1
|
Liu S, Xie M, Lu W, Zhang X, Du M, Yao Y, Yuan J, Li G. Biochar Addition Reduces the Effect of High Nitrogen on Soil-Microbial Stoichiometric Imbalance in Abandoned Grassland on the Loess Plateau of China. Ecol Evol 2025; 15:e70875. [PMID: 39896765 PMCID: PMC11780496 DOI: 10.1002/ece3.70875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Progressively higher atmospheric nitrogen (N) deposition increasingly affects soil ecosystems' elemental cycling and stability. Biochar (BC) amendment has emerged as a possible means of preserving soil system stability. Nevertheless, the pattern of soil-microbial nutrient cycling and system stability in response to BC after high N deposition in ecologically sensitive regions remains uncertain. Therefore, we investigated the effects of high N (9 g N·m-2·a-1), BC (0, 20, 40 t·ha-1), and combinations of the treatments on soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP), microbial entropy (q MB), and stoichiometric imbalance (Cimb:Nimb:Pimb). We found that high N addition decreased topsoil (0-20 cm) TP, C:N, q MBN, and Cimb:Nimb values and increased TN, C:P, N:P, q MBP, Cimb:Pimb, and Nimb:Pimb values. However, BC addition increased 0-40 cm soil q MBC and Nimb:Pimb values and decreased q MBN, Cimb:Nimb, and Cimb:Pimb values. Meanwhile, high BC additions attenuated BC's promotion of soil-microbial nutrients. We observed that a mixture of high N and BC increased the 0-40 cm SOC and TP content, promoted the accumulation of MBN and MBP in the subsoil (20-40 cm), and decreased the topsoil Cimb:Pimb and Nimb:Pimb values compared to high N additions. The impact of high N and BC additions on N and P elements varied significantly between the different soil depths. In addition, redundancy analysis identified C:N, MBC, MBN, and C:P as pivotal factors affecting alterations in soil q MB and stoichiometric imbalance. Overall, adding BC reduced the negative impacts of high N deposition on the stability of soil-microbial systems in the Loess Plateau, suggesting a new approach for managing ecologically fragile areas.
Collapse
Affiliation(s)
- Shuainan Liu
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Mingjun Xie
- College of GrasslandsGansu Agricultural UniversityLanzhouChina
| | - Wende Lu
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Xinyue Zhang
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Mengyin Du
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Yao Yao
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Jianyu Yuan
- College of GrasslandsGansu Agricultural UniversityLanzhouChina
| | - Guang Li
- College of ForestryGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
2
|
Li X, Fan J, Zhu F, Yan Z, Hartley W, Yang X, Zhong X, Jiang Y, Xue S. Sb/As immobilization and soil function improvement under the combined remediation strategy of modified biochar and Sb-oxidizing bacteria at a smelting site. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134302. [PMID: 38640664 DOI: 10.1016/j.jhazmat.2024.134302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/H2O2 modified biochar (Fe@H2O2-BC) and Sb-oxidizing bacteria (Bacillus sp. S3) in immobilizing Sb/As and enhancing soil functional resilience at an Sb smelting site. Over a twelve-month period, the leaching toxicity of As and Sb was reduced to 0.05 and 0.005 mg L-1 (GB3838-2002) respectively, with 1% (w/w) Fe@H2O2-BC and 2% (v/v) Bacillus sp. S3 solution. Compared to CK, the combination of Fe@H2O2-BC and Bacillus sp. S3 significantly reduced the bioavailable As/Sb by 98.00%/93.52%, whilst increasing residual As and reducible Sb fractions by 210.31% and 96.51%, respectively. The combined application generally improved soil aggregate structure, pore characteristics, and water-holding capacity. Fe@H2O2-BC served as a pH buffer and long-term reservoir of organic carbon, changing the availability of carbon substrates to bacteria. The inoculation of Bacillus sp. S3 facilitated the transformation of Sb(III)/As(III) to Sb(V)/As(V) and differentiated the composition and functional roles of bacterial communities in soils. The combination increased the abundance of soil saprotrophs by 164.20%, whilst improving the relative abundance of N- and S-cycling bacteria according to FUNGuild and FAPROTAX analysis. These results revealed that the integrated application was instrumental in As/Sb detoxification/immobilization and soil function restoration, which demonstrating a promising microbially-driven ecological restoration strategy at Sb smelting sites.
Collapse
Affiliation(s)
- Xue Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiarong Fan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Zaolin Yan
- Hunan Bisenyuan energy saving and environmental protection Co., LTD, Yiyang 413000, PR China
| | - William Hartley
- Royal Agricultural University, Cirencester GL7 6JS, United Kingdom
| | - Xingwang Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xiaolin Zhong
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yifan Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
3
|
Feng G, Hao F, He W, Ran Q, Nie G, Huang L, Wang X, Yuan S, Xu W, Zhang X. Effect of Biogas Slurry on the Soil Properties and Microbial Composition in an Annual Ryegrass-Silage Maize Rotation System over a Five-Year Period. Microorganisms 2024; 12:716. [PMID: 38674660 PMCID: PMC11051864 DOI: 10.3390/microorganisms12040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Soil health is seriously threatened by the overuse of chemical fertilizers in agricultural management. Biogas slurry is often seen as an organic fertilizer resource that is rich in nutrients, and its use has the goal of lowering the amount of chemical fertilizers used while preserving crop yields and soil health. However, the application of continuous biogas slurry has not yet been studied for its long-term impact on soil nutrients and microbial communities in a rotation system of annual ryegrass-silage maize (Zea mays). This study aimed to investigate the impacts on the chemical properties and microbial community of farmland soils to which chemical fertilizer (NPK) (225 kg ha-1), biogas slurry (150 t ha-1), and a combination (49.5 t ha-1 biogas slurry + 150 kg ha-1 chemical fertilizer) were applied for five years. The results indicated that compared to the control group, the long-term application of biogas slurry significantly increased the SOC, TN, AP, and AK values by 45.93%, 39.52%, 174.73%, and 161.54%, respectively; it neutralized acidic soil and increased the soil pH. TN, SOC, pH, and AP are all important environmental factors that influence the structural composition of the soil's bacterial and fungal communities. Chemical fertilizer application significantly increased the diversity of the bacterial community. Variation was observed in the composition of soil bacterial and fungal communities among the different treatments. The structure and diversity of soil microbes are affected by different methods of fertilization; the application of biogas slurry not only increases the contents of soil nutrients but also regulates the soil's bacterial and fungal community structures. Therefore, biogas slurry can serve as a sustainable management measure and offers an alternative to the application of chemical fertilizers for sustainable intensification.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (W.H.); (Q.R.)
| | - Qifan Ran
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (W.H.); (Q.R.)
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Suhong Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| | - Wenzhi Xu
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (F.H.); (G.N.); (L.H.); (X.W.); (S.Y.)
| |
Collapse
|
4
|
Li J, Xie N, Feng C, Wang C, Huang R, Tao Q, Tang X, Wu Y, Luo Y, Li Q, Li B. Pore size and organic carbon of biochar limit the carbon sequestration potential of Bacillus cereus SR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116229. [PMID: 38508101 DOI: 10.1016/j.ecoenv.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.
Collapse
Affiliation(s)
- Jie Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ningyi Xie
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changchun Feng
- China National Tobacco Corporation Sichuan, Chengdu 610041, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Wang L, Chen D, Zhu L. Biochar carbon sequestration potential rectification in soils: Synthesis effects of biochar on soil CO 2, CH 4 and N 2O emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167047. [PMID: 37716679 DOI: 10.1016/j.scitotenv.2023.167047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Biochar production and its soil sequestration are promising ways to mitigate global warming. Effects of biochar on soil CO2, CH4 and N2O release have been studied extensively. In contrast, few studies have comprehensively quantified and synthesized the effect of biochar on soil greenhouse gas (GHG) emission and coupled it to the calculation of carbon sequestration potential. This study obtained the influence coefficient of biochar on soil GHG release relative to biochar carbon storage potential in soils under different environmental conditions, by literature statistics and data transformations. Our results showed that the overall average effect of biochar on soil CO2, CH4, N2O and CO2e release observed in our databases would compensate the potential of biochar soil carbon storage by -2.1 ± 3.3 %, 13.1 ± 9.8 %, -1.6 ± 8.6 % and 5.3 ± 11.4 %, respectively. By combining biochar induced soil GHG emission reduction mechanism and results from our literature statistics, some specific application environmental scenarios (such as biochar with high pyrolysis temperature of 500-600 °C, application in flooded soils, application in straw-return scenarios, etc.) were recommended, which could increase the actual carbon sequestration potential of biochar by an average of about 43.3 ± 30.2 % relative the amount of carbon buried. Our findings provide a scientific basis for developing a precise application strategy towards large scale adoption of biochar as a soil amendment for climate change mitigation.
Collapse
Affiliation(s)
- Lin Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Dingjiang Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lizhong Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
6
|
Zhang J, Yang X, Wang S, Li T, Li W, Wang B, Yang R, Wang X, Rinklebe J. Immobilization of zinc and cadmium by biochar-based sulfidated nanoscale zero-valent iron in a co-contaminated soil: Performance, mechanism, and microbial response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165968. [PMID: 37543321 DOI: 10.1016/j.scitotenv.2023.165968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Mining and smelting of mineral resources causes excessive accumulation of potentially toxic metals (PTMs) in surrounding soils. Here, biochar-based sulfidated nanoscale zero-valent iron (SNZVI/BC) was designed via a one-step liquid phase reduction method to immobilize cadmium (Cd) and zinc (Zn) in a copolluted arable soil. A 60 d soil incubation experiment revealed that Cd and Zn immobilization efficiency by 6 % SNZVI/BC (25.2-26.2 %) was higher than those by individual SNZVI (13.9-18.0 %) or biochar (14.0-19.3 %) based on the changes in diethylene triamine pentaacetic acid (DTPA)-extractable PTM concentrations in soils, exhibiting a synergistic effect. Cd2+ or Zn2+ replaced isomorphously Fe2+ in amorphous ferrous sulfide, as revealed by XRD, XPS, and high-resolution TEM-EDS, forming metal sulfide precipitates and thus immobilizing PTMs. PTM immobilization was further enhanced by adsorption by biochar and oxidation products (Fe2O3 and Fe3O4) of SNZVI via precipitation and surface complexation. SNZVI/BC also increased the concentration of dissolved organic carbon and soil pH, thus stimulating the abundances of beneficial bacteria, i.e., Bacilli, Clostridia, and Desulfuromonadia. These functional bacteria further facilitated microbial Fe(III) reduction, production of ammonium and available potassium, and immobilization of PTMs in soils. The predicted function of the soil microbial community was improved after supplementation with SNZVI/BC. Overall, SNZVI/BC could be a promising functional material that not only immobilized PTMs but also enhanced available nutrients in cocontaminated soils.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xianni Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China.
| | - Taige Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenjing Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ruidong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
7
|
Guan TK, Wang QY, Li JS, Yan HW, Chen QJ, Sun J, Liu CJ, Han YY, Zou YJ, Zhang GQ. Biochar immobilized plant growth-promoting rhizobacteria enhanced the physicochemical properties, agronomic characters and microbial communities during lettuce seedling. Front Microbiol 2023; 14:1218205. [PMID: 37476665 PMCID: PMC10354297 DOI: 10.3389/fmicb.2023.1218205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Spent mushroom substrate (SMS) is the by-products of mushroom production, which is mainly composed of disintegrated lignocellulosic biomass, mushroom mycelia and some minerals. The huge output and the lack of effective utilization methods make SMS becoming a serious environmental problem. In order to improve the application of SMS and SMS derived biochar (SBC), composted SMS (CSMS), SBC, combined plant growth-promoting rhizobacteria (PGPR, Bacillus subtilis BUABN-01 and Arthrobacter pascens BUAYN-122) and SBC immobilized PGPR (BCP) were applied in the lettuce seedling. Seven substrate treatments were used, including (1) CK, commercial control; (2) T1, CSMS based blank control; (3) T2, T1 with combined PGPR (9:1, v/v); (4) T3, T1 with SBC (19:1, v/v); (5) T4, T1 with SBC (9:1, v/v); (6) T5, T1 with BCP (19:1, v/v); (7) T6, T1 with BCP (9:1, v/v). The physicochemical properties of substrate, agronomic and physicochemical properties of lettuce and rhizospheric bacterial and fungal communities were investigated. The addition of SBC and BCP significantly (p < 0.05) improved the total nitrogen and available potassium content. The 5% (v/v) BCP addiction treatment (T5) represented the highest fresh weight of aboveground and underground, leave number, chlorophyll content and leaf anthocyanin content, and the lowest root malondialdehyde content. Moreover, high throughput sequencing revealed that the biochar immobilization enhanced the adaptability of PGPR. The addition of PGPR, SBC and BCP significantly enriched the unique bacterial biomarkers. The co-occurrence network analysis revealed that 5% BCP greatly increased the network complexity of rhizospheric microorganisms and improved the correlations of the two PGPR with other microorganisms. Furthermore, microbial functional prediction indicated that BCP enhanced the nutrient transport of rhizospheric microorganisms. This study showed the BCP can increase the agronomic properties of lettuce and improve the rhizospheric microbial community.
Collapse
Affiliation(s)
- Ti-Kun Guan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qiu-Ying Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Jia-Shu Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Hui-Wen Yan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chao-Jie Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ying-Yan Han
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ya-Jie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Huang X, Wang K, Wen X, Liu J, Zhang Y, Rong J, Nie M, Fu C, Zheng B, Yuan Z, Gong L, Zhan H, Shen R. Flooding duration affects the temperature sensitivity of soil extracellular enzyme activities in a lakeshore wetland in Poyang Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162397. [PMID: 36848996 DOI: 10.1016/j.scitotenv.2023.162397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Extracellular enzymes play central roles in the biogeochemical cycles in wetland ecosystems. Their activities are strongly impacted by hydrothermal conditions. Under the ongoing global change, many studies reported the individual effects of flooding and warming on extracellular enzyme activities, however, few researches investigated their interactive effects. Therefore, the current study aims to determine the responses of extracellular enzyme activities to warming in wetland soils under divergent flooding regimes. We investigated the temperature sensitivity of seven extracellular enzymes related to carbon (α-glucosidase, AG; β-glucosidase, BG; cellobiohydrolase, CBH; β-xylosidase, XYL), nitrogen (β-N-acetyl -glucosaminidase, NAG; leucine aminopeptidase, LAP), and phosphorus (Phosphatase, PHOS) cycling along the flooding duration gradient in a lakeshore wetland of Poyang Lake, China. The Q10 value, calculated using a temperature gradient (10, 15, 20, 25, and 30 °C), was adopted to represent the temperature sensitivity. The average Q10 values of AG, BG, CBH, XYL, NAG, LAP, and PHOS in the lakeshore wetland were 2.75 ± 0.76, 2.91 ± 0.69, 3.34 ± 0.75, 3.01 ± 0.69, 3.02 ± 1.11, 2.21 ± 0.39, and 3.33 ± 0.72, respectively. The Q10 values of all the seven soil extracellular enzymes significantly and positively correlated with flooding duration. The Q10 values of NAG, AG and BG were more sensitive to the changes in flooding duration than other enzymes. The Q10 values of the carbon, nitrogen, and phosphorus-related enzymes were mainly determined by flooding duration, pH, clay, and substrate quality. Flooding duration was the most dominant driver for the Q10 of BG, XYL, NAG, LAP, and PHOS. In contrast, the Q10 values of AG and CBH were primarily affected by pH and clay content, respectively. This study indicated that flooding regime was a key factor regulating soil biogeochemical processes of wetland ecosystems under global warming.
Collapse
Affiliation(s)
- Xingyun Huang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China; Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and the CAS engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Kexin Wang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China
| | - Xiuting Wen
- Jiangxi Institute of Ecological Civilization, School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Jie Liu
- Jiangxi Institute of Ecological Civilization, School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Yan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Chun Fu
- School of Public Policy and Administration, School of Infrastructure Engineering, Jiangxi Regional Economic Research Institute, Nanchang University, Nanchang 330031, PR China
| | - Bofu Zheng
- Jiangxi Institute of Ecological Civilization, School of Resources & Environment, Nanchang University, Nanchang 330031, PR China
| | - Zhifen Yuan
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China
| | - Leiqiang Gong
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake National Nature Reserve Authority, Nanchang 330038, PR China
| | - Huiying Zhan
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake National Nature Reserve Authority, Nanchang 330038, PR China
| | - Ruichang Shen
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, PR China; Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang 330031, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
9
|
Geng H, Wang X, Shi S, Ye Z, Zhou W. Fertilization makes strong associations between organic carbon composition and microbial properties in paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116605. [PMID: 36347187 DOI: 10.1016/j.jenvman.2022.116605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Fertilization changes the soil organic carbon (SOC) composition, affecting the carbon cycle of paddy soil. Understanding the mechanisms of physical fraction and chemical composition of SOC responding to fertilization can help regulate the nutrient release and carbon sequestration. However, it is unclear whether these changes in SOC composition to fertilization are consistent and how these are regulated by biotic and abiotic properties. Therefore, a positioning experiment in a rice field was conducted with a total of nine treatments. Chemical fertilizers (0, 337.5, and 675 kg ha-1; C0, C50, and C100, respectively) and fungal residue (0, 10,000, and 20,000 kg ha-1; F0, F50, and F100, respectively) were applied to evaluated (i) changes in the physical fraction and chemical composition of SOC, (ii) changes in soil properties, microbial biomass and community, and (iii) establish relationships among soil properties, microbial community, microbial biomass, and SOC composition. Our results showed that the application of fungal residue exhibited more significant effects on SOC physical fractions than those with the chemical fertilizers. Furthermore, the chemical composition of SOC was more respond to the application of chemical fertilizers than fungal residue. The partial least squares path model indicated that soil properties mainly affected the mineral-associated organic carbon (MAOC) by microbial biomass. In addition, bacterial diversity played an important role in improving the accumulation of MAOC. The SOC chemical composition was mediated by fungal community composition and bacterial diversity. In conclusion, fungal residue application affected SOC physical fraction by increasing soil properties, microbial biomass, and bacterial diversity. Chemical fertilizers application mainly mediated the chemical composition of SOC by altering fungal community composition and decreasing bacterial diversity.
Collapse
Affiliation(s)
- Hetian Geng
- College of Environmental and Resource Science, Zhejiang Agricultural and Forestry University, Zhejiang Provincial Key Laboratory of Contaminated Soil Remediation, Hangzhou, 311300, China
| | - Xudong Wang
- College of Environmental and Resource Science, Zhejiang Agricultural and Forestry University, Zhejiang Provincial Key Laboratory of Contaminated Soil Remediation, Hangzhou, 311300, China.
| | - Sibo Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengqian Ye
- College of Environmental and Resource Science, Zhejiang Agricultural and Forestry University, Zhejiang Provincial Key Laboratory of Contaminated Soil Remediation, Hangzhou, 311300, China
| | - Wenjing Zhou
- College of Environmental and Resource Science, Zhejiang Agricultural and Forestry University, Zhejiang Provincial Key Laboratory of Contaminated Soil Remediation, Hangzhou, 311300, China
| |
Collapse
|
10
|
Cui J, Ge T, Nie M, Kuzyakov Y, Alharbi S, Fang C, Deng Z. Contrasting effects of maize litter and litter-derived biochar on the temperature sensitivity of paddy soil organic matter decomposition. Front Microbiol 2022; 13:1008744. [PMID: 36246287 PMCID: PMC9557949 DOI: 10.3389/fmicb.2022.1008744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Organic matter input regulates the rate and temperature sensitivity (expressed as Q10) of soil organic matter (SOM) decomposition by changing microbial composition and activities. It remains unclear how the incorporation of litter-made biochar instead of litter affects the Q10 of SOM decomposition. Using a unique combination of two-and three-source partitioning methods (isotopic discrimination between C3/C4 pathways and 14C labeling), we investigated: (1) how maize litter versus litter-made biochar (of C4 origin) addition influenced the Q10 of SOM (C3 origin) under 10°C warming, and (2) how the litter or biochar amendments affected the Q10 of 14C-labeled fresh organic matter (FOM) after long-term incubation. Compared with biochar addition, litter increased the rates and Q10 of mass-specific respiration, SOM and FOM decomposition, as well as the contents of SOM-derived dissolved organic C (DOC) and total phospholipid fatty acids (PLFA). Litter-amended soils have much higher activities (Vmax) of β-glucosidase, N-acetyl-β-glucosaminidase, and leucine aminopeptidase, suggesting larger enzyme pools than in soils with biochar. The Q10 of enzyme Vmax (1.6–2.0) and Km (1.2–1.4) were similar between litter-and biochar-amended soils, and remained stable with warming. However, warming reduced microbial biomass (PLFA) and enzyme activity (Vmax), suggesting decreased enzyme production associated with smaller microbial biomass or faster enzyme turnover at higher temperatures. Reductions in PLFA content and enzyme Vmax due to warming were larger in litter-amended soils (by 31%) than in the control and biochar-amended soils (by 4–11%), implying the active litter-feeding microorganisms have a smaller degree of heat tolerance than the inactive microorganisms under biochar amendments. The reduction in enzyme activity (Vmax) by warming was lower in soils with biochar than in the control soil. Our modeling suggested that the higher Q10 in litter-amended soils was mainly caused by faster C loss under warming, linked to reductions in microbial biomass and growth efficiency, rather than the slightly increased SOM-originated substrate availability (DOC). Overall, using straw-made biochar instead of straw per se as a soil amendment lowers the Q10 of SOM and FOM by making microbial communities and enzyme pools more temperature-tolerant, and consequently reduces SOM losses under warming.
Collapse
Affiliation(s)
- Jun Cui
- School of Life Sciences, Nantong University, Nantong, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Jiangsu Provincial Key Laboratory for Bioresources of Coastal Saline Soils, Jiangsu Coastal Biological Agriculture Synthetic Innovation Center, Yancheng Teachers’ University, Yancheng, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yakov Kuzyakov
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Department of Agricultural Soil Science, Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Agro-Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sulaiman Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Changming Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Changming Fang,
| | - Zifa Deng
- School of Life Sciences, Nantong University, Nantong, China
- *Correspondence: Zifa Deng,
| |
Collapse
|
11
|
Zhang X, Zhang J, Song M, Dong Y, Xiong Z. N 2O and NO production and functional microbes responding to biochar aging process in an intensified vegetable soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119491. [PMID: 35597489 DOI: 10.1016/j.envpol.2022.119491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/21/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Vegetable soils with high nitrogen input are hotspots of nitrous oxide (N2O) and nitric oxide (NO), and biochar amended to soil has been documented to effectively decrease N2O and NO emissions. However, the aging effects of biochar on soil N2O and NO production and the relevant mechanisms are not thoroughly understood. A15N tracing microcosm study was conducted to clarify the responses of N2O and NO production pathways to the biochar aging process in vegetable soil. The results showed that autotrophic nitrification was the predominant source of N2O production. Biochar aging increased the O-containing functional groups while lowering the aromaticity and pore size. Fresh biochar enhanced the AOB-amoA gene abundance and obviously stimulated N2O production by 15.5% via autotrophic nitrification and denitrification. In contrast, field-aged biochar markedly weakened autotrophic nitrification and denitrification and thus decreased N2O production by 17.0%, as evidenced by the change in AOB-amoA and nosZI gene abundances. However, the amendment with artificially lab-aged biochar had no effect on N2O production. With the extension of aging time, biochar application reduced the soil NO production dominated by nitrification. Changes in the N2O and NO fluxes were closely associated with soil NH4+-N and NO2--N contents, indicating that autotrophic nitrification played a critical role in NO production. Overall, our study demonstrated that field-aged biochar suppressed N2O production via autotrophic nitrification and denitrification by regulating associated functional genes, but not for lab-aged biochar or fresh biochar. These findings improved our insights regarding the implications of biochar aging on N2O and NO mitigation in vegetable soils.
Collapse
Affiliation(s)
- Xi Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junqian Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengxin Song
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yubing Dong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huaian, 223001, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|