1
|
Contreras-Llanes M, Alguacil J, Capelo R, Gómez-Ariza JL, García-Pérez J, Pérez-Gómez B, Martin-Olmedo P, Santos-Sánchez V. Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain. J Xenobiot 2025; 15:29. [PMID: 39997372 PMCID: PMC11857056 DOI: 10.3390/jox15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Huelva is a city in SW Spain with 150,000 inhabitants, located in the proximity of two heavy chemical industry complexes, the highest naturally occurring radioactive material (NORM) waste (phosphogypsum) stacks of Europe and a highly polluted estuary, with elevated cardiovascular disease and cancer mortality rates. This study analyses the association between cumulated exposure levels to 16 metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Tl, U, V, and Zn) measured in the toenail of a sample (n = 55 participants) of the general control population of Huelva City who were involved in the MCC-Spain study and the spatial proximity patterns to the local polluting sources. Residents of the city of Huelva have higher levels of Fe, Ni, Cr, Se, As, and Co in their toenails compared to the levels found in populations with similar characteristics living in non-polluted areas. Moreover, the highest concentrations of As, Pb, Cd, Mo, and Se were found in toenails of participants living near the NORM waste stack, while the highest Cu, Zn, and Al contents corresponded to people residing near the industrial area. The spatial distribution of most of the metal(loid)s studied appears to be mainly controlled by anthropogenic factors.
Collapse
Affiliation(s)
- Manuel Contreras-Llanes
- Research Group in Clinical, Environmental and Epidemiology Social Transformation (EPICAS), Department of Sociology, Social Work and Public Health, University of Huelva, 21007 Huelva, Spain; (M.C.-L.); (J.A.); (R.C.)
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| | - Juan Alguacil
- Research Group in Clinical, Environmental and Epidemiology Social Transformation (EPICAS), Department of Sociology, Social Work and Public Health, University of Huelva, 21007 Huelva, Spain; (M.C.-L.); (J.A.); (R.C.)
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (J.G.-P.); (B.P.-G.)
| | - Rocío Capelo
- Research Group in Clinical, Environmental and Epidemiology Social Transformation (EPICAS), Department of Sociology, Social Work and Public Health, University of Huelva, 21007 Huelva, Spain; (M.C.-L.); (J.A.); (R.C.)
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| | - José Luis Gómez-Ariza
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain
| | - Javier García-Pérez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (J.G.-P.); (B.P.-G.)
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (J.G.-P.); (B.P.-G.)
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Piedad Martin-Olmedo
- Andalusian School of Public (EASP), 18011 Granada, Spain;
- Biosanitary Research Institute of Granada (Ibs. Granada), 18012 Granada, Spain
| | - Vanessa Santos-Sánchez
- Research Group in Clinical, Environmental and Epidemiology Social Transformation (EPICAS), Department of Sociology, Social Work and Public Health, University of Huelva, 21007 Huelva, Spain; (M.C.-L.); (J.A.); (R.C.)
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| |
Collapse
|
2
|
Li M, Li X, Hartley W, Luo X, Xiang C, Liu J, Guo J, Xue S. A meta-analysis of influencing factors on soil pollution around copper smelting sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123083. [PMID: 39476666 DOI: 10.1016/j.jenvman.2024.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Non-ferrous smelting activities have caused serious heavy metal(loid) pollution in soil which seriously threatens human health globally. A number of studies have been conducted to assess the characteristics and risks of soil heavy metal(loid) pollution around copper (Cu) smelting sites. However, the current research mainly focuses on soil pollution around a single smelter, and the global impact of Cu smelting on soil and its quantitative relationship with related factors need to be further studied. Meta-analysis can integrate a large amount of data and quantitatively analyze the relationship between multiple factors. To investigate the extent to which Cu smelting sites have contributed to heavy metal(loid) pollution in soils, a meta-analysis was conducted on 189 research publications from 1993 to 2023. Furthermore, a single meta regression was used to analyze the relationship between the soil heavy metal(loid)s (HMs) and influencing factors on a global scale. The results of meta-regression analysis showed that compared with the soil background value, Cu smelting significantly increased the concentration of HMs in soil (315%), with the concentration increase for each heavy metal(loid) being: Cu (1012%) > Cd (622%) > As (315%) > Pb (277%) > Zn (188%) > Cr (96%) > Ni (95%) > Mn (45%). Among these, Cu, Cd, and As were the major pollutants in soils around Cu smelting sites. Land use type was a key factor affecting HMs concentrations in surrounding soils, and the influence of non-agricultural land (381%) was greater than that of agricultural land (203%). In addition, the influence of Cu smelting on HMs were negatively correlated with distance (QM=9.86) and positively correlated with latitude (QM=10.7). There was no significant correlation between heavy metal(loid) pollution and soil chemical properties, average annual rainfall and temperature, longitude, or other factors. Our work may be meaningful to the risk control and remediation for Cu smelting sites.
Collapse
Affiliation(s)
- Mu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xue Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - William Hartley
- Royal Agricultural University, Cirencester, GL7 6JS, United Kingdom
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Chao Xiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
3
|
Zhou G, Jia X, Xu Y, Gao X, Zhao Z, Li L. Efficient remediation of cadmium and lead contaminated soil in coal mining areas by MICP application in hydrothermal carbon-based bacterial agents: Nucleation pathways and mineralization mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122744. [PMID: 39395293 DOI: 10.1016/j.jenvman.2024.122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
The development of industrial mining has resulted in a large amount of Cd and Pb polluting the soil in mining areas, and leads to adverse health effects on the life of both plants and animals. Here, a soft template method was conducted to prepare hydrothermal carbon (HC) with regular morphology, which assisted with Bacillus pasteurii to induce calcite precipitation for decontamination of mining soil. Soil remediation experiments over 30 days of remediation with an HC microbial agent (HCMA) resulted in 89.4% and 87.8% decrease in the amount of leached Cd and Pb, respectively. The content of exchangeable Cd and Pb decreased by 76.1% and 81.0%, respectively. At the same time, soil fertility significantly improved. The electrostatic potential and surface charge distribution of extracellular polymeric substances (EPS) and sodium citrate (NaCit) were analyzed using DFT simulations, their nucleophilic and electrophilic regions were determined, and the nucleation mechanism was determined. The DFT results indicated that the oxygen-containing groups of EPS and NaCit had strong negative electrostatic potential and electronegativity, which could cause Cd2+, Pb2+, and Ca2+ to aggregate on their surfaces. They also combined with CO32- produced by urease during the decomposition of urea, resulting in Cd2+ and Pb2+ being encapsulated by calcium carbonate to form a coprecipitate. X-ray diffraction analyses revealed that the precipitate was mainly calcite calcium carbonate, which is more stable and less prone to secondary leaching of HMs. The gathered data prove the significant role of HCMA in remediation of mining soil contaminated with Cd and Pb.
Collapse
Affiliation(s)
- Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xianchao Jia
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yixin Xu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiao Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ziyi Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
4
|
Anaman R, Peng C, Jiang Z, Amanze C, Fosua BA. Distinguishing the contributions of different smelting emissions to the spatial risk footprints of toxic elements in soil using PMF, Bayesian isotope mixing models, and distance-based regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173153. [PMID: 38735332 DOI: 10.1016/j.scitotenv.2024.173153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Toxic element pollution of soils emanating from smelting operations is an escalating global concern due to its severe impact on ecosystems and human health. In this study, soil samples were collected and analyzed to quantify the risk contributions and delineate the spatial risk footprints from smelting emissions for 8 toxic elements. A comprehensive health risk contribution and delineation framework was utilized, consisting of Positive matrix factorization (PMF), spatial interpolation, an advanced Bayesian isotope mixing model via Mixing Stable Isotope Analysis in R (MixSIAR), and distance-based regression. The results showed that the mean concentrations of As, Cd, Cu, Hg, Pb, and Zn exceeded the background levels, indicating substantial contamination. Three sources were identified using the PMF model and confirmed by spatial interpolation and MixSIAR, with contributions ranked as follows: industrial wastewater discharge and slag runoff from the smelter site (48.9 %) > natural geogenic inputs from soil parent materials (26.7 %) > atmospheric deposition of dust particles from smelting operations (24.5 %). Among the identified sources, smelter runoff posed the most significant risk, accounting for 97.9 % of the non-carcinogenic risk (NCR) and 59.9 % of the carcinogenic risk (CR). Runoff also drove NCR and CR exceedances at 7.8 % and 4.7 % of sites near the smelter, respectively. However, atmospheric deposition from smelting emissions affected soils across a larger 0.8 km radius. Although it posed lower risks, contributing just 1.1 % to NCR and 22.6 % to CR due to the limited elevation of toxic elements, deposition reached more distant soils. Spatial interpolation and distance-based regression delineated high NCR and CR exposure hotspots within 1.4 km for runoff and 0.8 km for deposition, with exponentially diminishing risks at further distances. These findings highlight the need for pathway-specific interventions that prioritize localized wastewater containment and drainage controls near the smelter while implementing broader regional air pollution mitigation measures.
Collapse
Affiliation(s)
- Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Zhichao Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Hussein SH, Qurbani K, Ahmed SK, Tawfeeq W, Hassan M. Bioremediation of heavy metals in contaminated environments using Comamonas species: A narrative review. BIORESOURCE TECHNOLOGY REPORTS 2024; 25:101711. [DOI: 10.1016/j.biteb.2023.101711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Liu J, Zheng Q, Pei S, Li J, Ma L, Zhang L, Niu J, Tian T. Ecological and health risk assessment of heavy metals in agricultural soils from northern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:99. [PMID: 38157088 DOI: 10.1007/s10661-023-12255-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Soil pollution by heavy metals can cause continuing damage to ecosystems and the human body. In this study, we collected nine fresh topsoil samples and 18 maize samples (including nine leaf samples and nine corn samples) from agricultural soils in the Baiyin mining areas. The results showed that the order of heavy metal concentrations (mg/kg) in agricultural soils was as follows: Zn (377.40) > Pb (125.06) > Cu (75.06) > Ni (28.29) > Cd (5.46) > Hg (0.37). Cd, Cu, Zn, and Pb exceeded the Chinese risk limit for agricultural soil pollution. The average the pollution load index (4.39) was greater than 3, indicating a heavy contamination level. The element that contributed the most to contamination and high ecological risk in soil was Cd. Principal component analysis (PCA) and Pearson's correlation analysis indicated that the sources of Ni, Cd, Cu, and Zn in the soil were primarily mixed, involving both industrial and agricultural activities, whereas the sources of Hg and Pb included both industrial and transportation activities. Adults and children are not likely to experience non-carcinogenic impacts from the soil in this region. Nonetheless, it was important to be aware of the elevated cancer risk presented by Cd, Pb, and especially Ni. The exceedance rates of Cd and Pb in corn were 66.67% and 33.3%, respectively. The results of this research provide data to improve soil protection, human health monitoring, and crop management in the Baiyin district.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| |
Collapse
|
7
|
Vasilachi-Mitoseru IC, Stoleru V, Gavrilescu M. Integrated Assessment of Pb(II) and Cu(II) Metal Ion Phytotoxicity on Medicago sativa L., Triticum aestivum L., and Zea mays L. Plants: Insights into Germination Inhibition, Seedling Development, and Ecosystem Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:3754. [PMID: 37960110 PMCID: PMC10650519 DOI: 10.3390/plants12213754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Environmental pollution with heavy metals has become a problem of major interest due to the harmful effects of metal ions that constantly evolve and generate serious threats to both the environment and human health through the food chain. Recognizing the imperative need for toxicological assessments, this study revolves around elucidating the effects of Pb(II) and Cu(II) ions on three plant species; namely, Medicago sativa L., Triticum aestivum L., and Zea mays L. These particular species were selected due to their suitability for controlled laboratory cultivation, their potential resistance to heavy metal exposure, and their potential contributions to phytoremediation strategies. The comprehensive phytotoxicity assessments conducted covered a spectrum of critical parameters, encompassing germination inhibition, seedling development, and broader considerations regarding ecosystem health. The key metrics under scrutiny included the germination rate, the relative growth of root and stem lengths, the growth inhibition index, and the tolerance index. These accurately designed experiments involved subjecting the seeds of these plants to an array of concentrations of PbCl2 and CuCl2 solutions, enabling an exhaustive evaluation of the phytotoxic potential of these metal ions and their intricate repercussions on these plant species. Overall, this study provides valuable insights into the diverse and dynamic responses of different plant species to Pb(II) and Cu(II) metal ions, shedding light on their adaptability and resilience in metal-contaminated environments. These findings have important implications for understanding plant-metal interactions and devising phytoremediation strategies in contaminated ecosystems.
Collapse
Affiliation(s)
- Ionela-Catalina Vasilachi-Mitoseru
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Vasile Stoleru
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
8
|
Methela NJ, Islam MS, Lee DS, Yun BW, Mun BG. S-Nitrosoglutathione (GSNO)-Mediated Lead Detoxification in Soybean through the Regulation of ROS and Metal-Related Transcripts. Int J Mol Sci 2023; 24:9901. [PMID: 37373048 DOI: 10.3390/ijms24129901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Heavy metal toxicity, including lead (Pb) toxicity, is increasing in soils, and heavy metals are considered to be toxic in small amounts. Pb contamination is mainly caused by industrialization (e.g., smelting and mining), agricultural practices (e.g., sewage sludge and pests), and urban practices (e.g., lead paint). An excessive concentration of Pb can seriously damage and threaten crop growth. Furthermore, Pb adversely affects plant growth and development by affecting the photosystem, cell membrane integrity, and excessive production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide (O2-). Nitric oxide (NO) is produced via enzymatic and non-enzymatic antioxidants to scavenge ROS and lipid peroxidation substrates to protect cells from oxidative damage. Thus, NO improves ion homeostasis and confers resistance to metal stress. In the present study, we investigated the effect of exogenously applied NO and S-nitrosoglutathione in soybean plants Our results demonstrated that exogenously applied NO aids in better growth under lead stress due to its ability in sensing, signaling, and stress tolerance in plants under heavy metal stress along with lead stress. In addition, our results showed that S-nitrosoglutathione (GSNO) has a positive effect on soybean seedling growth under lead-induced toxicity and that NO supplementation helps to reduce chlorophyll maturation and relative water content in leaves and roots following strong bursts under lead stress. GSNO supplementation (200 µM and 100 µM) reduced compaction and approximated the oxidative damage of MDA, proline, and H2O2. Moreover, under plant stress, GSNO application was found to relieve the oxidative damage by reactive oxygen species (ROS) scavenging. Additionally, modulation of NO and phytochelatins (PCS) after prolonged metal reversing GSNO application confirmed detoxification of ROS induced by the toxic metal lead in soybean. In summary, the detoxification of ROS caused by toxic metal concentrations in soybean is confirmed by using NO, PCS, and traditionally sustained concentrations of metal reversing GSNO application.
Collapse
Affiliation(s)
- Nusrat Jahan Methela
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Shafiqul Islam
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Da-Sol Lee
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|