1
|
Wang F, Song G, Zhang M, Zhao S, Wang T, Zhao K, Wang X, Liu R. Fe 3O 4 nanoparticles promote methanogenesis in propionate acclimated system. BIORESOURCE TECHNOLOGY 2025; 431:132608. [PMID: 40315932 DOI: 10.1016/j.biortech.2025.132608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Propionate accumulation is common in anaerobic digestion systems, while Fe3O4 nanoparticles (Fe3O4 NPs) show potential in steering direct interspecies electron transfer (DIET) to facilitate methanogenesis from propionate. However, the effect of Fe3O4 NPs in stable microbial communities remains unclear. This study demonstrated that 1.0 g/L Fe3O4 NPs enhanced propionate degradation and methane production by 220 % and 55 % of the propionate-acclimated microbial consortia post-shock loading, as evidenced by batch-test. High propionate concentrations suppressed Geobacter, yet Fe3O4 NPs enabled electron syntrophy between alternative DIET-participants (Arcobacter, Syntrophobacter) and methanogens (Methanothrix, Methanobacterium) serving as electron conduits. Network analysis further revealed that Fe3O4 NPs activated interactions among potential electroactive microbes, highlighting the potentially ubiquitous presence of electron syntrophy. Even in propionate-stressed microbial communities, such mutualism may be rapidly activated by Fe3O4 NPs, offering a practical solution for mitigating propionate accumulation and enhance digester performance.
Collapse
Affiliation(s)
- Fangzhou Wang
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ge Song
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Kai Zhao
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Ruiping Liu
- Center for Water and Ecology, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Tian Y, Li Y, Zhang H, Huang T, Tian W, Wang Z, Qian J. Synergy between bacteria and fungi contributes to biodegradation and methane production of lignocellulosic anaerobic co-digestion exposing to surfactants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123579. [PMID: 39642824 DOI: 10.1016/j.jenvman.2024.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/02/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Surfactant is generally regarded to enhance the hydrolysis rate and favor high efficiency which however has not been revealed in the lignocellulosic anaerobic co-digestion process. In particular, the responses and functions of fungal community exposing to surfactants remain largely unknown. In this study, the roles of dodecyl dimethyl benzyl ammonium chloride (DDBAC, cationic), linear alkylbenzene sulfonate (LAS, anionic) and Triton X-100 (TX, nonionic) surfactants on the lignocellulosic anaerobic co-digestion were investigated. 1 mg/L DDBAC, LAS and TX promoted the degradation of lignocellulose and increased biogas yields by 6.85%, 62.76% and 36.96% comparing with the control group (CK). LAS and TX stimulated the growth of Prevotella, Petrimonas and Romboutsia, produced higher activities of cellulase (averagely 4.22 and 3.73 times of CK), generated more volatile fatty acids (VFAs, averagely 2.94 and 2.44 times of CK) and NH4+-N (averagely 1.91 and 1.63 times of the control group), and finally realized efficient acetoclastic methanogenesis. The abundant fungi genera, Pseudallescheria, Pseudeurotium, Monascus and Aspergillus were significantly correlated to lignin, cellulose, VFAs, ammonia nitrogen (NH4+-N), cellulase and coenzyme F420 activities (p < 0.05). Surfactants exposure damaged the connectivity of Proteobacteria with other microbes in the co-occurrence networks while increased the connectivity of Ascomycota to offset the disturbance of surfactants on the fungal community. The synergistic interaction between bacteria and fungi achieved efficient substrate degradation, contributed to the stability of microbial community and resulted in high biogas production. This research provided references for further management of surfactants exposed lignocellulosic anaerobic co-digestion process and systematically biowaste treatment in large-scale farms.
Collapse
Affiliation(s)
- Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China.
| | - Ying Li
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China.
| | - Tousheng Huang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Jundong Qian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
3
|
Zheng X, Li R. Mechanisms of how exogenous CO 2 affects methane production in an optimized high-solid anaerobic digester treating co-substrates of sewage sludge and food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175837. [PMID: 39209165 DOI: 10.1016/j.scitotenv.2024.175837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/04/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The CO2 addition could promote anaerobic digestion, but the exploration on bioconversion mechanisms of exogenous CO2 in high-solid anaerobic digestion (HSAD) system is still insufficient. This study investigated the performance of a CO2-added HSAD treating co-substrates of sewage sludge and food waste (FW). The maximum methane yield of 623.4 mL CH4/g-VSremoved was obtained with FW proportion of 75 %, organic loading of 3.7 g-VS/L/d and intermittent stirring. The CO2 addition could improve the methane yield by 11.8 % under the optimized conditions. Thermodynamic analysis showed that the most energetically favorable reaction for CH4 production was acetoclastic methanogenesis (AM), and the main bioconversion pathway of exogenous CO2 was homoacetogenesis (HA). Significantly higher methanogenic activity was achieved with CO2 addition during acetate decomposition testing, suggesting enhanced AM pathway. The AM methanogens Methanosaeta were also enriched. Therefore, the main mechanism of the enhanced methane production by CO2 addition was the facilitation of coupled HA-AM pathway.
Collapse
Affiliation(s)
- Xinyi Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
4
|
Gao Z, Quan X, Zheng Y, Yin R, Lv K. Comparative investigations on the incorporation of biogenic Fe products into anaerobic granular sludge of different sources: Fe loading capacity, physicochemical properties, microbial community and long-term methanogenesis performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120546. [PMID: 38471321 DOI: 10.1016/j.jenvman.2024.120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Anaerobic granular sludge (AGS) has been regarded as the core of lots of advanced anaerobic reactors. Formation of biogenic Fe products and their incorporation into AGS could influence interspecies electron transfer and methanogenesis performance. In this study, with anaerobic granular sludge (AGS) from different sources (brewery, chemical plant, paper mill, citric acid factory, and food factory) as the research targets, the formation of biogenic iron products in AGS through the biologically induced mineralization process was studied. Furthermore, the influences of physicochemical properties and microbial community on methanogenesis were investigated. Results showed that all the AGS of different sources possessed the capacity to form biogenic Fe products through dissimilatory iron-reduction process, and diverse Fe minerals including magnetite (Fe3O4), hematite (Fe2O3), goethite (FeOOH), siderite (FeCO3) and wustite (FeO) were incorporated into AGS. The AGS loaded with Fe minerals (Fe-AGS) showed increased conductivity, magnetism and zeta-potential comparing to the control. Those Fe-AGS of different sources demonstrated different methanogenesis performance during the long-term operation (50 days). Methane production was increased for the Fe-AGS of citric acid (6.99-32.50%), food (8.33-37.46%), chemical (2.81-7.22%) and brewery plants (2.27-2.81%), but decreased for the Fe-AGS of paper mill (54.81-72.2%). The changes of microbial community and microbial correlations in AGS as a response to Fe minerals incorporation were investigated. For the Fe-AGS samples with enhanced methane production capability, it was widely to find the enriched populations of fermentative and dissimilatory iron reducing bacteria Clostridium_sensu_stricto_6, Bacteroidetes_vadinHA17 and acetoclastic methanogens Methanosaeta, and positive correlations between them. This study provides comprehensive understanding on the effects of incorporation biogenic Fe products on AGS from different sources.
Collapse
Affiliation(s)
- Zhiqi Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiangchun Quan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yu Zheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ruoyu Yin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Lv
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Zhao S, Zhu S, Liu S, Song G, Zhao J, Liu R, Liu H, Qu J. Quorum Sensing Enhances Direct Interspecies Electron Transfer in Anaerobic Methane Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2891-2901. [PMID: 38308618 DOI: 10.1021/acs.est.3c08503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Direct interspecies electron transfer (DIET) provides an innovative way to achieve efficient methanogenesis, and this study proposes a new approach to upregulate the DIET pathway by enhancing quorum sensing (QS). Based on long-term reactor performance, QS enhancement achieved more vigorous methanogenesis with 98.7% COD removal efficiency. In the control system, methanogenesis failure occurred at the accumulated acetate of 7420 mg of COD/L and lowered pH of 6.04, and a much lower COD removal of 41.9% was observed. The more significant DIET in QS-enhancing system was supported by higher expression of conductive pili and the c-Cyts cytochrome secretion-related genes, resulting in 12.7- and 10.3-fold improvements. Moreover, QS enhancement also improved the energy production capability, with the increase of F-type and V/A-type ATPase expression by 6.3- and 4.2-fold, and this effect probably provided more energy for nanowires and c-Cyts cytochrome secretion. From the perspective of community structure, QS enhancement increased the abundance of Methanosaeta and Geobacter from 54.3 and 17.6% in the control to 63.0 and 33.8%, respectively. Furthermore, the expression of genes involved in carbon dioxide reduction and alcohol dehydrogenation increased by 0.6- and 7.1-fold, respectively. Taken together, this study indicates the positive effects of QS chemicals to stimulate DIET and advances the understanding of the DIET methanogenesis involved in environments such as anaerobic digesters and sediments.
Collapse
Affiliation(s)
- Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaoqing Zhu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ge Song
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Zhao W, Hu T, Ma H, Li D, Zhao Q, Jiang J, Wei L. A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings. BIORESOURCE TECHNOLOGY 2024; 391:129929. [PMID: 37923231 DOI: 10.1016/j.biortech.2023.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The biochar is a well-developed porous material with various excellent properties, that has been proven with excellent ability in anaerobic digestion (AD) efficiency promotion. Current research is usually focused on the macro effects of biochar on AD, while the systematic review about the mechanisms of biochar on microbial behavior are still lacking. This review summarizes the effects and potential mechanisms of biochar on microorganisms in AD systems, and found that biochar addition can provide habitats for microbial colonization, alleviate toxins stress, supply essential nutrients, and accelerate interspecies electron transferring. Moreover, it also improves microbial community diversity, facilitates EPS secretion, enhances functional enzyme activity, promotes functional genes expression, and inhibits the antibiotic resistance genes transformation. Future research directions including biochar targeted design, in-depth microbial mechanisms revelation, and modified model development were suggested, which could promote the widely practical application of of biochar-amended AD technology.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Yang W, Cai C, Wang R, Dai X. Insights into the impact of quaternary ammonium disinfectant on sewage sludge anaerobic digestion: Dose-response, performance variation, and potential mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130341. [PMID: 36403443 DOI: 10.1016/j.jhazmat.2022.130341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Wide commercial applications of antimicrobial quaternary ammonium compounds (QACs) inevitably lead to the release into wastewater and enrichment in sewage sludge. This study evaluated the impacts of levels and structures of QACs on sewage sludge properties, microbial community, and methane production during anaerobic digestion. Methane production was stimulated or not affected at low QACs concentrations, but significantly inhibited at high QACs concentrations. Compared with benzyl and alkyltrimethyl QACs, dialkyl QACs showed least toxicity on digestion performance. Meanwhile, microbial community analysis indicated that shifts in bacterial communities mainly depended on QACs doses, but the archaeal communities were affected by both QACs doses and types. The dominant methanogenic pathway shifted from acetotrophic/methylotrophic methanogens to mixotrophic methanogens by low levels of benzyl and alkyltrimethyl QACs but not dialkyl QACs, and further to hydrogenotrophic methanogens at high QACs concentration. Mechanism exploration revealed that the presence of QACs promoted sludge solubilization by the integrated effects of cell lysis, electric neutralization, and hydrophobicity improvement, but inhibited methanogenesis due to the accumulation of volatile fatty acids and susceptibility of methanogens to QACs. These findings provided a reference for potential impacts of different QACs on sludge biological treatment, which had implications for the use and selection of QACs disinfectants.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Rui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Guo Z, Jalalah M, Alsareii SA, Harraz FA, Thakur N, Salama ES. Biochar addition augmented the microbial community and aided the digestion of high-loading slaughterhouse waste: Active enzymes of bacteria and archaea. CHEMOSPHERE 2022; 309:136535. [PMID: 36150484 DOI: 10.1016/j.chemosphere.2022.136535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The biogas production (BP), volatile fatty acids (VFAs), microbial communities, and microbes' active enzymes were studied upon the addition of biochar (0-1.5%) at 6% and 8% slaughterhouse waste (SHW) loadings. The 0.5% biochar enhanced BP by 1.5- and 1.6-folds in 6% and 8% SHW-loaded reactors, respectively. Increasing the biochar up to 1.5% caused a reduction in BP at 6% SHW. However, the BP from 8% of SHW was enhanced by 1.4-folds at 1.5% biochar. The VFAs production in all 0.5% biochar amended reactors was highly significant compared to control (p-value < 0.05). The biochar addition increased the bacterial and archaeal diversity at both 6% and 8% SHW loadings. The highest number of OTUs at 0.5% biochar were 567 and 525 in 6% and 8% SHW, respectively. Biochar prompted the Clostridium abundance and increased the lyases and transaminases involved in the degradation of lipids and protein, respectively. Biochar addition improved the Methanosaeta and Methanosphaera abundance in which the major enzymes were reductase and hydrogenase. The archaeal enzymes showed mixed acetoclastic and hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Zhaodi Guo
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Saudi Arabia
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|