1
|
López-Pacheco IY, González-Meza GM, González-González RB, Parra-Saldívar R, Melchor-Martínez EM. Algae bioremediation of swine and domestic wastewater promotes a reduction of coliforms and antibiotic-resistant bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126294. [PMID: 40268044 DOI: 10.1016/j.envpol.2025.126294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
The microbiological load that wastewater may contain is an important factor to consider in wastewater treatment to avoid water bodies contamination and has taken on great relevance due to the possible presence of antibiotic-resistant bacteria. This study investigates the feasibility of bacteria control by phycoremediation treatment using Scenedesmus sp. in two types of wastewater (domestic and swine wastewater). It was determined the cell growth of microalgae culture, and the reduction of total coliforms and enterobacteria load throughout ten days of experiment. In addition, the removal of antibiotic-resistant bacteria was performed using five different antibiotics commonly used in clinical diagnosis: Ampicillin Tetracycline, Ciprofloxacin, Sulfamethoxazole, and Ceftriaxone. The results shown a significant decrease in total coliforms and enterobacteria in the phycoremediation process, it was removed up to 98 % of total coliforms [ from (8.7 ± 2.31) × 104 to (1.6 ± 0.17) × 103 CFU mL -1] in swine wastewater and 99 % in domestic wastewater [(3.6 ± 0.31) × 105 to (2 ± 0.05) × 103 CFU mL -1]. Significant reduction in the case of sulfamethoxazole-resistant bacteria by microalgae in swine wastewater from [(1.47 ± 0.05) × 105 to (5.3 ± 0.57) × 103 ] and domestic wastewater [(4.9 ± 0.15) × 104 to (2.9 ± 0.36) × 103]. These findings demonstrate the versatility and effectiveness of the phycoremediation system since the general microbial control to most specific of antibiotic-resistant bacteria in wastewater, demonstrating its great potential to reduce the risk of public health issues in urban and rural areas.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Georgia María González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | | |
Collapse
|
2
|
Men C, Jiang H, Ma Y, Cai H, Fu H, Li Z. A nationwide probabilistic risk assessment and a new insight into source-specific risk apportionment of antibiotics in eight typical river basins in China: Human health risk and ecological risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136674. [PMID: 39642732 DOI: 10.1016/j.jhazmat.2024.136674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
China is the largest producer and consumer of antibiotics, a nationwide study on the contamination of antibiotics in China is urgently needed, and source apportionment towards risks associated with antibiotics is now attracting increasing attention. In this study, based on eight antibiotics at 666 sampling sites, spatial variations and probabilistic risks (human health and ecological risk) of antibiotics in eight river basins in China were analyzed. Source-specific health and ecological risk associated with antibiotics in a typical basin was apportioned quantitatively. Results showed that mean antibiotic concentration in Haihe River Basin (HaiRB) and Yellow River Basin (178.25 and 257.36 ng·L-1, respectively) was higher than other basins. In HaiRB, the contribution of livestock and poultry breeding (31.89 %) was the largest of all sources for health risk, whereas pharmaceutical wastewater (35.97 %) was the most dominant source for ecological risk. To determine the most important source for risks associated with antibiotics, the concept of risks-targeted key source was proposed, and a risks-targeted key source apportionment model was developed. Results showed that pharmaceutical wastewater should be prior controlled among all sources. The concept and apportionment model of risks-targeted key source proposed in this study are applicable and referential for related studies.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoquan Jiang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuting Ma
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Hengjiang Cai
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Chen Y, Li M, Gao W, Guan Y, Hao Z, Liu J. Occurrence and risks of pharmaceuticals, personal care products, and endocrine-disrupting compounds in Chinese surface waters. J Environ Sci (China) 2024; 146:251-263. [PMID: 38969453 DOI: 10.1016/j.jes.2023.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 07/07/2024]
Abstract
The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern. As emerging contaminants (ECs) in surface waters, pharmaceutical and personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have attracted considerable attention due to their wide occurrence and potential threat to human health. Therefore, a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required. This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals, 15 personal care products (PCPs), and 20 EDCs frequently detected in Chinese surface waters. The ECs were primarily detected in China's densely populated and highly industrialized regions. Most detected PPCPs and EDCs had concentrations between ng/L to µg/L, whereas norfloxacin, caffeine, and erythromycin had relatively high contamination levels, even exceeding 2000 ng/L. Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk, whereas 4-nonylphenol, 4-tert-octylphenol, 17α-ethinyl estradiol, 17β-estradiol, and triclocarban did. This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade, and will aid in the regulation and control of these ECs in Chinese surface waters.
Collapse
Affiliation(s)
- Yuhang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Mengyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Weichun Gao
- College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yinyan Guan
- College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Kanarek P, Breza-Boruta B, Bogiel T. In the Depths of Wash Water: Isolation of Opportunistic Bacteria from Fresh-Cut Processing Plants. Pathogens 2024; 13:768. [PMID: 39338959 PMCID: PMC11435197 DOI: 10.3390/pathogens13090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The fruit and vegetable industry in post-harvest processing plants is characterized by a substantial consumption of water resources. Wash waters may serve as an environment for the periodic or permanent habitation of microorganisms, particularly if biofilm forms on the inner walls of tanks and flushing channels. Despite the implementation of integrated food safety monitoring systems in numerous countries, foodborne pathogens remain a global public health and food safety concern, particularly for minimally processed food products such as vegetables and fruits. This necessitates the importance of studies that will explore wash water quality to safeguard minimally processed food against foodborne pathogen contamination. Therefore, the current study aimed to isolate and identify bacteria contaminating the wash waters of four fresh-cut processing plants (Poland) and to evaluate the phenotypic antibiotic resistance profiles in selected species. Bacteria were isolated using membrane filtration and identified through mass spectrometry, followed by antibiotic susceptibility testing according to EUCAST guidelines. The results revealed that the level of contamination with total aerobic bacteria in the water ranged from 1.30 × 106 cfu/mL to 2.54 × 108 cfu/mL. Among the isolates, opportunistic pathogens including Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella oxytoca, Klebsiella pneumoniae, Serratia marcescens, and Proteus vulgaris strains were identified. An especially noteworthy result was the identification of cefepime-resistant K. oxytoca isolates. These findings highlight the importance of monitoring the microbial microflora in minimally processed foods and the need for appropriate sanitary control procedures to minimize the risk of pathogen contamination, ensuring that products remain safe and of high quality throughout the supply chain.
Collapse
Affiliation(s)
- Piotr Kanarek
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland;
| | - Barbara Breza-Boruta
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland;
| | - Tomasz Bogiel
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
5
|
Zhao J, Hou S, Zhang H, Sun S, Guo C, Zhang X, Song G, Xu J. Spatiotemporal variations and priority ranking of emerging contaminants in nanwan reservoir: A case study from the agricultural region in huaihe river basin in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122195. [PMID: 39137638 DOI: 10.1016/j.jenvman.2024.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The presence of emerging contaminants (ECs) in drinking water sources is an increasing concern, yet limited data exists on their occurrence and risk in the upper Huaihe River Basin, an important agricultural region in Central China. This study investigated 70 ECs, including pesticide and antibiotics in surface water from drinking water source areas in Nanwan Reservoir along the upper reaches of the Huaihe River Basin to prioritize the ECs based on ecological risk and health risk assessment. A total of 66 ECs were detected in the surface water at least once at the selected 38 sampling sites, with concentrations ranging from 0.04 to 2508 ng/L. Ecological risk assessment using the risk quotient (RQ) method revealed high risks (RQ > 1) from 7 ECs in the dry season and 15 ECs in the wet season, with triazine pesticides as the main contributors. Non-carcinogenic risks were below negligible levels, but carcinogenic risks from neonicotinoid and carbamate pesticides and macrolide antibiotics were concerning for teenagers. Ciprofloxacin exhibited a high level of resistance risk during the wet season. A multi-indicator prioritization approach integrating occurrence, risk, and chemical property data ranked 6 pesticides and 3 antibiotics as priority pollutants. The results highlight EC contamination of drinking water sources in this agriculturally-intensive region and the need for targeted monitoring and management to protect water quality.
Collapse
Affiliation(s)
- Jianglu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shanwei Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
6
|
Shi X, Shen Z, Shao B, Shen J, Wu Y, Wang S. Antibiotic resistance genes profile in the surface sediments of typical aquaculture areas across 15 major lakes in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123709. [PMID: 38447655 DOI: 10.1016/j.envpol.2024.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Aquatic farming is considered as a major source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) for the natural environment of the lakes. ARB and ARGs in the natural environment have increased quickly because of the human activities. Here, we have profiled the diversity and abundance of ARGs in sediments from the typical aquaculture areas around 15 major lakes in China using PCR and qPCR, and further assessed the risk factor shaping the occurrence and distribution of ARGs. And class 1, 2 and 3 integrons were initially detected by PCR with specific primers. ARGs were widely distributed in the lakes: Weishan Lake and Poyang Lake showed high diversity of ARGs, followed by Dongting Lake, Chao Lake and Tai Lake. Generally, the ARGs in the Middle-Lower Yangtze Plain were more abundant than those in the Qinghai-Tibet Plateau. Tetracycline resistance genes (tet(C), tet(A) & tet(M)) were prominent in sediments, and the next was AmpC β-lactamase gene group BIL/LAT/CMY, and the last was the genes resistance to aminoglycoside (strA-strB). Partial least squares path modeling analysis (PLS-PMA) revealed that livestock had a significant direct effect on the distribution of ARGs in lakes, and population might indirectly influence the profiles of ARGs by affecting the scale of livestock and aquaculture. The detectable rate of class 1, 2 and 3 integrons were 80%, 100% and 46.67%, respectively. The prevalence of integrons might play a key role in promoting more frequent horizontal gene transfer (HGT) events, resulting in the environmental mobilization and dissemination of ARGs between bacteria.
Collapse
Affiliation(s)
- Xiaomin Shi
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhangqi Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bing Shao
- Beijing Centers for Disease Control and Preventative Medical Research, Beijing, 100013, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongning Wu
- Research Unit of Food Safety (2019RU014), Chinese Academy of Medical Sciences, NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Shaolin Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Sun S, Sun Y, Geng J, Geng L, Meng F, Wang Q, Qi H. Machine learning reveals the selection pressure exerted by nonantibiotic pharmaceuticals at environmentally relevant concentrations on antibiotic resistance genotypes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120829. [PMID: 38579474 DOI: 10.1016/j.jenvman.2024.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The emergence and increasing prevalence of antibiotic resistance pose a global public risk for human health, and nonantimicrobial pharmaceuticals play an important role in this process. Herein, five nonantimicrobial pharmaceuticals, including acetaminophen (ACT), clofibric acid (CA), carbamazepine (CBZ), caffeine (CF) and nicotine (NCT), tetracycline-resistant strains, five ARGs (sul1, sul2, tetG, tetM and tetW) and one integrase gene (intI1), were detected in 101 wastewater samples during two typical sewage treatment processes including anaerobic-oxic (A/O) and biological aerated filter (BAF) in Harbin, China. The impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on both the resistance genotypes and resistance phenotypes were explored. The results showed that a significant impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on tetracycline resistance genes encoding ribosomal protection proteins (RPPs) was found, while no changes in antibiotic phenotypes, such as minimal inhibitory concentrations (MICs), were observed. Machine learning was applied to further sort out the contribution of nonantibiotic pharmaceuticals at environmentally relevant concentrations to different ARG subtypes. The highest contribution and correlation were found at concentrations of 1400-1800 ng/L for NCT, 900-1500 ng/L for ACT and 7000-10,000 ng/L for CF for tetracycline resistance genes encoding RPPs, while no significant correlation was found between the target compounds and ARGs when their concentrations were lower than 500 ng/L for NCT, 100 ng/L for ACT and 1000 ng/L for CF, which were higher than the concentrations detected in effluent samples. Therefore, the removal of nonantibiotic pharmaceuticals in WWTPs can reduce their selection pressure for resistance genes in wastewater.
Collapse
Affiliation(s)
- Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Jialu Geng
- Ecological Environmental Monitoring Centre of Hinggan League, Hinggan League, 137400, China
| | - Linlin Geng
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Fan Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Bombaywala S, Bajaj A, Dafale NA. Deterministic effect of oxygen level variation on shaping antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133047. [PMID: 38000281 DOI: 10.1016/j.jhazmat.2023.133047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
An increase in acquisition of antibiotic resistance genes (ARGs) by pathogens under antibiotic selective pressure poses public health threats. Sub-inhibitory antibiotics induce bacteria to generate reactive oxygen species (ROS) dependent on dissolved oxygen (DO) levels, while molecular connection between ROS-mediated ARG emergence through DNA damage and metabolic changes remains elusive. Thus, the study investigates antibiotic resistome dynamics, microbiome shift, and pathogen distribution in hyperoxic (5-7 mg L-1), normoxic (2-4 mg L-1), and hypoxic (0.5-1 mg L-1) conditions using lab-scale bioreactor. Composite inoculums in the reactor were designed to represent comprehensive microbial community and AR profile from selected activated sludge. RT-qPCR and metagenomic analysis showed an increase in ARG count (100.98 ppm) with enrichment of multidrug efflux pumps (acrAB, mexAB) in hyperoxic condition. Conversely, total ARGs decreased (0.11 ppm) under hypoxic condition marked by a major decline in int1 abundance. Prevalence of global priority pathogens increased in hyperoxic (22.5%), compared to hypoxic (0.9%) wherein major decrease were observed in Pseudomonas, Shigella, and Borrelia. The study observed an increase in superoxide dismutase (sodA, sodB), DNA repair genes (nfo, polA, recA, recB), and ROS (10.4 µmol L-1) in adapted biomass with spiked antibiotics. This suggests oxidative damage that facilitates stress-induced mutagenesis providing evidence for observed hyperoxic enrichment of ARGs. Moreover, predominance of catalase (katE, katG) likely limit oxidative damage that deplete ARG breeding in hypoxic condition. The study proposes a link between oxygen levels and AR development that offers insights into mitigation and intervention of AR by controlling oxygen-related stress and strategic selection of bacterial communities.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhay Bajaj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Zhao C, Liu X, Tan H, Bian Y, Khalid M, Sinkkonen A, Jumpponen A, Rahman SU, Du B, Hui N. Urbanization influences the indoor transfer of airborne antibiotic resistance genes, which has a seasonally dependent pattern. ENVIRONMENT INTERNATIONAL 2024; 185:108545. [PMID: 38447454 DOI: 10.1016/j.envint.2024.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Over the last few years, the cumulative use of antibiotics in healthcare institutions, as well as the rearing of livestock and poultry, has resulted in the accumulation of antibiotic resistance genes (ARGs). This presents a substantial danger to human health worldwide. The characteristics of airborne ARGs, especially those transferred from outdoors to indoors, remains largely unexplored in neighborhoods, even though a majority of human population spends most of their time there. We investigated airborne ARGs and mobile genetic element (MGE, IntI1), plant communities, and airborne microbiota transferred indoors, as well as respiratory disease (RD) prevalence using a combination of metabarcode sequencing, real-time quantitative PCR and questionnaires in 72 neighborhoods in Shanghai. We hypothesized that (i) urbanization regulates ARGs abundance, (ii) the urbanization effect on ARGs varies seasonally, and (iii) land use types are associated with ARGs abundance. Supporting these hypotheses, during the warm season, the abundance of ARGs in peri-urban areas was higher than in urban areas. The abundance of ARGs was also affected by the surrounding land use and plant communities: an increase in the proportion of gray infrastructure (e.g., residential area) around neighborhoods can lead to an increase in some ARGs (mecA, qnrA, ermB and mexD). Additionally, there were variations observed in the relationship between ARGs and bacterial genera in different seasons. Specifically, Stenotrophomonas and Campylobacter were positively correlated with vanA during warm seasons, whereas Pseudomonas, Bacteroides, Treponema and Stenotrophomonas positively correlated with tetX in the cold season. Interstingly, a noteworthy positive correlation was observed between the abundance of vanA and the occurrence of both rhinitis and rhinoconjunctivitis. Taken together, our study underlines the importance of urbanization and season in controlling the indoor transfer of airborne ARGs. Furthermore, we also highlight the augmentation of green-blue infrastructure in urban environments has the potential to mitigate an excess of ARGs.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15140 Finland.
| | - Haoxin Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Yucheng Bian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15140 Finland; Horticulture Technologies, Unit of Production Systems, Natural Resources Institute Finland, Turku, Finland.
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Saeed Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15140 Finland.
| |
Collapse
|
10
|
Mao K, Zhang H, Ran F, Cao H, Feng R, Du W, Li X, Yang Z. Portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification for antibiotic resistance gene ermB in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132793. [PMID: 37856955 DOI: 10.1016/j.jhazmat.2023.132793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Wastewater is among the main sources of antibiotic resistance genes (ARGs) in the environment, but effective methods to quickly assess ARGs on-site in wastewater are lacking. Here, using the typical ARG ermB as the target, we report a portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification (LAMP) for the detection of ARGs. Six primers of LAMP and the crRNA of CRISPR/Cas12a were first designed to be preamplification with LAMP and lead Cas12a to recognize the ermB via base pairing. Due to the trans-cleavage activity of CRISPR/Cas12a after amplicon recognition, ssDNA probes modified with reporter molecules were used to implement a visual assay with lateral flow test strips and fluorescence. After a simple nucleic acid extraction with magnetic beads, the constructed biosensor possesses excellent sensitivity and selectivity as low as 2.75 × 103 copies/μL using fluorescence and later flow strips in wastewater. We further evaluated the community-wide prevalence of ermB in wastewater influent and found high mass loads of ermB during different months. This user-friendly and low-cost biosensor is applicable for rapid on-site ARG detection, providing a potential point-of-use method for rapid assessments of ARG abundance in wastewater from large city areas with many wastewater treatment plants and in resource-limited rural areas.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Fang Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
11
|
Zhao J, Sun Y, Zhang BT, Sun X. Amoxicillin degradation in the heat, light, or heterogeneous catalyst activated persulfate systems: Comparison of kinetics, mechanisms and toxicities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119386. [PMID: 37879175 DOI: 10.1016/j.jenvman.2023.119386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Various activated persulfate (PS) technologies have been investigated and implemented to eliminate antibiotic contaminants from water. The investigation and evaluation of different activation systems are essential for the application of PS techniques. The degradation of amoxicillin (AMX) by heat, light, or heterogeneous catalyst of Fe-AC composite activated PS was investigated, and the kinetics, mechanisms and toxicities were compared in this work. The apparent activation energy of the Fe-AC system was lower than that of the heat system. Hydroxyl and sulfate radicals were demonstrated by electron paramagnetic resonance (EPR) spectroscopy and quenching tests. There were 22, 21 and 13 types of degradation intermediates detected in heat, light and Fe-AC system, respectively. Six pathways of AMX degradation were proposed and compared in the three activated PS systems. The toxicity prediction of degradation intermediates under different treatment processes was estimated by ecological structure-activity relationship model and toxicity estimation software tool. The genotoxicity of the AMX degradation solution was tested by Acinetobacter baylyi ADP1_recA, which indicated that the AMX solution after treatment in the Fe-AC system had almost no genotoxicity. The Fe-AC/PS system shows apparent advantages over the heat or light activated PS system in most cases, demonstrating that the Fe-AC/PS system is suitable for AMX-contaminated remediation in aqueous solution.
Collapse
Affiliation(s)
- Juanjuan Zhao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Heibei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical Safety, North China Institute of Science and Technology, Langfang, 065201, China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | | |
Collapse
|
12
|
Bombaywala S, Dafale NA. Mapping the spread and mobility of antibiotic resistance in wastewater due to COVID-19 surge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121734-121747. [PMID: 37955733 DOI: 10.1007/s11356-023-30932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Large amounts of antibiotics have been discharged into wastewater during the COVID-19 pandemic due to overuse and misuse of antibiotics to treat patients. Wastewater-based surveillance can be used as an early warning for antibiotic resistance (AR) emergence. The present study analyzed municipal wastewater corresponding to the major pandemic waves (WW1, WW2, and WW3) in India along with hospital wastewater (Ho) taken as a benchmark for AR. Commonly prescribed antibiotics during a pandemic, azithromycin and cefixime residues, were found in the range of 2.1-2.6 μg/L in Ho and WW2. Total residual antibiotic concentration was less in WW2; however, the total antibiotic resistance gene (ARG) count was 1065.6 ppm compared to 85.2 ppm in Ho. Metagenome and RT-qPCR analysis indicated a positive correlation between antibiotics and non-corresponding ARGs (blaOXA, aadA, cat, aph3, and ere), where 7.2-7.5% was carried by plasmid in the bacterial community of WW1 and WW2. Moreover, as the abundance of the dfrA and int1 genes varied most among municipal wastewater, they can be suggested as AR markers for the pandemic. The common pathogens Streptococcus, Escherichia, Shigella, and Aeromonas were putative ARG hosts in metagenome-assembled genomes. The ARG profile and antibiotic levels varied between municipal wastewaters but were fairly similar for WW2 and Ho, suggesting the impact of the pandemic in shaping the resistome pattern. The study provides insights into the resistome dynamic, AR markers, and host-ARG association in wastewater during the COVID-19 surge. Continued surveillance and identification of intervention points for AR beyond the pandemic are essential to curbing the environmental spread of ARGs in the near future.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|