1
|
Muazu SA, Cobelli P, Wangsomboondee T. Optimization of Metarhizium koreanum MN031-Mt 46: Nutritional Supplementation to Improve Conidia and Cuticle-Degrading Enzyme Production by Solid-State Fermentation. J Microbiol Biotechnol 2025; 35:e2412079. [PMID: 40295220 PMCID: PMC12089957 DOI: 10.4014/jmb.2412.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025]
Abstract
This study aimed to evaluate five different mixed agricultural wastes as potential substrates for solid-state fermentation (SSF) to produce conidia of Metarhizium koreanum MN031-Mt 46. Single-factor experiments and a Box-Behnken design (BBD) were employed to optimize the fermentation conditions for enhanced conidia yield. Results indicated that a mixed substrate comprising broken rice and rice bran significantly enhanced the optimal production of aerial conidia of MN031-Mt 46. Optimal fermentation conditions established through response surface methodology (RSM) revealed that with the addition of shrimp shell waste to the mixed substrate, conidia production increased to 8.45 × 108 conidia per gram of dry substrate at 26.19°C temperature, 39.76% moisture, and 1.45% of shrimp shell waste after 301.87 h of incubation. Enhanced conidia performance indices were observed, including higher conidia weight, increased water content, and reduced residue post-harvest. The optimized fermentation conditions resulted in enhanced cuticle-degrading enzymatic activities, with maximum activities of 58.78 ± 2.29 U g-1 ds for protease, 126.57 ± 6.47 U g-1 ds for lipase, and 58.32 ± 0.78 U g-1 ds for chitinase. These findings highlight the potential and versatility of mixed SSF using cost-effective agricultural waste for biopesticide and hydrolytic enzyme production, while promoting sustainable waste management and environmental pollution control, aligning with circular economy principles.
Collapse
Affiliation(s)
- Suleiman Abba Muazu
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Botany, Faculty of Science, Taraba State University, Jalingo 660213, Nigeria
| | - Payorm Cobelli
- Rice Research and Development Division, Rice Department, Ministry of Agriculture and Cooperatives, Bangkok, 10900, Thailand
| | - Teerada Wangsomboondee
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Perwez M, Al Asheh S. Valorization of agro-industrial waste through solid-state fermentation: Mini review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00873. [PMID: 39886360 PMCID: PMC11780145 DOI: 10.1016/j.btre.2024.e00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/01/2024] [Accepted: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Agriculture and industrial waste are produced in large volumes every year worldwide, causing serious concerns about their disposal. These wastes have high organic content, which microorganisms can easily assimilate into relevant value-added products. Valorization of agro-industrial waste is required for sustainable development. Solid state fermentation is an excellent method of utilizing waste for circular bioeconomy. Exploitation of agro-industrial waste as a substrate utilizing microorganisms for solid state fermentation provides beneficial products for use in industries and other fields. The use of waste reduces the cost of production of value-added products. This method is an environmentally friendly, economical and feasible approach for waste management. This review discusses the factors affecting the production of value-added products through solid state fermentation. It also discusses the valuable products from solid state fermentation technology, such as antibiotics, enzymes, organic acids, bioremediation, biosurfactants and biofertilizers. Challenges and future prospects are also presented.
Collapse
Affiliation(s)
- Mohammad Perwez
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sameer Al Asheh
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, P.O.Box 2666, United Arab Emirates
| |
Collapse
|
3
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
4
|
Ferreyra-Suarez D, García-Depraect O, Castro-Muñoz R. A review on fungal-based biopesticides and biofertilizers production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116945. [PMID: 39222612 DOI: 10.1016/j.ecoenv.2024.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The escalating use of inorganic fertilizers and pesticides to boost crop production has led to the depletion of natural resources, contamination of water sources, and environmental crises. In response, the scientific community is exploring eco-friendly alternatives, such as fungal-based biofertilizers and biopesticides, which have proven effectiveness in enhancing plant health and growth while sustainably managing plant diseases and pests. This review article examines the production methodologies of these bioproducts, highlighting their role in sustainable agriculture and advancing our understanding of soil microorganisms. Despite their increasing demand, their global market presence remains limited compared to traditional chemical counterparts. The article addresses: 1) the production of biofertilizers and biopesticides, 2) their contribution to crop productivity, 3) their environmental impact and regulations, and 4) current production technologies. This comprehensive approach aims to promote the transition towards more sustainable agricultural practices.
Collapse
Affiliation(s)
- Dante Ferreyra-Suarez
- Pilgrim's Pride, S. de R.L. de C.V., Carretera a Cd. Juarez km 20.5, Gomez Palacio, Durango, Mexico
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
5
|
Munhoz T, Vargas J, Teixeira L, Staver C, Dita M. Fusarium Tropical Race 4 in Latin America and the Caribbean: status and global research advances towards disease management. FRONTIERS IN PLANT SCIENCE 2024; 15:1397617. [PMID: 39081528 PMCID: PMC11286425 DOI: 10.3389/fpls.2024.1397617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Fusarium wilt of banana (FWB), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses an undeniable threat to global banana production. This disease has intensified in recent years, with the tropical race 4 (TR4) strain spreading rapidly. Since 2018, the number of affected countries has increased from 16 to 23, presenting a significant challenge to researchers, producers, and National Plant Protection Organizations (NPPOs) worldwide. The potential impact of TR4 in Latin America and the Caribbean (LAC) is particularly concerning. This region boasts seven of the top ten banana-exporting countries, and bananas and plantains are crucial for food security and income generation. In Colombia, where TR4 was detected in 2019, the disease has already spread from La Guajira to Magdalena, and it is currently affecting 20 large commercial export farms. In Peru, the disease was detected in 2021 and although still restricted to the northern region, flood irrigation and heavy rains associated with the Yaku cyclone, boosted pathogen spread, and more than 400 small organic banana farmers are currently affected. In Venezuela, TR4 detection occurred in 2023, with plantations across three states and five municipalities now affected. Worryingly, TR4 has also been confirmed in plantains, a staple food in the region. Current national responses in LAC primarily rely on preventive and reactive measures: preventing initial incursions and containing outbreaks to avoid further spread. However, the disease's relentless progression suggests that its eventual presence in all banana-producing areas is likely. Therefore, exploring alternative management approaches beyond pathogen exclusion becomes crucial, both in affected and disease-free regions. This paper examines the current spread of TR4, focusing on epidemiological aspects and recent research-based management options. Key epidemiological features were highlighted, drawing practical examples from various scales (plots to landscapes) and utilizing experiences from LAC's fight against TR4. The paper also reviews field-tested approaches in biosecurity, biological control, resistant varieties, soil health, and integrated disease management, acknowledging the specific challenges faced by smallholder settings. In each section research initiatives were analyzed, identifying gaps, and proposing directions to minimize TR4 impact and accelerate the development of sustainable solutions for managing this devastating disease.
Collapse
Affiliation(s)
- Thayne Munhoz
- Laboratório de Microbiologia Ambiental, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Jorge Vargas
- Biodiversity for Food and Agriculture, 2 Centro Internacional de Agricultura Tropical, Cali, Colombia
| | - Luiz Teixeira
- Centro de Solos e Pesquisas de Fertilizantes, Instituto Agronômico, Campinas, Brazil
| | - Charles Staver
- Facultad de Agronomía, Universidad Veracruzana, Xalapa, Mexico
| | - Miguel Dita
- Biodiversity for Food and Agriculture, Bioversity International, Cali, Colombia
| |
Collapse
|
6
|
Bhattacharya R, Arora S, Ghosh S. Bioprocess optimization for food-grade cellulolytic enzyme production from sorghum waste in a novel solid-state fermentation bioreactor for enhanced apple juice clarification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120781. [PMID: 38608570 DOI: 10.1016/j.jenvman.2024.120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.
Collapse
Affiliation(s)
- Raikamal Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Sidharth Arora
- Fermentech Labs Pvt. Ltd, TIDES Business Incubator, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Sanjoy Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
7
|
Qin WH, Li MX, Zhang YB, Li W, Jia R, Xiong YS, Lu HQ, Zhang SY. High capacity and selective adsorption of Congo red by cellulose-based aerogel with mesoporous structure: Adsorption properties and statistical data simulation. Int J Biol Macromol 2024; 259:129137. [PMID: 38171438 DOI: 10.1016/j.ijbiomac.2023.129137] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Large quantities of organic dyes are discharged into the environment, causing serious damage to the ecosystem. Therefore, it is urgent to develop inexpensive adsorbents to remove organic dyes. A novel cellulose-based aerogel (MPPA) with 3D porous structure was prepared by using cassava residue (cellulose) as basic construction blocks, doping ferroferric oxide (Fe3O4) for magnetic separation, and applying polyethyleneimine (PEI) as functional material for highly efficient and selective capture of Congo red (CR). MPPA exhibited porous network structure, numerous active capture sites, nontoxicity, high hydrophilicity, and excellent thermal stability. MPPA showed superior adsorption property for CR, with an equilibrium adsorption capacity of 2018.14 mg/g, and still had an adsorption property of 1189.31 mg/g after five recycling procedures. In addition, MPPA has excellent selectivity for CR in four binary dye systems. The adsorption behavior of MPPA on CR was further explored using a multilayer adsorption model, EDR-IDR hybrid model and AOAS model. Electrostatic potential and independent gradient models were used to further verify the possible interaction between MPPA and CR molecules. In conclusion, MPPA is a promising adsorbent in the field of treating anionic dyes.
Collapse
Affiliation(s)
- Wen-Hao Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ming-Xing Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yi-Bing Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wen Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Ran Jia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan-Shu Xiong
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hai-Qin Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.
| | - Si-Yuan Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.
| |
Collapse
|
8
|
Khan RAA, Najeeb S, Chen J, Wang R, Zhang J, Hou J, Liu T. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e14133. [PMID: 38148197 DOI: 10.1111/ppl.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Trichoderma species have received significant interest as beneficial fungi for boosting plant growth and immunity against phytopathogens. By establishing a mutualistic relationship with plants, Trichoderma causes a series of intricate signaling events that eventually promote plant growth and improve disease resistance. The mechanisms contain the indirect or direct involvement of Trichoderma in enhancing plant growth by modulating phytohormones signaling pathways, improving uptake and accumulation of nutrients, and increasing soil bioavailability of nutrients. They contribute to plant resistance by stimulating systemic acquired resistance through salicylic acid, jasmonic acid, and ethylene signaling. A cascade of signal transduction processes initiated by the interaction of Trichoderma and plants regulate the expression of defense-related genes, resulting in the synthesis of defense hormones and pathogenesis-related proteins (PRPs), which collectively improve plant resistance. Additionally, advancements in omics technologies has led to the identification of key pathways, their regulating genes, and molecular interactions in the plant defense and growth promotion responses induced by Trichoderma. Deciphering the molecular mechanism behind Trichoderma's induction of plant defense and immunity is essential for harnessing the full plant beneficial potential of Trichoderma. This review article sheds light on the molecular mechanisms that underlie the positive effects of Trichoderma-induced plant immunity and growth and opens new opportunities for developing environmentally friendly and innovative approaches to improve plant immunity and growth.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Saba Najeeb
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR, China
| | - Rui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jing Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jumei Hou
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Tong Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
9
|
Jiang Y, Wang J. The Registration Situation and Use of Mycopesticides in the World. J Fungi (Basel) 2023; 9:940. [PMID: 37755048 PMCID: PMC10532538 DOI: 10.3390/jof9090940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Mycopesticides are living preparations that use fungal cells, such as spores and hyphae, as active ingredients. They mainly include mycoinsecticides, mycofungicides, mycoherbicides and nematophagous fungi. The utilization of fungi for controlling agricultural pests can be traced back to approximately 1880, when entomopathogenic fungi were initially employed for this purpose. However, it was not until 1965 that the world's first mycopesticide, Beauveria bassiana, was registered as Boverin® in the former Soviet Union. In past decades, numerous novel mycopesticides have been developed for their lower R&D costs, as well as the environmentally friendly and safe nature. In this review, we investigated the mycopesticides situation of registration in USA, EU, China, Canada and Australia. Superisingly, it was found that the registered mycopesticides are extremely raised in recent years. Currently, the insecticides, fungicides (nematocides) and herbicides were respectively registered 27, 53 and 8 fungal strains. This paper also analyzes the main problems currently faced by mycopesticides and offers suggestions for their future development.
Collapse
Affiliation(s)
- Yali Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Jingjing Wang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Saldaña-Mendoza SA, Pacios-Michelena S, Palacios-Ponce AS, Chávez-González ML, Aguilar CN. Trichoderma as a biological control agent: mechanisms of action, benefits for crops and development of formulations. World J Microbiol Biotechnol 2023; 39:269. [PMID: 37532771 DOI: 10.1007/s11274-023-03695-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Currently, the food and economic losses generated by the attack of phytopathogens on the agricultural sector constitute a severe problem. Conventional crop protection techniques based on the application of synthetic pesticides to combat these undesirable microorganisms have also begun to represent an inconvenience since the excessive use of these substances is associated with contamination problems and severe damage to the health of farmers, consumers, and communities surrounding the fields, as well as the generation of resistance by the phytopathogens to be combated. Using biocontrol agents such as Trichoderma to mitigate the attack of phytopathogens represents an alternative to synthetic pesticides, safe for health and the environment. This work explains the mechanisms of action through which Trichoderma exerts biological control, some of the beneficial aspects that it confers to the development of crops through its symbiotic interaction with plants, and the bioremedial effects that it presents in fields contaminated by synthetic pesticides. Also, detail the production of spore-based biopesticides through fermentation processes and formulation development.
Collapse
Affiliation(s)
- Salvador A Saldaña-Mendoza
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Sandra Pacios-Michelena
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Arturo S Palacios-Ponce
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Mónica L Chávez-González
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Cristóbal N Aguilar
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México.
| |
Collapse
|
11
|
Egbune EO, Ezedom T, Orororo OC, Egbune OU, Avwioroko OJ, Aganbi E, Anigboro AA, Tonukari NJ. Solid-state fermentation of cassava (Manihot esculenta Crantz): a review. World J Microbiol Biotechnol 2023; 39:259. [PMID: 37493900 DOI: 10.1007/s11274-023-03706-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Solid-state fermentation (SSF) is a promising technology for producing value-added products from cassava (Manihot esculenta Crantz). In this process, microorganisms are grown on cassava biomass without the presence of free-flowing liquid. Compared to other processing methods, SSF has several advantages, such as lower costs, reduced water usage, and higher product yields. By enhancing the content of bioactive compounds like antioxidants and phenolic compounds, SSF can also improve the nutritional value of cassava-based products. Various products, including enzymes, organic acids, and biofuels, have been produced using SSF of cassava. Additionally, SSF can help minimize waste generated during cassava processing by utilizing cassava waste as a substrate, which can reduce environmental pollution. The process has also been explored for the production of feed and food products such as tempeh and cassava flour. However, optimizing the process conditions, selecting suitable microbial strains, and developing cost-effective production processes are essential for the successful commercialization of SSF of cassava.
Collapse
Affiliation(s)
- Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria.
- Tonukari Biotechnology Laboratory, Sapele, Delta state, Nigeria.
| | - Theresa Ezedom
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Osuvwe C Orororo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Olisemeke U Egbune
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Eferhire Aganbi
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Georgia State University, J. Mack Robinson College of Business, 3348 Peachtree Rd NE, Atlanta, GA, 30326, USA
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta state University, P.M.B. 1, Abraka, Nigeria
- Tonukari Biotechnology Laboratory, Sapele, Delta state, Nigeria
| |
Collapse
|
12
|
Ghoreishi G, Barrena R, Font X. Using green waste as substrate to produce biostimulant and biopesticide products through solid-state fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 159:84-92. [PMID: 36738589 DOI: 10.1016/j.wasman.2023.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Although the use of green waste as a substrate in different types of microbial bioprocessing has a major impact on improving green waste valorization, very little information has been provided on this issue. The purpose of this paper is to study the feasibility of using green waste to produce a biostimulant (Indole-3-acetic acid (IAA)) and biopesticide (conidial spore) through solid-state fermentation. Trichoderma harzianum was selected as the inoculum of the process and the green waste was a mixture of grass clippings and pruning waste. An experiment was designed to study the effect of tryptophan concentration, proportion of grass and pruning waste, and substrate moisture on IAA and spore production. The results show that washing and using phosphate buffer has a beneficial effect on green waste quality in terms of bioproduction. The maximum IAA and spore productions reported in the current study were 101.46 µg g-1 dry matter and 3.03 × 109 spore g-1 dry matter, respectively. According to the results, IAA production increases with a higher amount of tryptophan and grass. However, the number of spores increased with lower amounts of tryptophan and grass. The model suggested the following optimized parameters for the production of spores and IAA: tryptophan 0.45 %, grass 61 %, and moisture 74 %. The effect of fermentation time was also studied, and the results show that the maximum IAA and spore production was obtained on days 3 and 7, respectively.
Collapse
Affiliation(s)
- Golafarin Ghoreishi
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Raquel Barrena
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - Xavier Font
- GICOM research group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Carrer de les Sitges, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
13
|
A Critical Evaluation of Recent Studies on Packed-Bed Bioreactors for Solid-State Fermentation. Processes (Basel) 2023. [DOI: 10.3390/pr11030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Packed-bed bioreactors are often used for aerobic solid-state fermentation, since the forced aeration supplies O2 and removes metabolic heat from the bed. Motivated by the potential for applications in biorefineries, we review studies conducted on packed-bed bioreactors over the last decade, evaluating the insights these studies provide into how large-scale packed beds should be designed and operated. Many studies have used low superficial air velocities and suffer from preferential airflow, such that parts of the bed are not properly aerated. Moreover, some studies have proposed ineffective strategies, such as reversing the direction of the airflow or introducing air through perforated pipes within the bed. Additionally, many studies have used narrow water-jacketed packed-bed bioreactors, but these bioreactors do not reflect heat removal in wide large-scale packed beds, in which heat removal through the side walls makes a minor contribution. Finally, we conclude that, although some attention has been given to characterizing the porosities, water sorption isotherms and volumetric heat and mass transfer coefficients of substrate beds, this work needs to be extended to cover a wider range of solid substrates, and work needs to be done to characterize how these bed properties change due to microbial growth.
Collapse
|
14
|
Solid-state Fermentation of Cassava (Manihot esculenta) Peels Using Rhizopus Oligosporus: Application of the Fermented Peels in Yeast Production and Characterization of α-amylase Enzyme Produced in the Process. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|