest from magnetite > powdered activated carbon (PAC) > graphite. At 1.5% salinity, PAC and magnetite are beneficial in maintaining high methane production efficiency while control and the graphite added digester acidified and failed rapidly. Additionally, metagenomics and binning were used to analyze the metabolic capacity of the microorganisms. Some species enriched by PAC and magnetite possessed higher cation transport capacities and were to accumulate compatible solutes. PAC and magnetite promoted direct interspecies electron transference (DIET) and syntrophic oxidation of butyrate and propionate. Also, the microorganisms had more energy available to cope with salt inhibition in the PAC and magnetite added digesters. Our data imply that the promotion of Na+/H+ antiporter, K+ uptake, and osmoprotectant synthesis or transport by conductive materials may be crucial for their proliferation in highly stressful environments. These findings will help to understand the mechanisms of alleviate salt inhibition by conductive materials and help to recover methane from high-salinity FW.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaofeng Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Ping Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaoliu Huangfu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| |
Collapse
|
16
|
Huang J, Chen K, Xia X, Zhu H. Long-term performance on volatile fatty acids production improved in a kitchen wastewater fermenter by co-fermentation of sludge and membrane separation. CHEMOSPHERE 2023:139049. [PMID: 37245599 DOI: 10.1016/j.chemosphere.2023.139049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Kitchen wastewater can be transformed into a valuable resource through anaerobic fermentation. However, the efficiency of this process is hindered by various factors including salt inhibition and nutrient imbalance. In this study, we examined the effects of co-fermentation with sludge and membrane filtration on the anaerobic fermentation of kitchen wastewater. Our findings indicate that co-fermentation with sludge resulted in a 4-fold increase in fermentation rate and a 2-fold increase in short-chain fatty acids (SCFAs) production. This suggests that the addition of sludge helped to alleviate salt and acid inhibition through ammonia buffering and elemental balancing. The membrane filtration retained 60% of soluble carbohydrates and 15% of proteins in the reactor for further fermentation and recovered nearly 100% of NH4+ and SCFAs in the filtrate, which helped to alleviate acid and ammonia inhibition. The combined fermentation system significantly increased the richness and diversity of microorganisms, particularly caproiciproducens and Clostridium_sensu_stricto_12. The membrane flux remained stable and at a relatively high level, indicating that the combined process may be economically feasible. However, scaling up the co-anaerobic fermentation of kitchen wastewater and sludge in a membrane reactor is necessary for further economic evaluation in the future.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Xia
- Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
17
|
Chen W, Yin C, Li J, Sun W, Li Y, Wang C, Pi Y, Cordero G, Li X, Jiang X. Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets. BIOLOGY 2023; 12:biology12030441. [PMID: 36979134 PMCID: PMC10045620 DOI: 10.3390/biology12030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
This study was conducted to investigate the effects of dietary supplementation with stimbiotics (STB) on growth performance, diarrhoea incidence, plasma antioxidant capacity, immunoglobulin concentration and hormone levels, and faecal microorganisms in weaned piglets. Compared with the control (CT) group, the addition of STB improved the body weight (BW) of piglets on days 28 and 42 (p < 0.05) and increased daily weight gain and daily feed intake from days 14–28 and throughout the trial period (p < 0.05). Correspondingly, the plasma insulin-like growth factor 1 (IGF-1) level on day 42 was significantly improved by STB (p < 0.05). VistaPros (VP) group levels of immunoglobulin (Ig) A and G were significantly higher on days 14 and 42 (p < 0.05) than the CT group levels. In addition, the activity of plasma catalase tended to be increased on day 14 (p = 0.053) in the VP group, as for superoxide dismutase, glutathione peroxidase, and malondialdehyde, STB did not significantly affect their levels (p > 0.05). Moreover, dietary STB increased the relative abundance of beneficial bacteria, including norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Parabacteroides, and unclassified_f__Oscillospiraceae. In summary, STB improved the immunity and IGF-1 levels in the plasma of weaned piglets and consequently promoted the growth performance of weaned piglets.
Collapse
Affiliation(s)
- Wenning Chen
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenggang Yin
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengwei Wang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.P.); (X.J.); Tel.: +86-10-82108134 (X.J.)
| | | | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.P.); (X.J.); Tel.: +86-10-82108134 (X.J.)
| |
Collapse
|
18
|
Chen Y, Chen T, Yin J. Impact of N-butyryl-l-homoserine lactone-mediated quorum sensing on acidogenic fermentation under saline conditions: Insights into volatile fatty acids production and microbial community. BIORESOURCE TECHNOLOGY 2023; 368:128354. [PMID: 36410593 DOI: 10.1016/j.biortech.2022.128354] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation is often inhibited under high salinity conditions. This study discovered a strong, positive association between N-butyryl-l-homoserine lactone (C4-HSL)-mediated quorum sensing (QS) and the production of volatile fatty acids (VFAs) under saline conditions. N-acyl-homoserine lactones were identified during acidogenic fermentation for VFA production. Only C4-HSL was detected at all salt concentrations, and a maximum C4-HSL concentration of 0.49 μg/L was observed at a salt concentration of 15 g/L. C4-HSL secretion was closely related to salinity, and a strong correlation was observed between C4-HSL and VFAs (p < 0.01), especially butyrate. Further experiments with C4-HSL addition indicated that exogenous C4-HSL promoted substrate hydrolysis and increased butyrate production by 1.5 times at 15 g/L NaCl. Microbial community analysis indicated that unclassified_f__Enterobacteriaceae and Clostridium_sensu_stricto_1, associated with QS genes and butyrate production, were positively associated with C4-HSL. This study demonstrates the positive effect of C4-HSL-mediated QS on acidogenic fermentation.
Collapse
Affiliation(s)
- Yaqin Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China.
| |
Collapse
|
19
|
Wang Y, Huang Z, Zhao M, Miao H, Shi W, Ruan W. Enhanced chloride-free snow-melting agent generation from organic wastewater by integrating bioconversion and synthesis. BIORESOURCE TECHNOLOGY 2022; 366:128200. [PMID: 36309178 DOI: 10.1016/j.biortech.2022.128200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, a new process for producing chloride-free snow-melting agents (CSAs) was proposed. Organic wastewater was converted to total volatile fatty acids (TVFA) by anaerobic acidogenic fermentation. The experiments for acid generation showed that the maximum TVFA concentration of 45.9 g/L was obtained at an organic loading rate of 5 g chemical oxygen demand /(L·d), and the proportion of acetic acid reached 78.8 %. Forward osmosis was used for concentrating the TVFA solution. The obtained CSAs, after evaporation and crystallization, had a better ice-melting capacity and less corrosion on metal and concrete than NaCl and CaCl2. Additionally, the damage caused by CSAs to the germination of plant seeds was significantly lesser than that caused by chloride salts. This study proposed a feasible method for the high-value conversion of organic wastewater, providing a new direction for the reuse of organic wastewater.
Collapse
Affiliation(s)
- Yijie Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| |
Collapse
|
20
|
Yin Y, Zhang Z, Yang K, Gu P, Liu S, Jia Y, Zhang Z, Wang T, Yin J, Miao H. Deeper insight into the effect of salinity on the relationship of enzymatic activity, microbial community and key metabolic pathway during the anaerobic digestion of high strength organic wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127978. [PMID: 36126846 DOI: 10.1016/j.biortech.2022.127978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The threshold salt concentration to inhibit the anaerobic digestion (AD) has been intensively investigated, but its insight mechanism is not fully revealed. Therefore, this study systematically investigated the effect of salinity on acidogenesis and methanogenesis and its mechanism. Results showed that low salinity level (i.e. 0.6%) had stimulatory effect on volatile fatty acids (VFA) and methane production, while significant inhibition was observed with further increased salinity. Moreover, high salinity limited the butyric acid degradation at acidogenesis process. The decreases of enzymes (AK and PTA) activity and functional genes (ackA, pta and ACOX) expression that related to β-oxidation explained the butyric acid accumulation at high salinity levels. Microbial community analysis revealed high salinity levels significantly inhibited the proliferation of Syntrophomonas sp., which are known to be associated with butyric acid degradation. Similarly, the relative abundance of acetoclastic methanogen (Methanothrix sp.) and methylotrophic methanogen (Methanolinea sp.) significantly decreased at salinity condition.
Collapse
Affiliation(s)
- Yijang Yin
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Jia
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhaochang Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi 214105, PR China
| | - Jianqi Yin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
21
|
Yang G, Xu C, Varjani S, Zhou Y, Wc Wong J, Duan G. Metagenomic insights into improving mechanisms of Fe 0 nanoparticles on volatile fatty acids production from potato peel waste anaerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127703. [PMID: 35907599 DOI: 10.1016/j.biortech.2022.127703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The management of potato peel waste (PPW) has been a challenge faced by the potato industry. This investigation assessed the feasibility of PPW for volatile fatty acids (VFAs) production via anaerobic fermentation, and investigated the impact of Fe0 nanoparticles (Fe0 NPs) supplementation on the VFAs production. It is found that PPW is a potential feedstock for producing VFAs, achieving a yield of 480.4 mg COD/g-vS Meanwhile, the supplementation of Fe0 NPs significantly promoted the VFAs productivity and quality. The higher enrichment of VFAs-producing bacteria, including Clostridium, Proteiniphilum, Fonticella and Pygmaiobacter, contributed to the promotion of the VFAs yield. Furthermore, metagenomic analysis revealed that the encoding genes responsible for carbohydrate metabolism (especially starch), membrane transport, glycolysis and the formation of acetic and butyric acids were remarkably up-regulated,which could be the essential reason for the enhanced metabolic activity and VFAs productivity. This work provides a promising strategy for recycling PPW.
Collapse
Affiliation(s)
- Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar-382 010, Gujarat, India
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jonathan Wc Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Luo L, Pradhan N. Salinity impact on the metabolic and taxonomic profiles of acid and alkali treated inoculum for hydrogen production from food waste. BIORESOURCE TECHNOLOGY 2022; 362:127815. [PMID: 36031126 DOI: 10.1016/j.biortech.2022.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the combined impact of salinity (2.5, 13, and 19.3 g NaCl/L) and inoculum pretreatment (acid/alkali) on the genomic and metabolic profiles of mesophilic fermentative bacteria for hydrogen (H2) production from food waste. Experimental results revealed that acid-treated inoculum showed the highest H2 yield (201.12 ± 13.84 mL H2/g of volatile solids added) under medium salinity levels compared to other experimental conditions. A 7-56% increase in H2 yield was observed for pretreated inoculum than untreated inoculum. Genomic analysis and metabolic pattern revealed that the H2 production was mainly through Clostridial-type fermentation under medium to high salinity levels, whereas Enterococcus-type fermentation under low salinity levels. Further, the genomic analysis uncovered that phyla Firmicutes (69.71-96.81%) and genus Clostridium sensu stricto 1 (33.28-94.04%) dominated during the exponential gas production phase. Overall, this study showed the significance of inoculum pretreatment for the bioconversion of food waste at different salinity levels.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|