1
|
Zhang H, Liu H, Zhang W, Wang L, Qiu W. Photocatalytic degradation and upcycling of nitrate-rich textile wastewater to ammonia over a tandem reactor. Sci Rep 2025; 15:15203. [PMID: 40307345 PMCID: PMC12043999 DOI: 10.1038/s41598-025-99384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Textile is one of the industrial sectors producing multiple types of polluting substances, including dyes and nitrate. Lately, the realization of pollutant degradation through electrochemical treatment has been applied more commonly. However, in textile wastewater a high level of organic dyes can inhibit the electrocatalytic reduction of nitrate. Hence, we construct a tandem reactor to synchronously remove the organic dyes and nitrate contaminants as well as yield the value-added ammonia product from the simulated textile wastewater. The tandem reactor shows impressive efficiency towards photocatalytic decomposing methylene blue (MB), methyl orange (MO) and methyl violet (MV) (~ 100%) coupled with NO3--to-NH3 conversion (maximum NH3 evolution value of 44.3 μg cm-2) under different bias potentials. Liquid chromatography mass spectroscopy (LC-MS) has been applied to understand the dyes degradation pathways. The dyes are oxidized by active species hydroxyl radicals ·OH and h+ under irradiation. The electrons are transferred to the cathode for nitrate reduction. In addition, the tandem reactor displays favorable energy consumption for the simulated textile wastewater treatment. Moreover, mung bean germination experiments were complemented for toxicity assessment of the system. This study presents a conceptual tandem reactor for the synergistic regulation of complex pollutants removal processes, highlighting the potential of photoelectrochemical (PEC) and electrochemical catalysis coupled to advance sustainable wastewater management technologies.
Collapse
Affiliation(s)
- Huimei Zhang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China
| | - Hong Liu
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China
| | - Wenwen Zhang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China
| | - Lijuan Wang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China
| | - Wenxi Qiu
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Zhang Y, Lv H, Zhao L, Wang X, Yang Z, Li R, Chen W, Song G, Gu H. Research on the traceability and treatment of nitrate pollution in groundwater: a comprehensive review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:107. [PMID: 40053144 DOI: 10.1007/s10653-025-02412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO3-) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO3- pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO3- contamination. Technologies for tracing NO3--polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO3- concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO3- pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO3- pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources.
Collapse
Affiliation(s)
- Yuhao Liu
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
| | - Yu Zhang
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Haiyang Lv
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Lei Zhao
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Xinyi Wang
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Ziyan Yang
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Ruihua Li
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Weisheng Chen
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
| | - Gangfu Song
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
3
|
Kou Z, Huo P, Qi X, Gu Y, Huang X, Liang P. Effect of dissolved oxygen on sulfur autotrophic denitrification and how to address it: An experimental and modelling work. WATER RESEARCH 2024; 267:122415. [PMID: 39305527 DOI: 10.1016/j.watres.2024.122415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 11/28/2024]
Abstract
Sulfur autotrophic denitrification (SAD) using elemental sulfur as the electron donor has aroused increasing interest of its application in treating secondary effluent from wastewater treatment plants (WWTPs). However, high influent dissolved oxygen (DO) in secondary effluent would limit the SAD process. This study examined the effect of different DO concentrations on SAD. Results revealed that both low (0-0.5 mg/L) and moderate (2.5-3.5 mg/L) DO concentrations would not harm the nitrate removal rate (NRR) (p > 0.05). However, high DO concentration (5.5-6.5 mg/L) significantly decreased the NRR (p < 0.05) through strong competition over the nitrate for electrons and cutting the relative abundance of sulfur-oxidizing bacteria (SOB). Both modeling and experimental results showed that applying internal reflux could serve as a strategy to mitigate the negative effect of high DO concentration, while keeping an appropriate ratio was crucial. When treating real membrane bioreactor (MBR) effluent with high DO concentration (5.5-6.5 mg/L), an internal reflux ratio of 0.5 boosted the NRR by 1.5 times. This study provided potential reference and strategy for dealing with high DO concentration wastewater by applying SAD technology.
Collapse
Affiliation(s)
- Ziwei Kou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Pengfei Huo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Olmos JM, Gil L, Ortuño JÁ. In Situ Potentiometric Monitoring of Nitrate Removal from Aqueous Solution by Activated Carbon and Ion Exchange Resin. MICROMACHINES 2024; 15:1366. [PMID: 39597180 PMCID: PMC11596283 DOI: 10.3390/mi15111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
A nitrate selective electrode was used for real-time in situ potentiometric monitoring of a batch nitrate removal process using activated carbon and ion exchange resin. A plasticized polymeric membrane consisting of polyvinyl chloride, 2-nitrophenyl octyl ether and tridodecyl methyl ammonium chloride was incorporated into an ion-selective electrode body. First, the dynamic potential response of the electrode to nitrate was investigated. Two commercial activated carbons with different physical properties were then tested. Nitrate removal with these carbons was monitored potentiometrically using several nitrate concentrations. The extreme turbidity of the solutions was not a drawback during potentiometric monitoring of the process, which is a clear advantage over other methods such as optical monitoring. The potential versus time recordings were converted into nitrate concentration versus time plots, which were evaluated with different adsorption kinetic models. A pseudo-second order kinetic model for nitrate adsorption on both activated carbons was found to fit the experimental data very well. The values of the kinetic parameters were very different between the two activated carbons. The proposed methodology was also satisfactorily applied to the study of nitrate removal by an ion exchange resin. In this case, the experimental results clearly follow a pseudo-first order kinetic model. Potential applications of the proposed methodology for monitoring nitrate removal in real water samples are discussed.
Collapse
Affiliation(s)
- José Manuel Olmos
- Department of Analytical Chemistry, University of Murcia, 30100 Murcia, Spain;
| | | | | |
Collapse
|
5
|
Sepehri S, Javadi Moghaddam J, Abdoli S, Asgari Lajayer B, Shu W, Price GW. Application of artificial intelligence in modeling of nitrate removal process using zero-valent iron nanoparticles-loaded carboxymethyl cellulose. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:262. [PMID: 38926193 DOI: 10.1007/s10653-024-02089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
This study explores nitrate reduction in aqueous solutions using carboxymethyl cellulose loaded with zero-valent iron nanoparticles (Fe0-CMC). The structures of this nano-composite were characterized using various techniques. Based on the characterization results, the specific surface area of Fe0-CMC measured by the Brunauer-Emmett-Teller analysis were 39.6 m2/g. In addition, Scanning Electron Microscopy images displayed that spherical nano zero-valent iron particles (nZVI) with an average particle diameter of 80 nm are surrounded by carboxymethyl cellulose and no noticeable aggregates were detected. Batch experiments assessed Fe0-CMC's effectiveness in nitrate removal under diverse conditions including different adsorbent dosages (Cs, 2-10 mg/L), contact time (t, 10-1440 min), initial pH (pHi, 2-10), temperature (T, 10-55 °C), and initial concentration of nitrate (C0, 10-500 mg/L). Results indicated decreased removal with higher initial pHi and C0, while increased Cs and T enhanced removal. The study of nitrate removal mechanism by Fe0-CMC revealed that the redox reaction between immobilized nZVI on the CMC surface and nitrate ions was responsible for nitrate removal, and the main product of this reaction was ammonium, which was subsequently completely removed by the synthesized nanocomposite. In addition, a stable deviation quantum particle swarm optimization algorithm (SD-QPSO) and a least square error method were employed to train the ANFIS parameters. To demonstrate model performance, a quadratic polynomial function was proposed to display the performance of the SD-QPSO algorithm in which the constant parameters were optimized through the SD-QPSO algorithm. Sensitivity analysis was conducted on the proposed quadratic polynomial function by adding a constant deviation and removing each input using two different strategies. According to the sensitivity analysis, the predicted removal efficiency was most sensitive to changes in pHi, followed by Cs, T, C0, and t. The obtained results underscore the potential of the ANFIS model (R2 = 0.99803, RMSE = 0.9888), and polynomial function (R2 = 0.998256, RMSE = 1.7532) as accurate and efficient alternatives to time-consuming laboratory measurements for assessing nitrate removal efficiency. These models can offer rapid insights and predictions regarding the impact of various factors on the process, saving both time and resources.
Collapse
Affiliation(s)
- Saloome Sepehri
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31585-845, Karaj, Iran.
| | - Jalal Javadi Moghaddam
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31585-845, Karaj, Iran
| | - Sima Abdoli
- Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Behnam Asgari Lajayer
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada.
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
6
|
Cai W, Chen C, Bao C, Gu JN, Li K, Jia J. Nitrate reduction to nitrogen in wastewater using mesoporous carbon encapsulated Pd-Cu nanoparticles combined with in-situ electrochemical hydrogen evolution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121346. [PMID: 38824884 DOI: 10.1016/j.jenvman.2024.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The conversion of NO3--N to N2 is of great significance for zero discharge of industrial wastewater. Pd-Cu hydrogenation catalysis has high application prospects for the reduction of NO3--N to N2, but the existing form of Pd-Cu, the Pd-Cu mass ratio and the H2 evolution rate can affect the coverage of active hydrogen (*H) on the surface of Pd, thereby affecting N2 selectivity. In this work, mesoporous carbon (MC) is used as support to disperse Pd-Cu catalyst and is applied in an in-situ electrocatalytic H2 evolution system for NO3--N removal. The Pd-Cu particles with the average size of 6 nm are uniformly encapsulated in the mesopores of MC. Electrochemical in-situ H2 evolution can not only reduce the amount of H2 used, but the H2 bubbles can also be efficiently dispersed when PPy coated nickel foam (PPy/NF) is used as cathode. Moreover, the mesoporous structure of MC can further split H2 bubbles, reducing the coverage of *H on Pd. The highest 77% N2 selectivity and a relatively faster NO3--N removal rate constant (0.10362 min-1) can be achieved under the optimal conditions, which is superior to most reported Pd-Cu catalytic systems. The prepared catalyst is further applied to the denitrification of actual deplating wastewater. NO3--N with the initial concentration of 650 mg L-1 can be completely removed after 180 min of treatment, and the TN removal can be maintained at 72%.
Collapse
Affiliation(s)
- Wenlue Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chen Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia-Nan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
7
|
Du J, Xu B, Ma G, Ma L, Liang J, Li K, Jiao H, Tian B, Li B, Ma L. The impact of benzoic acid and lactic acid on the treatment efficiency and microbial community in the sulfur autotrophic denitrification process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11056. [PMID: 38825347 DOI: 10.1002/wer.11056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
Nitrate poses a potential threat to aquatic ecosystems. This study focuses on the sulfur autotrophic denitrification mechanism in the process of water culture wastewater treatment, which has been successfully applied to the degradation of nitrogen in water culture farm effluents. However, the coexistence of organic acids in the treatment process is a common environmental challenge, significantly affecting the activity of denitrifying bacteria. This paper aims to explore the effects of adding benzoic acid and lactic acid on denitrification performance, organic acid removal rate, and microbial population abundance in sulfur autotrophic denitrification systems under optimal operating conditions, sulfur deficiency, and high hydraulic load. In experiments with 50 mg·L-1 of benzoic acid or lactic acid alone, the results show that benzoic acid and lactic acid have a stimulating effect on denitrification activity, with the stimulating effect significantly greater than the inhibitory effect. Under optimal operating conditions, the average denitrification rate of the system remained above 99%; under S/N = 1.5 conditions, the average denitrification rate increased from 88.34% to 91.93% and 85.91%; under HRT = 6 h conditions, the average denitrification rate increased from 75.25% to 97.79% and 96.58%. In addition, the addition of organic acids led to a decrease in microbial population abundance. At the phylum level, Proteobacteria has always been the dominant bacterial genus, and its relative abundance significantly increased after the addition of benzoic acid, from 40.2% to 61.5% and 62.4%. At the genus level, Thiobacillus, Sulfurimonas, Chryseobacterium, and Thermomonas maintained high population abundances under different conditions. PRACTITIONER POINTS: Employing autotrophic denitrification process for treating high-nitrate wastewater. Utilizing organic acids as external carbon sources. Denitrifying bacteria demonstrate high utilization efficiency towards organic acids. Organic acids promote denitrification more than they inhibit it. The promotion is manifested in the enhancement of activity and microbial abundance.
Collapse
Affiliation(s)
- Jiancheng Du
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Bing Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Institute of Resources and Environment, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Ma
- Shandong Environmental Science Society, Jinan, China
| | - Liang Ma
- Shandong Guochen Industrial Group Co., Ltd., Jinan, China
| | - Jinhao Liang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Ke Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Hui Jiao
- Shandong Guochen Industrial Group Co., Ltd., Jinan, China
| | - Binbin Tian
- Shandong Guochen Industrial Group Co., Ltd., Jinan, China
| | - Bingxu Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Linfeng Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
8
|
Lv X, Zhang W, Deng J, Feng S, Zhan H. Pyrite and humus soil-coupled mixotrophic denitrification system for efficient nitrate and phosphate removal. ENVIRONMENTAL RESEARCH 2024; 247:118105. [PMID: 38224940 DOI: 10.1016/j.envres.2024.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Affiliation(s)
- Xin Lv
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Wenxi Zhang
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jiushuai Deng
- Inner Mongolia Research Institute, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Engineering Technology Research Center for Comprehensive Utilization of Rare Earth, Rare Metal and Rare-Scattered in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China; Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-ferrous Metal Industry, CUMTB, Beijing, 100083, China.
| | - Shengyuan Feng
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| | - Hongzhi Zhan
- Jiangxi Gaiya Environm Sci & Technol Co. Ltd, Shangrao, Jiangxi, 334000, China
| |
Collapse
|
9
|
Aghabalaei V, Baghdadi M, Goharrizi BA, Noorimotlagh Z. A systematic review of strategies to overcome barrier for nitrate separation systems from drinking water: Focusing on waste streams treatment processes. CHEMOSPHERE 2024; 349:140757. [PMID: 38013022 DOI: 10.1016/j.chemosphere.2023.140757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
By 2030, the UN General Assembly issued the Sustainable Development Goal 6, which calls for the provision of safe drinking water. However, water resources are continuously decreasing in quantity and quality. NO3- is the most widespread pollutant worldwide, threatening both human health and ecosystems. NO3- separation systems (NSS) using IX and membrane-based techniques (MBT) are considered practical and efficient technologies, but the management of IX waste brine (IXWB) and concentrate streams for MBT (CSM), as well as the high salt requirements for IX regeneration, are challenging from both economic and environmental perspectives. It is essential to classify the different waste management strategies in order to examine the current state of research and identify the best option to address these issues. This review provides harmonized information on IXWB/CSM management strategies. This study is the first systematic review of all papers available in the Web of Science, Scopus, and PubMed databases published until February 2023. 75% of the studies focused on the use of biological denitrification (BD) and catalytic denitrification (CD). Although innovative technologies (bio-regeneration and direct CD) have advantages over indirect processes, they are not yet practical for large-scale plants because their reliability is unknown. Moreover, the generation of NH4+ is the major challenge for application large-scale of chemical reduction. An innovative work flow diagram, challenges, and future prospects are presented. The review shows that integrating modified NSS with IXWB/CSM treatment is a promising sustainable solution, as the combination could be economically and environmentally beneficial and remove barriers to NNS application.
Collapse
Affiliation(s)
- Vahid Aghabalaei
- Graduate Faculty of Environment, Department of Environmental Engineering, University of Tehran, Iran.
| | - Majid Baghdadi
- Graduate Faculty of Environment, Department of Environmental Engineering, University of Tehran, Iran.
| | | | - Zahra Noorimotlagh
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
10
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
11
|
Wang K, Du W, Liu Z, Liu R, Guan Q, He L, Zhou H. Extracellular electron transfer for aerobic denitrification mediated by the bioelectric catalytic system with zero-carbon source. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115691. [PMID: 37979359 DOI: 10.1016/j.ecoenv.2023.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The slow rate of electron transfer and the large consumption of carbon sources are technical bottlenecks in the biological treatment of wastewater. Here, we first proposed to domesticate aerobic denitrifying bacteria (ADB) from heterotrophic to autotrophic by electricity (0.6 V) under zero organic carbon source conditions, to accelerate electron transfer and shorten hydraulic retention time (HRT) while increasing the biodegradation rate. Then we investigated the extracellular electron transfer (EET) mechanism mediated by this process, and additionally examined the integrated nitrogen removal efficiency of this system with composite pollution. It was demonstrated that compared with the traditional membrane bioreactor (MBR), the BEC displayed higher nitrogen removal efficiency. Especially at C/N = 0, the BEC exhibited a NO3--N removal rate of 95.42 ± 2.71 % for 4 h, which was about 6.5 times higher than that of the MBR. Under the compound pollution condition, the BEC still maintained high NO3--N and tetracycline removal (94.52 ± 2.01 % and 91.50 ± 0.001 %), greatly superior to the MBR (10.64 ± 2.01 % and 12.00 ± 0.019 %). In addition, in-situ electrochemical tests showed that the nitrate in the BEC could be directly converted to N2 by reduction using electrons from the cathode, which was successfully demonstrated as a terminal electron acceptor.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Wentao Du
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Zilian Liu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Runhang Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
12
|
Liu S, Liu Y, Cai Y. Incubation study on remediation of nitrate-contaminated soil by Chroococcus sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117637-117653. [PMID: 37870669 DOI: 10.1007/s11356-023-30383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The possibility of using the non-nitrogen-fixing cyanobacterium (Chroococcus sp.) for the reduction of soil nitrate contamination was tested through Petri dish experiments. The application of 0.03, 0.05 and 0.08 mg/cm2 Chroococcus sp. efficiently removed NO3--N from the soil through assimilation of nitrate nutrient and promotion of soil denitrification. At the optimal application dose of 0.05 mg/cm2, 44.06%, 36.89% and 36.17% of NO3--N were removed at initial NO3--N concentrations of 60, 90 and 120 mg/kg, respectively. The polysaccharides released by Chroococcus sp. acted as carbon sources for bacterial denitrification and facilitated the reduction of soil salinity, which significantly (p < 0.05) stimulated the growth of denitrifying bacteria (Hyphomicrobium denitrificans and Hyphomicrobium sp.) as well as significantly (p < 0.05) elevated the activities of nitrate reductase and nitrite reductase by 1.07-1.23 and 1.15-1.22 times, respectively. The application of Chroococcus sp. promoted the dominance of Nocardioides maradonensis in soil microbial community, which resulted in elevated phosphatase activity and increased available phosphorus content. The application of Chroococcus sp. positively regulated the growth of soil bacteria belonging to the genera Chitinophaga, Prevotella and Tumebacillus, which may contribute to increased soil fertility through the production of beneficial enzymes such as invertase, urease and catalase. To date, this is the first study verifying the remediation effect of non-nitrogen-fixing cyanobacteria on nitrate-contaminated soil.
Collapse
Affiliation(s)
- Shuaitong Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
13
|
Li X, Yuan Y, Dang P, Li BL, Huang Y, Li W, Zhang M, Shi M, Shen Z, Xie L. Effect of salinity stress on nitrogen and sulfur removal performance of short-cut sulfur autotrophic denitrification and anammox coupling system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162982. [PMID: 36958564 DOI: 10.1016/j.scitotenv.2023.162982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
The effects of salinity on anaerobic nitrogen and sulfide removal were investigated in a coupled anammox and short-cut sulfur autotrophic denitrification (SSADN) system. The results revealed that salinity had significant nonlinear effects on the nitrogen and sulfur transformations in the coupled system. When the salinity was <2 %, the anammox and SSADN activities increased with increasing salinity, and the total nitrogen removal rate, S0 production rate, and nitrite production rate were 0.41 kg/(m3·d), 0.37 kg/(m3·d), and 0.28 kg/(m3·d), respectively. With continuous increase of salinity, the performances of the anammox and SSADN gradually decreased, and the three indicators decreased to 0.14 kg/(m3·d), 0.22 kg/(m3·d), and 0.14 kg/(m3·d) at 5 % salinity, respectively. When the salinity reached 5 %, the nitrogen removal contribution of anammox decreased to 68.4 %, while the contribution of the sulfur autotrophic denitrification increased to 31.6 %. The coupled system recovered in a short time after alleviation of the salinity stress, and the SSADN activity recovery was faster than anammox. The microbial community structure and functional microbial abundance in the coupled system changed significantly with increasing salinity, and the functional microbial abundance after recovery was considerably different from the initial state.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Pengze Dang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo-Lin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miao Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziqi Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Linyan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|