1
|
Wang Z, Liu M, Liu X, Bao Y, Wang Y. Solubilization of K and P nutrients from coal gangue by Bacillus velezensis. Appl Environ Microbiol 2024; 90:e0153824. [PMID: 39412266 PMCID: PMC11577778 DOI: 10.1128/aem.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/15/2024] [Indexed: 11/21/2024] Open
Abstract
Accumulation of coal gangue (CG) poses significant risks to both human health and ecological systems, underscoring the urgent need for sustainable methods to utilize this abundant waste material effectively. In this study, we successfully screened and isolated the Bacillus velezensis bacterial strain to enhance the solubilization of potassium (K) and phosphorus (P) nutrients from CG. The study employed XRD, FTIR, SEM, and HPLC techniques to investigate the underlying mechanisms of CG solubilization. Various parameters such as CG particle size, incubation time, initial inoculation ratio, concentration of CG, pH, and temperature were optimized to maximize solubilization efficiency. The Bacillus velezensis bacterium can dissolve minerals of CG by adhering to its surface and secreting various kinds of organic acids, particularly succinic acid. Pot experiments further demonstrated that Bacillus velezensis, in conjunction with CG, promotes alfalfa growth. These combined findings suggest that Bacillus velezensis and coal gangue hold promising potential as mineral soil conditioners, effectively enhancing plant growth. This approach presents a viable alternative for the environmentally responsible utilization of CG, addressing both ecological concerns and agricultural sustainability. IMPORTANCE Coal gangue piles not only occupy significant amounts of arable land but also cause serious environmental pollution. Therefore, finding sustainable methods for the clean utilization of CG is imperative. Although previous studies have shown that bacteria can promote the solubilization of available phosphorus and available potassium from CG, their impact on promoting plant growth remains understudied. To our knowledge, this study is the first to demonstrate the potential of Bacillus velezensis in enhancing the effectiveness of CG as a mineral fertilizer to support alfalfa growth. The evidence presented in this study provides an ecological strategy for the utilization of CG.
Collapse
Affiliation(s)
- Zhigang Wang
- College of Energy Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Mingwu Liu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Yuan Bao
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Yaya Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| |
Collapse
|
2
|
Tang T, Wang Z, Chen L, Wu S, Liu Y. Opportunities, challenges and modification methods of coal gangue as a sustainable soil conditioner-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58231-58251. [PMID: 39287737 DOI: 10.1007/s11356-024-34895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The persistent reliance on coal has resulted in the accumulation of substantial coal gangue, a globally recognized problematic solid waste with environmental risks. Given the coal gangue properties and global land degradation severity, the resourceful utilization of coal gangue as soil conditioners is believed to be a universally applicable, cost-effective, high-demand and environment-friendly model with broad application prospect. The direct application of raw coal gangue faces challenges of low active beneficial ingredients, inadequate water and fertilizer retention, presence of potentially toxic elements, resulting in limited efficacy and environmental contamination. This paper provided a comprehensive review of various modification methods (including mechanical, chemical, microbiological, thermal, hydrothermal and composite modifications) employed to enhance the soil improvement performance and reduce the environmental pollution of coal gangue. Furthermore, an analysis was conducted on the potential application of modified coal gangue as a muti-function soil conditioner based on its altered properties. The modified coal gangue is anticipated to effectively enhance soil quality, exhibiting significant potential in mitigating carbon emissions and facilitating soil carbon sequestration. This paper provided innovative ideas for future research on the comprehensive treatment of coal gangue and restoration of degraded soil in order to achieve the dual goals of zero-coal gangue waste and sustainable agriculture.
Collapse
Affiliation(s)
- Tian Tang
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Zheng Wang
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Shu Wu
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Wu Q, Sun R, Chen F, Zhang X, Wu P, Wang L, Li R. Soil quality enhancement by multi-treatment in the abandoned land of dry-hot river valley hydropower station construction area under karst desertification environment. PLoS One 2024; 19:e0306368. [PMID: 39083557 PMCID: PMC11290686 DOI: 10.1371/journal.pone.0306368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
The medium-intensity karst desertification environment is typically characterized by more rocks and less soil. The abandoned land in the construction areas of the dry-hot river valley hydropower station has more infertile soil, severe land degradation, and very low land productivity. Therefore, it is urgent to improve the soil quality to curb the increasingly degrading land and reuse the construction site. Few studies have focused on the effect of soil restoration and comprehensive evaluation of soil quality with multi-treatment in abandoned land in the dry-hot valley hydropower station construction area. Here, 9 soil restoration measures and 1 control group were installed at the Guangzhao Hydropower Station construction in Guizhou Province, China, for physical and chemical property analysis. In total, 180 physical and 90 chemical soil samples were collected on three occasions in May, August, and December 2022. Soil fertility and quality were evaluated under various measures using membership functions and principal component analysis (PCA). This study showed that almost all measures could enhance soil water storage capacity (The average total soil porosity of 9 soil treatments was 57.56%, while that of the control group was 56.37%). With the increase in soil porosity, soil evaporation became stronger, and soil water content decreased. Nevertheless, no decrease in soil water content was observed in the presence of vegetation cover (soil water content: 16.46% of hairy vetch, 13.99% of clover, 13.77% of the control). They also proved that manure, synthetic fertilizer, and straw could promote total and available nutrients (Soil total nutrient content, or the total content of TN、TP、TK,was presented as: synthetic fertilizer (11.039g kg-2)>fowl manure (10.953g kg-2)>maize straw (10.560g kg-2)>control (9.580g kg-2);Total available nutrient content in soil, or the total content of AN,AP,A,was shown as:fowl manure (1287.670 mg kg-1)>synthetic fertilizer (925.889 mg kg-1)>sheep manure (825.979 mg kg-1)>control (445.486 mg kg-1). They could also promote soil fertility, among which the first two reached the higher comprehensive soil quality. Fertilizer was conducive to improve soil quality and fertility, yet long-term application could cause land degradation like soil non-point source pollution, compaction, and land productivity decline. Ultimately, combining fertilizer with biochar or manure is recommended to improve soil fertility. Biochar and green manure could play an apparent role in soil improvement only when there is abundant soil water. The above views provide theoretical support for curbing soil degradation, improving soil fertility and quality, enhancing land productivity, and promoting the virtuous cycle of the soil ecosystem.
Collapse
Affiliation(s)
- Qinglin Wu
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Rong Sun
- Power China Guiyang Engineering Corporation Limited, Guiyang, China
| | - Fan Chen
- Power China Guiyang Engineering Corporation Limited, Guiyang, China
| | - Xichuan Zhang
- Power China Guiyang Engineering Corporation Limited, Guiyang, China
| | - Panpan Wu
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Lan Wang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
- School of Foreign Languages, Guizhou Normal University, Guiyang, China
| | - Rui Li
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| |
Collapse
|
4
|
Zhao L. Spectroscopic characterizations of silicate fertilizers prepared by chemical deashing of coals. Heliyon 2024; 10:e32318. [PMID: 38912488 PMCID: PMC11190661 DOI: 10.1016/j.heliyon.2024.e32318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Quality silicate fertilizers should be in great demand, and yet the production has been limited due to strict regulations on heavy metals, despite many raw materials and activation methods being used. In the chemical deashing of coals for the production of ultraclean coals, the silica gels of high purity were precipitated with little heavy metals from the acid deashing solutions, which could be used to produce quality silicate fertilizers by pulping with CaO or MgO under mild conditions. By varying the Ca/Si molar ratios, silicate fertilizers with different chemical compositions were prepared, and the active silica contents were measured and validated by ICP and colorimetric methods. For the curve of the active silica contents versus the Ca/Si molar ratios, four regions could be clearly marked with unique patterns, and quality silicate fertilizers occurred with the Ca/Si molar ratios from ∼1.10 to ∼3.50. The pH values of the silicate fertilizers could also be divided into the same four regions with respect to the Ca/Si molar ratios, and the highest active silica content occurred at the pH value of ∼11.30 with the Ca/Si molar ratio of ∼1.50. With the XRD investigations of the silicate fertilizers selected from the four regions, the water-insoluble 1.5CaO·SiO2•xH2O was identified as the contributor of active silica in the silicate fertilizers. By replacing full or part of CaO with MgO in the preparation of silicate fertilizers, the silica gels were found to preferably react with CaO, and the active silica contents grew with the increase of CaO. By referring to the model silicate fertilizers prepared in this work by varying the (Ca + Mg)/Si molar ratios, 1.5CaO·SiO2•xH2O was also identified as the dominant in one commercial slag silicate fertilizer. Silicate fertilizers by silica gels can be helpful for secondary pollution elimination and cost reduction of coal deashing.
Collapse
Affiliation(s)
- Lijun Zhao
- Advanced Materials Research Center, National Institute of Clean-and-low-carbon Energy, Future Science City, Changping District, Beijing, PR China
| |
Collapse
|
5
|
Luo C, Li S, Ren P, Yan F, Wang L, Guo B, Zhao Y, Yang Y, Sun J, Gao P, Ji P. Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123439. [PMID: 38325505 DOI: 10.1016/j.envpol.2024.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Cocomposting coal gangue and sludge eliminates the challenge of utilizing coal gangue. However, there is limited understanding about the feasibility of cocomposting sludge and coal gangue, as well as the composting indicators, functional microorganisms, and safety risks involved. Therefore, this study evaluated the feasibility of enhancing carbon composting in coal gangue by incorporating sludge along with sawdust as a conditioner. Three laboratory-scale reactors were designed and labeled as T1 (20 % coal gangue, 60 % sludge, and 20 % sawdust), T2 (40 % coal gangue, 40 % sludge, and 20 % sawdust), and T3 (60 % coal gangue, 20 % sludge, and 20 % sawdust). Seed germination and plant growth assessments were conducted to ensure compost stability and assess phytotoxicity to cabbage (Brassica rapa chinensis L.) in terms of growth and biomass. The results indicated that the temperature, pH, EC and ammonia nitrogen of all three reactor conditions met the requirements for product decomposition. Composting was successfully achieved when the sludge proportion was 20 % (T3). However, when the sludge proportion was markedly high (T1), the harmlessness of the compost was reduced. The germination indices of T1, T2, and T3 reached 95 %, 122 %, and 119 % at maturity, respectively. This confirmed that the harmless cycle, which involved promoting condensation and aromatization, enhancing decay, and reducing composting time, was shorter in T2 and T3 than in T1. Coal gangue can also serve as a beneficial habitat for microorganisms, promoting an increase in their population and activity. Potting experiments in sandy soil revealed that the mechanism of action of compost products in soil included not only the enhancement of soil nutrients but also the improvement of soil texture. The results of this study suggest that using coal gangue as a raw material for composting is an efficient and environmentally friendly approach for producing organic fertilizers.
Collapse
Affiliation(s)
- Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengyu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fan Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yimo Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Singh JP, Bottos EM, Van Hamme JD, Fraser LH. Microbial composition and function in reclaimed mine sites along a reclamation chronosequence become increasingly similar to undisturbed reference sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170996. [PMID: 38369136 DOI: 10.1016/j.scitotenv.2024.170996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Mine reclamation historically focuses on enhancing plant coverage to improve below and aboveground ecology. However, there is a great need to study the role of soil microorganisms in mine reclamation, particularly long-term studies that track the succession of microbial communities. Here, we investigate the trajectory of microbial communities of mining sites reclaimed between three and 26 years. We used high-throughput amplicon sequencing to characterize the bacterial and fungal communities. We quantified how similar the reclaimed sites were to unmined, undisturbed reference sites and explored the trajectory of microbial communities along the reclamation chronosequence. We also examined the ecological processes that shape the assembly of bacterial communities. Finally, we investigated the functional potential of the microbial communities through metagenomic sequencing. Our results reveal that the reclamation age significantly impacted the community compositions of bacterial and fungal communities. As the reclamation age increases, bacterial and fungal communities become similar to the unmined, undisturbed reference site, suggesting a favorable succession in microbial communities. The bacterial community assembly was also significantly impacted by reclamation age and was primarily driven by stochastic processes, indicating a lesser influence of environmental properties on the bacterial community. Furthermore, our read-based metagenomic analysis showed that the microbial communities' functional potential increasingly became similar to the reference sites. Additionally, we found that the plant richness increased with the reclamation age. Overall, our study shows that both above- and belowground ecological properties of reclaimed mine sites trend towards undisturbed sites with increasing reclamation age. Further, it demonstrates the importance of microbial genomics in tracking the trajectory of ecosystem reclamation.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| | - Eric M Bottos
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Lauchlan H Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| |
Collapse
|
7
|
Lv X, Yang S, Deng J, Lei J, Shu Z. Formulation of ferric/phosphorus composite coating on coal gangue as a novel fertilizer for enhancing slow-release of silicon and implication of As, Cr and Pb. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120347. [PMID: 38359628 DOI: 10.1016/j.jenvman.2024.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Owing to the abundant silicon content in coal gangue, its conversion into fertilizer can help address large-scale storage. Nonetheless, the rapid release of silicon in coal gangue poses challenges for plants to fully utilize it. A slow-release fertilizer prepared by ferric/phosphorus composite coating on coal gangue (C@SP) was developed in the study. The findings revealed that the C@SP can facilitate slow release of Si and enhance the stabilization of As, Pb, and Cr in soil. C@SP can react with As and Cr to form stable Fe-As-PO4 and Fe-Cr-PO4 compounds. The -OH in C@SP can combine with Pb, transforming it into insoluble Pb, which was then integrated into the crystal structure with ferric/phosphorus composite or Fe(III)-oxyhydroxysulfate to create a more stable form. The silicon release was promoted by the conversion of the passivation film to iron oxides. Thus, the fertilizer holds promise for application in environmental activities.
Collapse
Affiliation(s)
- Xin Lv
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Sen Yang
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jiushuai Deng
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Engineering Technology Research Center for Comprehensive Utilization of Rare Earth, Rare Metal and Rare-Scattered in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China; Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China.
| | - Jianlan Lei
- Jiangxi Gaiya Environ Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| | - Zigang Shu
- Jiangxi Gaiya Environ Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| |
Collapse
|
8
|
Wang YW, Bai DS, Luo XG, Zhang Y. Effects of Setaria viridis on heavy metal enrichment tolerance and bacterial community establishment in high-sulfur coal gangue. CHEMOSPHERE 2024; 351:141265. [PMID: 38246497 DOI: 10.1016/j.chemosphere.2024.141265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Plant enrichment and tolerance to heavy metals are crucial for the phytoremediation of coal gangue mountain. However, understanding of how plants mobilize and tolerate heavy metals in coal gangue is limited. This study conducted potted experiments using Setaria viridis as a pioneer remediation plant to evaluate its tolerance to coal gangue, its mobilization and enrichment of metals, and its impact on the soil environment. Results showed that the addition of 40% gangue enhanced plant metal and oxidative stress resistance, thereby promoting plant growth. However, over 80% of the gangue inhibited the chlorophyll content, photoelectron conduction rate, and biomass of S. viridis, leading to cellular peroxidative stress. An analysis of metal resistance showed that endogenous S in coal gangue promoted the accumulation of glutathione, plant metal chelators, and non-protein thiols, thereby enhancing its resistance to metal stress. Setaria viridis cultivation affected soil properties by decreasing nitrogen, phosphorus, conductivity, and urease and increasing sucrase and acid phosphatase in the rhizosphere soil. In addition, S. viridis planting increased V, Cr, Ni, As, and Zn in the exchangeable and carbonate-bound states within the gangue, effectively enriching Cd, Cr, Fe, S, U, Cu, and V. The increased mobility of Cd and Pb was correlated with a higher abundance of Proteobacteria and Acidobacteria. Heavy metals, such as As, Fe, V, Mn, Ni, and Cu, along with environmental factors, including total nitrogen, total phosphorus, urease, and acid phosphatase, were the primary regulatory factors for Sphingomonas, Gemmatimonas, and Bryobacter. In summary, S. viridis adapted to gangue stress by modulating antioxidant and elemental enrichment systems and regulating the release and uptake of heavy metals through enhanced bacterial abundance and the recruitment of gangue-tolerant bacteria. These findings highlight the potential of S. viridis for plant enrichment in coal gangue areas and will aid the restoration and remediation of these environments.
Collapse
Affiliation(s)
- Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | | | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
9
|
Li W, Feng Z, Zhu X, Gong W. Efficient removal of Cr (VI) from coal gangue by indigenous bacteria-YZ1 bacteria: Adsorption mechanism and reduction characteristics of extracellular polymer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116047. [PMID: 38301582 DOI: 10.1016/j.ecoenv.2024.116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
The existence of heavy metals (especially Cr (VI)) in coal gangue has brought great safety risks to the environment. The indigenous bacteria (YZ1 bacteria) were separated and applied for removing Cr (VI) from the coal gangue, in which its tolerance to Cr (VI) was explored. The removal mechanism of Cr (VI) was investigated with pyrite in coal gangue, metabolite organic acids and extracellular polymer of YZ1 bacteria. The concentration of Cr (VI) could be stabilized around 0.012 mg/L by the treatment with YZ1 bacteria. The Cr (VI) tolerance of YZ1 bacteria reached 60 mg/L, and the removal efficiency of Cr (VI) was more than 95% by using YZ1 bacteria combined with pyrite. The organic acids had a certain reducing ability to Cr (VI) (removal efficiency of less than 10%). The extracellular polymers (EPS) were protective for the YZ1 bacteria resisting to Cr (VI). The polysaccharides and Humic-like substances in the soluble extracellular polymers (S-EPS) had strong adsorption and reduction effect on Cr (VI), in which the tryptophan and tyrosine proteins in the bound extracellular polymers (LB-EPS and TB-EPS) could effectively promote the reduction of Cr (VI). YZ1 bacteria could obviously reduce the damage of Cr (VI) from coal gangue to the environment.
Collapse
Affiliation(s)
- Wang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China
| | - Zhaoxiang Feng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China
| | - Xiaobo Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China.
| | - Wenhui Gong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| |
Collapse
|
10
|
Song Y, Sun L, Wang H, Zhang S, Fan K, Mao Y, Zhang J, Han X, Chen H, Xu Y, Sun K, Ding Z, Wang Y. Enzymatic fermentation of rapeseed cake significantly improved the soil environment of tea rhizosphere. BMC Microbiol 2023; 23:250. [PMID: 37679671 PMCID: PMC10483718 DOI: 10.1186/s12866-023-02995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Rapeseed cake is an important agricultural waste. After enzymatic fermentation, rapeseed cake not only has specific microbial diversity but also contains a lot of fatty acids, organic acids, amino acids and their derivatives, which has potential value as a high-quality organic fertilizer. However, the effects of fermented rapeseed cake on tea rhizosphere microorganisms and soil metabolites have not been reported. In this study, we aimed to elucidate the effect of enzymatic rapeseed cake fertilizer on the soil of tea tree, and to reveal the correlation between rhizosphere soil microorganisms and nutrients/metabolites. RESULTS The results showed that: (1) The application of enzymatic rapeseed cake increased the contents of soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), and available phosphorus (AP); increased the activities of soil urease (S-UE), soil catalase (S-CAT), soil acid phosphatase (S-ACP) and soil sucrase (S-SC); (2) The application of enzymatic rapeseed cake increased the relative abundance of beneficial rhizosphere microorganisms such as Chaetomium, Inocybe, Pseudoxanthomonas, Pseudomonas, Sphingomonas, and Stenotrophomonas; (3) The application of enzymatic rapeseed cake increased the contents of sugar, organic acid, and fatty acid in soil, and the key metabolic pathways were concentrated in sugar and fatty acid metabolisms; (4) The application of enzymatic rapeseed cake promoted the metabolism of sugar, organic acid, and fatty acid in soil by key rhizosphere microorganisms; enzymes and microorganisms jointly regulated the metabolic pathways of sugar and fatty acids in soil. CONCLUSIONS Enzymatic rapeseed cake fertilizer improved the nutrient status and microbial structure of tea rhizosphere soil, which was beneficial for enhancing soil productivity in tea plantations. These findings provide new insights into the use of enzymatic rapeseed cake as an efficient organic fertilizer and expand its potential for application in tea plantations.
Collapse
Affiliation(s)
- Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Huan Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yilin Mao
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao Han
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Chen
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Xu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kangwei Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Tian Y, Dong X, Fan Y, Yang D, Chen R. Hydrothermal alkaline synthesis and release properties of silicon compound fertiliser using high-ash coal slime. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99652-99665. [PMID: 37615911 DOI: 10.1007/s11356-023-29413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
High-ash coal slime is difficult to utilise as a boiler fuel, and its accumulation results in environmental pollution. In this study, we describe a new method for the preparation of high-ash coal slime silica compound fertiliser (HASF) using CaO-KOH mixed hydrothermal method to optimize the utilization of this industrial waste and relieve the pressure on the fertiliser industry. The coal slime (D0) used in this study and its dry basis ash content by 1 mol/L and 4 mol/L sulfuric acid pre-activation (D1, D4) were greater than 85%. The effective silicon content of D0, D1, and D4 silica compound fertilisers reached 30.24%, 31.24%, and 17.35%, respectively, and the sums of effective silica-calcium-potassium oxides were 57.28%, 58.87%, and 48.16%, respectively, under the optimal reaction conditions of 230 °C, 15 h, and 1 mol/L KOH, which met the market requirements, as determined using single-factor experiments. We used XRD, FTIR, and SEM-EDS analysis techniques to demonstrate that tobermorite and leucite were the main mineral phases of the compound fertiliser, and activated coal slime D4, which contains only quartz single crystals, required more demanding reaction conditions in the synthesis reaction. Subsequently, the cumulative release pattern of HASF silica was well described by the power function equation via repeated extraction and dissolution experiments, with the dissolution rate following D4 > D1 ≈ D0. Furthermore, 4 mol/L sulfuric acid pre-activation resulted in the enrichment of HASF combined with organic matter and increased the slow-release rate of HASF silica. Thus, the synthesized HASF could have potential application prospects in soil improvement and fertilisation.
Collapse
Affiliation(s)
- Yanfei Tian
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
- Shanxi Engineering Research Center of Ecological Mining, Taiyuan, 030024, China
| | - Xianshu Dong
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
- Shanxi Engineering Research Center of Ecological Mining, Taiyuan, 030024, China.
| | - Yuping Fan
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Dong Yang
- State Center for Research and Development of Oil Shale Exploitation, Beijing, 100083, China
- Key Laboratory of In Situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ruxia Chen
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
12
|
Zhu X, Gong W, Li W, Zhang C. Fixating lead in coal gangue with phosphate using phosphate-dissolving bacteria: Phosphorus dissolving characteristics of bacteria and adsorption mechanism of extracellular polymer. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131923. [PMID: 37364436 DOI: 10.1016/j.jhazmat.2023.131923] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Controlling and preventing lead pollution is currently the focus of environmental remediation. Coal gangue contains large quantities of lead, and its environmental impact cannot be ignored. This study investigated the tolerance of Stenotrophomonas maltophilia (YZ-1 train) to lead ion and its fixation effect on lead in coal gangue. The fixation mechanism of lead ions by using the YZ-1 train was studied with CaHPO4 and Ca3(PO4)2. The tolerance mechanism and fixation characteristics of the three bacterial extracellular polymers and cell components to lead were analyzed. The results show that the YZ-1 train had a strong resistance to lead ions. The amount of lead released from coal gangue can be reduced by up to 91.1% upon treatment with the YZ-1 train, which can dissolve phosphate minerals to form stable hydroxyapatite (Pb5(PO4)3(OH)) and pyromorphite (Pb5(PO4)3Cl) with lead ions. Tryptophan and tyrosine from cellular components and extracellular polymers with loosely and tightly bound proteins are the main participants in the fixation of lead ions. The by-products of soluble microbes affect the fixation of lead ions in soluble extracellular polymers. The carboxylic acids and carboxylates secreted by bacteria are involved in the adsorption and fixation of lead ions.
Collapse
Affiliation(s)
- Xiaobo Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, Henan 454000, China
| | - Wenhui Gong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Wang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, Henan 454000, China.
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, Henan 454000, China
| |
Collapse
|
13
|
Zhang M, Xiao N, Yang H, Li Y, Gao F, Li J, Zhang Z. The layout measures of micro-sprinkler irrigation under plastic film regulate tomato soil bacterial community and root system. FRONTIERS IN PLANT SCIENCE 2023; 14:1136439. [PMID: 36968356 PMCID: PMC10030703 DOI: 10.3389/fpls.2023.1136439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Introduction The change in rhizosphere soil bacterial community and root system under new water-saving device is not clear. Methods A completely randomized experimental design was used to explore the effects of different micropore group spacing (L1: 30 cm micropore group spacing, L2: 50 cm micropore group spacing) and capillary arrangement density (C1: one pipe for one row, C2: one pipe for two rows, C3: one pipe for three rows) on tomato rhizosphere soil bacteria community, roots and tomato yield under MSPF. The bacteria in tomato rhizosphere soil were sequenced by 16S rRNA gene amplicon metagenomic sequencing technology, the interaction of bacterial community, root system and yield in tomato rhizosphere soil was quantitatively described based on regression analysis. Results Results showed that L1 was not only beneficial to the development of tomato root morphology, but also promoted the ACE index of tomato soil bacterial community structure and the abundance of nitrogen and phosphorus metabolism functional genes. The yield and crop water use efficiency (WUE) of spring tomato and autumn tomato in L1 were about 14.15% and 11.27%, 12.64% and 10.35% higher than those in L2. With the decrease of capillary arrangement density, the diversity of bacterial community structure in tomato rhizosphere soil decreased, and the abundance of nitrogen and phosphorus metabolism functional genes of soil bacteria also decreased. The small abundance of soil bacterial functional genes limited the absorption of soil nutrients by tomato roots and roots morphological development. The yield and crop water use efficiency of spring and autumn tomato in C2 were significantly higher than those in C3 about 34.76% and 15.23%, 31.94% and 13.91%, respectively. The positive interaction between soil bacterial community and root morphological development of tomato was promoted by the capillary layout measures of MSPF. Discussion The L1C2 treatment had a stable bacterial community structure and good root morphological development, which positively promoted the increase of tomato yield. The interaction between soil microorganisms and roots of tomato was regulated by optimizing the layout measures of MSPF to provide data support for water-saving and yield-increasing of tomato in Northwest China.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou, China
- Institute of Water Resources and Rural Water Conservancy, Henan Provincial Water Conservancy Research Institute, Zhengzhou, China
| | - Na Xiao
- Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou, China
| | - Haijian Yang
- Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou, China
| | - Yuan Li
- Vegetable station, Northwest Land and Resources Research Center, Shaanxi Normal University, Xi’an, China
| | - Fangrong Gao
- Hydraulic Research Laboratory, Yellow River Hydrologic Survey Planning and Design Co., Ltd., Zhengzhou, China
| | - Jianbin Li
- Agricultural Technology Extension Center of Xi’an City, Xi’an, Shaanxi, China
| | - Zhenxing Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| |
Collapse
|
14
|
Dong Y, Lu H, Lin H. Release characteristics of heavy metals in high-sulfur coal gangue: Influencing factors and kinetic behavior. ENVIRONMENTAL RESEARCH 2023; 217:114871. [PMID: 36423666 DOI: 10.1016/j.envres.2022.114871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
High-sulfur coal gangue (HS-CG) is extremely unstable in the environment, releasing acid mine drainage with high concentrations of harmful heavy metals (HMs). The effects of HS-CG particle size, leaching solution pH, Fe3+ and acidophilic microorganisms on the release of HMs from the HS-CG and their kinetic behavior were studied using static leaching tests. The results showed that the smaller the particle size of HS-CG and the more acidic the leaching solution, the greater the release of HMs. As the chemical catalyst, the external addition of 300 mg/L Fe3+ can make the leaching amount of Fe, Mn, Cu, Zn, Ni, Cr reached 10,224.93, 93.88, 52.25, 11.56, 7.55, 2.97 mg/kg respectively, and the release of HMs was 1.36-2.60 times of the tests without the addition of iron. However, the concentration of Fe3+ above 800 mg/L promoted the production of jarosite on the surface of HS-CG, which led to decrease in the release of HMs. The HMs forms in HS-CG were different, while the effect of microorganisms on the leaching of Zn (54.99%) and Mn (52.35%) in the higher acid soluble fraction was more obvious, their leaching amount reached 87.21 and 107.58 mg/kg respectively. The kinetic analysis indicated that the rate-controlling step was mainly redox reaction at first, and then gradually controlled by the diffusion of ash layer. So, the kinetic equation controlled jointly by two rate-controlling stages has been proposed to describe the dissolution of HS-CG. This work help develop pertinent strategies for mine area remediation via controlling the HMs generation path.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Huan Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|