1
|
Liu Y, Ben Y, Wang L, Huang X, Zhou Q. Amplified growth and heavy metal toxicity of Chlorococcum sp. from exposure to low-dose lanthanum(III). JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136949. [PMID: 39721471 DOI: 10.1016/j.jhazmat.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Rare earth elements (REEs) are extensively utilized in industry, agriculture, advanced materials and other fields, leading to their dispersion in water bodies as emerging contaminants. Meanwhile, the coexistence of REEs and heavy metals (HMs) has become a novel form of water contamination (REE-HM co-contamination), though scientists have limited understanding of its hazards. Here, Chlorococcum sp. cultured in Taihu Lake water was selected to examine the effects of low-dose lanthanum(III) [La(III)] on its growth and HM accumulation. Low-dose La(III) (0.5-30 μg/L) promoted algal growth and increased the contents of Cd (136.7 %), Pb (92.0 %), and Cr (84.3 %), along with the bioconcentration factor of Cd (135.5 %), Pb (91.7 %), and Cr (84.0 %) in Chlorococcum sp. These changes were attributed to La(III)-induced adaptive physiological regulations, including essential element uptake, photosynthesis, and antioxidant enzyme activities, achieved through La(III)-enhanced clathrin-mediated endocytosis. In summary, low-dose La(III) increased the growth and HM accumulation of Chlorococcum sp. in REE-HM co-contaminated water. This phenomenon amplified the toxicity of Chlorococcum sp., causing the HM accumulation in predators in the grazing food chain and posing a new threat to aquatic ecosystems.
Collapse
Affiliation(s)
- Yongqiang Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yue Ben
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Lihong Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| | - Qing Zhou
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
2
|
Li J, Li Y, Song K, Liu G, Shao S, Han B, Zhou Y, Lyu H. Satellite remote sensing of turbidity in Lake Xingkai using eight years of OLCI observations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124636. [PMID: 40010277 DOI: 10.1016/j.jenvman.2025.124636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
In the context of global climate change and land use change, both of which significantly affect lake ecosystems, rainfall and wind conditions play a crucial role in lake mixing processes. Furthermore, land use changes impact water quality through modifications in runoff and sediment inputs. These factors exert a profound influence on lake ecosystems, thereby necessitating further investigation into their extent and ultimate consequences. In this study, we developed a band ratio model for estimating the turbidity concentration of Lake Xingkai (XKH), a border lake between China and Russia, using data from the Sentinel-3 Ocean and Land Color Instrument (OLCI). The model demonstrated a high degree of accuracy, with an R2 of 0.84, a root mean square error (RMSE) of 27.08 NTU, a mean absolute error (MAE) of 16.58 NTU, and a mean absolute percentage error (MAPE) of 21.44% within the turbidity range of 20-400 NTU. The model was applied to 1240 cloud-cleared OLCI images from 2016 to 2023. The following findings were identified: (1) The optimal band for turbidity estimation was identified, and a robust model was developed based on the spectral response of turbidity in XKH; (2) monthly and annual analyses revealed a distinct upward trend in turbidity from July to October in the sub-region of XKH influenced by the Muling River tributary, differing from other areas of the lake. (3) By integrating meteorological and land use data, we investigated the influence of land use change on turbidity, uncovering the formation of persistent, distinctive river plume during periods of minimal climate impact. (4) Subsequent analysis revealed a correlation between turbidity and the occurrence of algal blooms. Therefore, monitoring turbidity changes can serve as an early warning for algal bloom events, offering valuable insights into the combined effects of climate and environmental changes on lake ecosystems.
Collapse
Affiliation(s)
- Jian Li
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Li
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Kaishan Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ge Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Shidi Shao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Bingqian Han
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yujin Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Heng Lyu
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Qi S, Xu L, Su J, Li T, Wei H, Li X. Fe 3+/Fe 2+ cycling drove novel ammonia oxidation and simultaneously removed lead, cadmium, and copper. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136124. [PMID: 39405709 DOI: 10.1016/j.jhazmat.2024.136124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
The discharge of several pollutants, such as ammonia (NH4+-N), nitrate (NO3--N), and heavy metals, from aquaculture wastewater into the aquatic environment can cause severe pollution issues. In this work, microbial techniques were employed to enable concurrent elimination of NH4+-N and NO3--N by Fe3+/Fe2+ cycling. The greatest NH4+-N and NO3--N removal efficiencies of 96.1 % and 97.6 % were gained by Aquabacterium sp. XL4 at NH4+/NO3- ratio of 1:1, carbon to nitrogen ratio of 4.0, pH of 6.5, and Fe3+ dosage of 20.0 mg L-1. Inhibitor and nitrogen balance assays suggested that nitrogen removal process of strain XL4 was a coupled function of anaerobic ammonia oxidation, ferric reduction driven ammonia oxidation, and iron-based denitrification. Furthermore, under the compound influence of strain XL4 metabolic processes and microbial iron oxide adsorption, the removal efficiencies of Pb2+, Cd2+, and Cu2+ reached above 90 %. This work contributes to theoretical grounding for microbial removal of multiple pollutants.
Collapse
Affiliation(s)
- Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
4
|
Proshad R, Rahim MA, Rahman M, Asif MR, Dey HC, Khurram D, Al MA, Islam M, Idris AM. Utilizing machine learning to evaluate heavy metal pollution in the world's largest mangrove forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175746. [PMID: 39182771 DOI: 10.1016/j.scitotenv.2024.175746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The world's largest mangrove forest (Sundarbans) is facing an imminent threat from heavy metal pollution, posing grave ecological and human health risks. Developing an accurate predictive model for heavy metal content in this area has been challenging. In this study, we used machine learning techniques to model sediment pollution by heavy metals in this vital ecosystem. We collected 199 standardized sediment samples to predict the accumulation of eleven heavy metals using ten different machine learning algorithms. Among them, the extremely randomized tree model exhibited the best performance in predicting Fe (0.87), Cr (0.89), Zn (0.85), Ni (0.83), Cu (0.87), Co (0.62), As (0.68), and V (0.90), achieving notable R2 values. On the other hand, the random forest outperformed for predicting Cd (0.72) and Mn (0.91), whereas the decision tree model showed the best performance for Pb (0.73). The feature attribute analysis identified FeV, CrV, CuZn, CoMn, PbCd, and AsCd relationships resembled with correlation coefficients among them. Based on the established models, the prediction of the contamination factor of metals in sediments showed very high Cd contamination (CF ≥ 6). The Moran's I index for Cd, Cr, Pb, and As were 0.71, 0.81, 0.71, and 0.67, respectively, indicating strong positive spatial autocorrelation and suggesting clustering of similar contamination levels. Conclusively, this research provides a comprehensive framework for predicting heavy metal sediment pollution in the Sundarbans, identifying key areas needing urgent conservation. Our findings support the adoption of integrated management strategies and targeted remedial actions to mitigate the harmful effects of heavy metal contamination in this vital ecosystem.
Collapse
Affiliation(s)
- Ram Proshad
- State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Md Abdur Rahim
- State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Disaster Resilience and Engineering, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mahfuzur Rahman
- Department of Civil Engineering, International University of Business Agriculture and Technology (IUBAT), Dhaka 1230, Bangladesh; Renewable Energy Research Institute, Kunsan National University, 558 Daehakro, Gunsan, Jeollabugdo, 54150, Republic of Korea
| | - Maksudur Rahman Asif
- College of Environmental Science & Engineering, Taiyuan University of Technology, Jinzhong City, China
| | - Hridoy Chandra Dey
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Dil Khurram
- State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mamun Abdullah Al
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
5
|
Wang L, Meng F, Song H, An J, Wang Y. Multi-scale analysis of nutrient and environmental dynamics in Hongfeng Lake Southwest China. Sci Rep 2024; 14:25112. [PMID: 39443635 PMCID: PMC11499651 DOI: 10.1038/s41598-024-75812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Traditional linear correlation analysis may not fully capture the true relationship between these variables. Therefore, multi-scale running correlation analysis, such as time-dependent intrinsic correlation (TDIC) and continuous wavelet transform based on Hilbert-Huang transform (HHT), provides valuable insights into local correlations and the evolving relationship between nutrients and environmental factors over time. In this study, we investigated seven environmental factors and four water quality nutrient indicators in deep lakes on the Yungui Plateau in southwestern China. The results revealed that there may be strong correlations between environmental factors and nutrient levels during certain periods, while opposite trends may emerge at other times. These variations in correlation could be attributed to uncertain physical processes, spatial heterogeneity, or the impact of different climatic factors on local hydrological processes. Wavelet analysis indicated that changes in environmental factors lag behind those in nutrient levels, particularly on a cycle of about 12 months. This suggests that changes in environmental factors align with natural patterns after the water body has been polluted. These conclusions underscore the complexity and dynamic nature of the relationship between environmental factors and nutrient levels in water bodies, highlighting the importance of employing advanced analysis techniques to capture this complexity.
Collapse
Affiliation(s)
- Lizhi Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China.
| | - Fanli Meng
- Guizhou Academy of Environmental Science Research and Design, Guiyang, China
- Guizhou Key Laboratory of Water Pollution Control and Resource Reuse, Guiyang, 550081, China
| | - Hongli Song
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Juan An
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Yun Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China
| |
Collapse
|
6
|
Chang C, Wang R, Xu L, Zhao Z, Cheng W, Hao J, Huang F. Historical co-enrichment, source attribution, and risk assessment of critical nutrients and heavy metal/metalloids in lake sediments: insights from Chaohu Lake, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:390. [PMID: 39172153 DOI: 10.1007/s10653-024-02168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
In Chinese freshwater lakes, eutrophication often coincides with heavy metal/metalloids (HM/Ms) pollution, yet the coevolution of critical nutrients (P, S, Se) and HM/Ms (Cd, Hg, etc.) remains understudied. To address this gap, we conducted a sedimentary chemistry analysis on a 30 cm-deep core, dating back approximately 200 years, retrieved from Chaohu Lake, China. The age-depth model revealed a gradual increase in deposition rates over time. Notably, the concentrations and enrichment factors (EFs) of most target elements surged in the uppermost ~ 15 cm layer, covering the period from 1953 to 2013, while both the concentrations and EFs in deeper layers remained relatively stable, except for Hg. This trend indicates a significant co-enrichment and near-synchronous increase in the levels and EFs of both nutrients and HM/Ms in the upper sediment layers since the mid-twentieth century. Anthropogenic factors were identified as the primary drivers of the enrichment of P, Se, Cd, Hg, Zn, and Te in the upper core, with their contributions also showing a coupled evolutionary trend over time. Conversely, geological activities governed the enrichment of elements in the lower half of the core. The gradual accumulation of anthropogenic Hg between the - 30 to - 15 cm layers might be attributed to global Hg deposition resulting from the industrial revolution. The ecological risk index (RI) associated with HM/Ms loading has escalated rapidly over the past 50 years, with Cd and Hg posing the greatest threats. Furthermore, the PMF model was applied to specifically quantify source contributions of these elements in the core, with anthropogenic and geogenic factors accounting for ~ 60 and ~ 40%, respectively. A good correlation (r2 = 0.87, p < 0.01) between the PMF and Ti-normalized method was observed, indicating their feasibility and cross-validation in source apportionment. Finally, we highlighted environment impact and health implications of the co-enrichment of nutrients and HM/Ms. This knowledge is crucial for developing strategies to protect freshwater ecosystems from the combined impacts of eutrophication and HM/Ms pollution, thereby promoting water environment and human health.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Ruirui Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Wenhan Cheng
- College of Resources and Environment, Anhui Agriculture University, Hefei, 230036, Anhui, China
| | - Jihua Hao
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Fang Huang
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Wang X, Li S, Mi R, Dong Y, Jiang J, Guan X, Wang X, Ye B, Liu D, Zhao Z, Gao X, Zhou Z. Performance enhancement, bacterial communities optimization and emerging pollutants elimination by microalgal-bacterial consortium for treating aquaculture pond sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121013. [PMID: 38723495 DOI: 10.1016/j.jenvman.2024.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Aquaculture pond sediments have a notable influence on the ecosystem balance and farmed animal health. In this study, microalgal-bacterial immobilization (MBI) was designed to improve aquaculture pond sediments via synergistic interactions. The physicochemical characteristics, bacterial communities, and the removal efficiencies of emerging pollutants were systematically investigated. The consortium containing diatom Navicula seminulum and Alcaligenes faecalis was cultivated and established in the free and immobilized forms for evaluating the treatment performance. The results indicated that the immobilized group exhibited superior performance in controlling nutrient pollutants, shaping and optimizing the bacterial community compositions with the enrichment of functional bacteria. Additionally, it showed a stronger positive correlation between the bacterial community shifts and nutrient pollutants removal compared to free cells. Furthermore, the immobilized system maintained the higher removal performance of emerging pollutants (heavy metals, antibiotics, and pathogenic Vibrios) than free group. These findings confirmed that the employment of immobilized N. seminulum and A. faecalis produced more synergistic benefits and exerted more improvements than free cells in ameliorating aquaculture pond sediments, suggesting the potential for engineering application of functional microalgal-bacterial consortium in aquaculture.
Collapse
Affiliation(s)
- Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shilei Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Rui Mi
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyue Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Bo Ye
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Danni Liu
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zhenjun Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xuewen Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
8
|
Wang J, Tian Q, Zhou H, Kang J, Yu X, Qiu G, Shen L. Physiological regulation of microalgae under cadmium stress and response mechanisms of time-series analysis using metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170278. [PMID: 38262539 DOI: 10.1016/j.scitotenv.2024.170278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The investigation of heavy metal wastewater treatment utilizing microalgae adsorption has been extensively demonstrated. However, the response mechanism based on metabolomics to analyze the time-series changes of microalgae under Cd stress has not been described in detail. In this study, SEM/TEM demonstrated that Cd accumulated on the cell surface of microalgae and was bioconcentrated in the cytoplasm, vesicles, and chloroplasts. Carbonyl/quinone/ketone/carboxyl groups (OCO), membrane polysaccharides (OH), and phospholipids (PO) were involved in the interaction of Cd ions, and the chlorophyll content underwent a process of decreasing in the early stage (1.62 mg/g at 48 h) and recovering to the normal level in the late stage, and the contents of MDA, GSH, and SOD were all increased (29.7 nmol/g, 0.23 mg/g, and 30.01 u/106 cells) and then gradually returned to the steady state. The results of EPS content and fluorescent labeling showed that Cd induced the overexpression and synthesis of extracellular polysaccharides and proteins, which is one of the defense mechanisms participating in the reduction of cellular damage by complexed Cd. Metabolomics results indicated that the malate synthesis pathway was activated after Cd-20 h, and the microalgal cells began to shift the metabolic pathway to storage lipid or polysaccharide biosynthesis. In the Calvin cycle, the expression of D-Sedoheptulose 7-phosphate in Cd-20 h_vs_ck and Cd-72 h_vs_Cd-20 h firstly declined and then increased, and the photosynthesis system was suppressed at the beginning, and then gradually returned to normal to maintain the successful development of the dark reaction. The results of time series analysis revealed that the response of microalgae to Cd was categorized into fast response and slow response to regulate cell adsorption and growth metabolism.
Collapse
Affiliation(s)
- Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
9
|
Zhang L, Bai J, Zhai Y, Zhang K, Wang Y, Tang R, Xiao R, Jorquera MA. Pollution levels and potential ecological risks of trace elements in relation to bacterial community in surface water of shallow lakes in northern China before and after ecological water replenishment. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 262:104318. [PMID: 38354450 DOI: 10.1016/j.jconhyd.2024.104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Ecological water replenishment is a crucial and effective measure to improve the water quality and ecological function of lakes. However, the effects of ecological water replenishment on the pollution characteristics and ecological risks of trace elements and bacterial communities in lake surface water are still kept unclear. We investigated the pollution levels and potential ecological risks for trace elements, as well as variation of the bacterial community in surface water in the BYD lake before and after ecological water replenishment. Our results revealed that higher levels and pollution indexes (Igeo) of trace metals (e.g., As, Cd, Co, Cu and Ni; p < 0.05) after ecological water replenishment were observed than before ecological water replenishment and their total potential ecological risk (∑RI) were increased. In contrast, the network complexity of these trace elements, including nodes, edges, average diameter, modularity, clustering coefficient and average pathlength showed a decrease after ecological water replenishment than before. The diversity (community richness, community diversity and phylogenetic diversity decreased) and community structure of the bacterial community in the surface water (p < 0.05) were greatly changed after ecological water replenishment than before, with the increase in heavy metal-resistant phylum (e.g., Acidobacteriota). Moreover, the concentration of trace elements and ∑RI were significantly correlated with the alpha diversity of bacterial community, as well as dissolved organic carbon (DOC) and ORP, after ecological water replenishment. The findings indicate that it is very necessary to continuously monitor trace metal pollution levels and heavy metal-resistant phylum and identify their potential pollution sources for water environment control and lake ecosystem health.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ruoxuan Tang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
10
|
Li C, Wang JX, Wang JH, Chi ZY. Effects of staged multiple phytohormones application on capillary-driven attached Chlorella sp. biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119886. [PMID: 38142601 DOI: 10.1016/j.jenvman.2023.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Comparing with single phytohormone application, applying multiple phytohormones to microalgae-based wastewater treatment systems can offer more extensive growth-promoting and stress-protecting effects for microalgae, yet the advantage of stress-relieving salicylic acid (SA) under combined phytohormones application scenario has not been exploited. Employing the improved capillary-driven attached microalgae culturing device (CD-PBR) previously used for single phytohormone application, this study compared the effects of mixed and single phytohormone(s) addition under as low as 10-7 M dosage. In order to make the best of SA for its stress-relieving property, postponed SA addition combined with applying other phytohormone(s) at the beginning of microalgae cultivation was also investigated. Combination of 10-6 M 6-benzylaminopurine (6-BA) with 10-7 M SA was sufficient for enhancing growth-promoting effects and anti-oxidative responses for attached Chlorella sp., while indole-3-acetic acid (IAA) addition was unnecessary. Combination of 6-BA addition at the beginning while postponed SA addition on Day 4 could further sustain such beneficial effects, while removing up to 99.7% total nitrogen (TN) and 97.9% total phosphorus (TP) from the bulk liquid. These results provided innovative strategies on mixed phytohormones addition for microalgae.
Collapse
Affiliation(s)
- Chi Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian, 116023, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
11
|
Tan M, Dong J, Qu J, Hao M. The Patterns of Migration of Potentially Toxic Elements from Coal Mining Subsidence Areas and Associated Soils to Waterlogged Areas. TOXICS 2023; 11:888. [PMID: 37999540 PMCID: PMC10675259 DOI: 10.3390/toxics11110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
It is crucial for effectively controlling potentially toxic element (PTE) pollution to understand the pollution situation, ecological risks, health risks, and migration patterns of PTEs. However, currently, no research has been conducted on the migration patterns of soil PTEs from coal mining subsidence areas to waterlogged areas under different restoration modes. In this study, a total of 15 sediment samples and 60 soil samples were collected from landscaped wetlands, aquaculture wetland, fish-photovoltaic complementary wetland, photovoltaic wetland, and waterlogged areas with untreated coal mining subsidence. The PTE pollution status, ecological risks, health risks, migration patterns, and the important factors influencing the migration were analyzed. The results indicated that the comprehensive pollution level of PTEs in waterlogged areas with coal mining subsidence can be reduced by developing them into landscaped wetlands, aquaculture wetlands, fish-photovoltaic complementary wetlands, and photovoltaic wetlands. Additionally, the closer to the waterlogged area, the higher the Cu content in the subsidence area soil is, reaching its peak in the waterlogged area. The Cd was influenced positively by SOC and pH. The research results were of great significance for formulating reclamation plans for waterlogged areas and controlling PTE pollution.
Collapse
Affiliation(s)
- Min Tan
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China;
| | - Jihong Dong
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
| | - Junfeng Qu
- Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China;
- Xuzhou Institute of Ecological Civilization Construction, Xuzhou 221008, China
| | - Ming Hao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
| |
Collapse
|