1
|
Liu QY, Wang YX, Sha HQ, Zhou HM, Sun Y, Su J, Mei Y, Dai X, He XS. The community succession mechanisms and interactive dynamics of microorganisms under high salinity and alkalinity conditions during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124881. [PMID: 40068504 DOI: 10.1016/j.jenvman.2025.124881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Microorganisms drive organic matter degradation and humification during composting. However, the mechanisms underlying microbial community succession and their interactions under saline-alkali stress are poorly understood. In this study, we investigated the microbial community assembly processes and microbial niche dynamics during composting in the high-saline-alkaline region. The niche breadth of the microbial community expanded from 5.8 to 15 and salt-alkali conditions alleviation prompted a shift in microbial community assembly towards stochastic processes. Alkalinity (R = 69.08%) and available phosphorus (AP) (R = 45.70%) are identified as the primary environmental stress factors. Salinity primarily impacted the niche breadth, while alkalinity predominantly determined the assembly processes of microorganisms. The degradation of organic matter in high-temperature environments enhanced the release of AP, altering the processes of microbial community assembly and driving niche differentiation within the microbial community. The abundant taxa actively responded to the changes in the environmental conditions, while the rare taxa maintained the community stability by expanding their ecological niches. The interactions between microorganisms are mainly based on synergism. The native microorganisms, such as Alcanivorax, Corynebacterium, and Rhodohalobacter, played a key role in promoting compost maturity. They tolerated the high-salinity and alkaline environments and also withstood high temperatures. This study revealed for the first time the succession mechanisms and interaction characteristics of microbial communities under salinity and temperature stress, providing theoretical guidance for microbial inoculation during the composting of high-saline and alkaline organic waste.
Collapse
Affiliation(s)
- Qing-Yu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu-Xin Wang
- The School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Hao-Qun Sha
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao-Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ying Mei
- College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010000, China
| | - Xin Dai
- Nanjing Wondux Environmental Protection Technology Corp., Ltd., Nanjing, 211100, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
2
|
Gu J, Cao Y, Sun Q, Zhang J, Xu Y, Jin H, Huang H. The bacterial community drive the humification and greenhouse gas emissions during plant residues composting under different aeration rates. ENVIRONMENTAL TECHNOLOGY 2025; 46:848-862. [PMID: 38920117 DOI: 10.1080/09593330.2024.2369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the effects of different aeration intensities on organic matter (OM) degradation, greenhouse gas emissions (GHG) as well as humification during plant residue composting. Three intermittent aeration intensities of 0.084 (Tlow), 0.19 (Tmedium) and 0.34 (Thigh) L min-1kg-1 DM with 30 min on/30 min off were conducted on a lab-scale composting experiment. Results showed that OM mineralization in Thigh was more evident than Tlow and Tmedium, resulting in the highest humic acid content. Humic acid content in Tmedium and Thigh was 15.7% and 18.5% higher than that in Tlow. The average O2 concentration was 4.9%, 9.5% and 13.6% for Tlow, Tmedium and Thigh. Compared with Tmedium and Thigh, Tlow reduced CO2 and N2O emissions by 18.3%-39.6% and 72.4%-63.9%, but the CH4 emission was highest in Tlow. But the total GHG emission was the lowest in Thigh. Linear Discriminant Analysis Effect Size analysis showed that the core bacteria within Tlow mainly belonged to Anaerolineaceae, which was significantly negatively correlated to the emission of CH4. Thermostaphylospora, Unclassified_Vicinamibacteraceae and Sulfurifustis were identified as core bacteria in Tmedium and Thigh, and these genus were significantly postively correlated to CO2 and N2O emissions. Redundancy analysis showed that total orgnic carbon, O2 and electrical conductivity were the key factors affecting the evolution of bacterial community.
Collapse
Affiliation(s)
- Junyu Gu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
| | - Yun Cao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Qian Sun
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Jing Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Yueding Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Hongying Huang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Hu Y, Feng Y, Yao L, Wu C, Chen M, Zhang H, Li Q. Destabilization mechanisms of Semi-aerobic aged refuse biofilters under harsh treatment conditions: Evidence from fluorescence and microbial characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174436. [PMID: 38964403 DOI: 10.1016/j.scitotenv.2024.174436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Semi-aerobic aged refuse biofilters (SAARB) are commonly-used biotechnologies for treating landfill leachate. In actual operation, SAARB often faces harsh conditions characterized by high concentrations of chemical oxygen demand (COD) and Cl-, as well as a low carbon-to-nitrogen ratio (C/N), which can disrupt the microbial community within SAARB, leading to operational instability. Maintaining the stable operation of SAARB is crucial for the efficient treatment of landfill leachate. However, the destabilization mechanism of SAARB under harsh conditions remains unclear. To address this, the study simulated the operation of SAARB under three harsh conditions, namely, high COD loading (H-COD), high chloride ion (Cl-) concentration environment (H-Cl-), and low C/N ratio environment (L-C/N). The aim is to reveal the destabilization mechanism of SAARB under harsh conditions by analyzing the fluorescence characteristics of effluent DOM and the microbial community in aged refuse. The results indicate that three harsh conditions have different effects on SAARB. H-COD leads to the accumulation of proteins; H-Cl- impedes the reduction of nitrite nitrogen; L-C/N inhibits the degradation of humic substances. These outcomes are attributed to the specific effects of different factors on the microbial communities in different zones of SAARB. H-COD and L-C/N mainly affect the degradation of organic matter in aerobic zone, while H-Cl- primarily impedes the denitrification process in the anaerobic zone. The abnormal enrichment of Corynebacterium, Castellaniella, and Sporosarcina can indicate the instability of SAARB under three harsh conditions, respectively. To maintain the steady operation of SAARB, targeted acclimation of the microbial community in SAARB should be carried out to cope with potentially harsh operating conditions. Besides, timely mitigation of loads should be implemented when instability characteristics emerge, and carbon sources and electron donors should be provided to restore treatment performance effectively.
Collapse
Affiliation(s)
- Yuansi Hu
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuanyuan Feng
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Li Yao
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chuanwei Wu
- Three Gorges Group Sichuan Energy Investment Co., Ltd., Chengdu 610000, China
| | - Mengli Chen
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Han Zhang
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Qibin Li
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
4
|
Li K, Zhang L, Zhou F, Yang K, Zhan M, Su Y, Wu D, Xie B. Revealing mechanisms of NH 3 and N 2O emissions reduction in the rapid bio-drying of food waste: Insights from organic nitrogen composition and microbial activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173353. [PMID: 38795999 DOI: 10.1016/j.scitotenv.2024.173353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Inevitably, aerobic biological treatment processes generate emissions of ammonia (NH3) and greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O). The rapid bio-drying process (RBD) for food waste (FW) alleviates issues arising from its substantial growth. However, its emissions of NH3 and N2O remain unknown, and the correlation with nitrogen components in the substrate remains unclear, significantly impeding its widespread adoption. Here, the nitrogen loss and its mechanisms in RBD were investigated, and the results are as follows: The total emission of NH3 and N2O were1.42 and 1.16 mg/kg FW (fresh weight), respectively, achieving a 98 % reduction compared to prior studies. Structural equation modeling demonstrates that acid ammonium nitrogen (AN) decomposition chiefly generates NH3 in compost (p < 0.001). Strong correlation (p < 0.001) exists between amino acid nitrogen (AAN) and AN. In-depth analysis of microbial succession during the process reveals that the enrichment of Brevibacterium, Corynebacterium, Dietzia, Fastidiosipila, Lactobacillus, Mycobacterium, Peptoniphilus, and Truepera, are conducive to reducing the accumulation of AN and AAN in the substrate, minimizing NH3 emissions (p < 0.05). While Pseudomonas, Denitrobacterium, Nitrospira, and Bacillus are identified as key species contributing to N2O emissions during the process. Correlation analysis between physicochemical conditions and microbial succession in the system indicates that the moisture content and NO3- levels during the composting process provide suitable conditions for the growth of bacteria that contribute to NH3 and N2O emissions reduction, these enrichment in RBD process minimizing NH3 and N2O emissions. This study can offer crucial theoretical and data support for the resource utilization process of perishable organic solid waste, mitigating NH3 and GHGs emissions.
Collapse
Affiliation(s)
- Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China.
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China.
| | - Feng Zhou
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China.
| | - Kai Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Civil, Environmental & Architectural Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Zhang Y, Yang B, Peng S, Zhang Z, Cai S, Yu J, Wang D, Zhang W. Mechanistic insights into chemical conditioning on transformation of dissolved organic matter and plant biostimulants production during sludge aerobic composting. WATER RESEARCH 2024; 255:121446. [PMID: 38489963 DOI: 10.1016/j.watres.2024.121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Inorganic coagulants (aluminum and iron salt) are widely used to improve sludge dewaterability, resulting in numerous residues in dewatered sludge. Composting refers to the controlled microbial process that converts organic wastes into fertilizer, and coagulant residues in dewatered sludge can affect subsequent compost efficiency and resource recycling, which remains unclear. This work investigated the effects of two typical metal salt coagulants (poly aluminum chloride [PAC] and poly ferric sulfate [PFS]) conditioning on sludge compost. Our results revealed that PAC conditioning inhibited composting with decreased peak temperature, microbial richness, enzymatic reaction intensities, and compost quality, associated with decreased pH and microbial toxicity of aluminum. Nevertheless, PFS conditioning selectively enriched Pseudoxanthomonas sp. and resulted in more fertile compost with increased peak temperature, enzymatic reaction intensities, and humification degree. Spectroscopy and mass difference analyses indicated that PFS conditioning enhanced reaction intensities of labile biopolymers at the thermophilic stage, mainly comprising hydrolyzation (H2O), dehydrogenation (-H2, -H4), oxidation (+O1H2), and other reactions (i.e., +CH2, C2H4O1, C2H6O1). Unlike the common composting process primarily conducts humification at the cooling stage, PFS conditioning changed the main occurrence stage to the thermophilic stage. Non-targeted metabolomics revealed that indole (a humification intermediate) is responsible for the increased humification degree and indoleacetic acid content in the PFS-conditioned compost, which then promoted compost quality. Plant growth experiments further confirmed that the dissolved organic matter (DOM) in PFS-conditioned compost produced the maximum plant biomass. This study provided molecular-level evidence that PFS conditioning can promote humification and compost fertility during sludge composting, enabling chemical conditioning optimization for sustainable management of sludge.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Boyuan Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Siwei Peng
- Datang Environmental Industry Group Co., Ltd, Haidian District, Beijing 100097, China
| | - Ziwei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Zhang H, Dou Z, Bi W, Yang C, Wu X, Wang L. Multi-omics study of sulfur metabolism affecting functional microbial community succession during aerobic solid-state fermentation. BIORESOURCE TECHNOLOGY 2023; 387:129664. [PMID: 37573975 DOI: 10.1016/j.biortech.2023.129664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Microbial-mediated sulfur metabolism is closely related to carbon and nitrogen metabolism in natural biological systems. In this study, the effects of sulfur metabolism on microbial communities and functional enzyme succession were investigated based on integrated multi-omics by adding sulfur-containing compounds to aerobic fermentation systems. Sulfur powder was oxidized to S2O32- and subsequently to SO42- by the microbial sulfur-oxidizing system, which lowered the pH to 7.5 on day 7. The decrease in pH resulted in Planifilum (secreted S8, M17 and M32 proteases) losing its competitive advantage, whereas Novibacillus (secreted M14 and M19 metalloproteases) became dominant. Structural proteomics indicated that the surface of Novibacillus proteases has more negatively charged amino acid residues that help maintain protein stability at low pH. These findings aid understanding of the effects of sulfur metabolism on fermentation and the mechanism of microbial adaptation after pH reduction, providing new perspectives on the optimization of fermentation processes.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhixin Dou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Wenhui Bi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Faculty of Food Science and Engineering, Shandong Agricultural and Engineering University, Jinan, Shandong 250100, China
| | - Chuanlun Yang
- Shandong Chambroad Holding Group Co., Ltd., Boxing 256599, China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
7
|
Fu Y, Lyu J, Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front Immunol 2023; 14:1277102. [PMID: 37876938 PMCID: PMC10591221 DOI: 10.3389/fimmu.2023.1277102] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The gut is colonized by many commensal microorganisms, and the diversity and metabolic patterns of microorganisms profoundly influence the intestinal health. These microbial imbalances can lead to disorders such as inflammatory bowel disease (IBD). Microorganisms produce byproducts that act as signaling molecules, triggering the immune system in the gut mucosa and controlling inflammation. For example, metabolites like short-chain fatty acids (SCFA) and secondary bile acids can release inflammatory-mediated signals by binding to specific receptors. These metabolites indirectly affect host health and intestinal immunity by interacting with the intestinal epithelial and mucosal immune cells. Moreover, Tryptophan-derived metabolites also play a role in governing the immune response by binding to aromatic hydrocarbon receptors (AHR) located on the intestinal mucosa, enhancing the intestinal epithelial barrier. Dietary-derived indoles, which are synthetic precursors of AHR ligands, work together with SCFA and secondary bile acids to reduce stress on the intestinal epithelium and regulate inflammation. This review highlights the interaction between gut microbial metabolites and the intestinal immune system, as well as the crosstalk of dietary fiber intake in improving the host microbial metabolism and its beneficial effects on the organism.
Collapse
Affiliation(s)
- Yifeng Fu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Lyu
- Department of Pathology, the First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
8
|
Liu X, Zubair M, Kong L, Shi Y, Zhou H, Tong L, Zhu R, Lv Y, Li Z. Shifts in bacterial diversity characteristics during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms agent. BIORESOURCE TECHNOLOGY 2023; 382:129163. [PMID: 37224888 DOI: 10.1016/j.biortech.2023.129163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Microbial inoculation was an effective way to improve product quality of composting and solve traditional composting shortage. However, the effect mechanism of microbial inoculation on compost microorganisms remains unclear. Here, Shifts in bacterial community, metabolic function and co-occurrence network during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms (EM) agent were analyzed by high-throughput sequencing and network analysis. Microbial inoculation promoted organic carbon transformation in early stage of secondary fermentation (days 27 to 31). The beneficial biocontrol bacteria were main dominant genera at the second fermentation stage. Microbial inoculation can be good for the survival of beneficial bacteria. Inoculation with microbes promoted amino acid, carbohydrate and lipid metabolism, and inhibited energy metabolism and citrate cycle (TCA cycle). Microbial inoculation could enhance complexity of bacterial network and enhance mutual cooperation among bacteria during composting.
Collapse
Affiliation(s)
- Xiayan Liu
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Muhammad Zubair
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Lingyu Kong
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hu Zhou
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Tong
- XState Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yizhong Lv
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
9
|
Martins GL, de Souza AJ, Mendes LW, Gontijo JB, Rodrigues MM, Coscione AR, Oliveira FC, Regitano JB. Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes. BIORESOURCE TECHNOLOGY 2023; 376:128842. [PMID: 36898559 DOI: 10.1016/j.biortech.2023.128842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
This study investigates the impact of different agro-industrial organic wastes (i.e., sugarcane filter cake, poultry litter, and chicken manure) on the bacterial community and their relationship with physicochemical attributes during composting. Integrative analysis was performed by combining high-throughput sequencing and environmental data to decipher changes in the waste microbiome. The results revealed that animal-derived compost stabilized more carbon and mineralized a more organic nitrogen than vegetable-derived compost. Composting enhanced bacterial diversity and turned the bacterial community structure similar among all wastes, reducing Firmicutes abundance in animal-derived wastes. Potential biomarkers indicating compost maturation were Proteobacteria and Bacteroidota phyla, Chryseolinea genus and Rhizobiales order. The waste source influenced the final physicochemical attributes, whereas composting enhanced the complexity of the microbial community in the order of poultry litter > filter cake > chicken manure. Therefore, composted wastes, mainly the animal-derived ones, seem to present more sustainable attributes for agricultural use, despite their losses of C, N, and S.
Collapse
Affiliation(s)
- Guilherme Lucio Martins
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Adijailton José de Souza
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Júlia Brandão Gontijo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Mayra Maniero Rodrigues
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Aline Renée Coscione
- Center of Soil and Agroenviromental Resources, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | | | - Jussara Borges Regitano
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil.
| |
Collapse
|
10
|
Muter O. Current Trends in Bioaugmentation Tools for Bioremediation: A Critical Review of Advances and Knowledge Gaps. Microorganisms 2023; 11:710. [PMID: 36985282 PMCID: PMC10056695 DOI: 10.3390/microorganisms11030710] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Bioaugmentation is widely used in soil bioremediation, wastewater treatment, and air biofiltration. The addition of microbial biomass to contaminated areas can considerably improve their biodegradation performance. Nevertheless, analyses of large data sets on the topic available in literature do not provide a comprehensive view of the mechanisms responsible for inoculum-assisted stimulation. On the one hand, there is no universal mechanism of bioaugmentation for a broad spectrum of environmental conditions, contaminants, and technology operation concepts. On the other hand, further analyses of bioaugmentation outcomes under laboratory conditions and in the field will strengthen the theoretical basis for a better prediction of bioremediation processes under certain conditions. This review focuses on the following aspects: (i) choosing the source of microorganisms and the isolation procedure; (ii) preparation of the inoculum, e.g., cultivation of single strains or consortia, adaptation; (iii) application of immobilised cells; (iv) application schemes for soil, water bodies, bioreactors, and hydroponics; and (v) microbial succession and biodiversity. Reviews of recent scientific papers dating mostly from 2022-2023, as well as our own long-term studies, are provided here.
Collapse
Affiliation(s)
- Olga Muter
- Faculty of Biology, University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|