1
|
Tang J, Mi H, Shen C, Ding K, Zhang S, Shangguan H, Fu T, Ye J, Lin H. Electric field as an activator of inoculated Bacillus clausii enhances humification during electric field-assisted aerobic composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125132. [PMID: 40154245 DOI: 10.1016/j.jenvman.2025.125132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
A novel electric field-assisted aerobic composting (EAC) method effectively facilitates compost disposal by applying a low electric field to conventional aerobic composting (CAC). The humification effect of inoculation with Bacillus clausii in the EAC system was better than that in the CAC system, so this study focused on the enhancement effect of microbial inoculation in the EAC system. Compared with EAC, EAC with microbial inoculation (AMI-EAC) increased the degradation of cellulose, hemicellulose, and lignin. Furthermore, AMI-EAC improved the humification index by 42.89 % relative to EAC. AMI-EAC also increased the relative abundance of Bacillus, enriched thermophilic and electroactive microorganisms, and enhanced the activity of associated degradative enzymes, which promoted the decomposition and humification of organic matter. Partial least squares-path model analysis showed that Bacillus inoculation during AMI-EAC enhanced the direct positive effect of microorganisms on enzyme activity and strengthened the positive impacts of substance degradation and enzyme activity on compost maturation. This study provided new insights for inoculating microbial agents to enhance composting efficiency in future engineering applications of EAC.
Collapse
Affiliation(s)
- Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Huan Mi
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Keren Ding
- Ag Research, Ruakura Research Centre, Hamilton, New Zealand
| | - Shuqun Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China; College of Tea and Food, Wuyi University, Wuyishan, 354300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Fu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| |
Collapse
|
2
|
Liu M, Xu L, Yin Z, He D, Zhang Y, Liu C. Harnessing the potential of exogenous microbial agents: a comprehensive review on enhancing lignocellulose degradation in agricultural waste composting. Arch Microbiol 2025; 207:51. [PMID: 39893606 DOI: 10.1007/s00203-025-04247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Composting converts organic agricultural wastes into value-added products, yet the presence of significant non-biodegradable lignocelluloses hinders its efficiency. The introduction of various exogenous microbial agents has been shown to effectively addresses this challenge. In this context, basing on the microbial enzymatic mechanism for lignocellulose degradation, this paper synthesizes the latest research advancements and practical applications of exogenous microbial agents in agricultural waste composting. Given that the effectiveness of lignocellulose degradation is highly dependent on the waste's inherent characteristics, it is crucial to carefully consider the composition of fungi and bacteria, the dosage of microbial agents, and the composting process operation, tailored to the specific type of agricultural waste. Moreover, the combination of additives with exogenous microbial agents can further enhance the degradation of lignocelluloses and the humification of organic matters. Furthermore, insights into the future research and application trends of exogenous microbial agents in agricultural waste composting was prospected.
Collapse
Affiliation(s)
- Meng Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Luxin Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Zhixuan Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China.
| | - Deming He
- Shanghai Chengtou Shangjing Ecological Restoration Technology Co., Shanghai, 200120, People's Republic of China
| | - Yujia Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| |
Collapse
|
3
|
Mi J, Hou L, Hou Y, Song C, Pan L, Wei Z. Enhancing compost quality: Biochar and zeolite's role in nitrogen transformation and retention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178490. [PMID: 39827638 DOI: 10.1016/j.scitotenv.2025.178490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
This research evaluated how addition of biochar and zeolite affected nitrogen transformation and retention during the composting of kitchen waste. Four treatments, control (CK), 10 % biochar (B), 10 % zeolite (Z), and 5 % biochar +5 % zeolite (BZ) were used to study nitrogen transformation and retention. The results showed that biochar and zeolite can significantly reduce the loss of NH4+-N during the thermophilic phase (CK: 42.6 %, B: 35.1 %, Z: 35.7 %, and BZ: 31.3 %). Network analysis showed that biochar and zeolite increased the number of microorganisms associated with nitrification genes while decreasing the number of microorganisms associated with denitrification genes, preventing nitrogen volatilization in N2O. Mantel tests further demonstrated that biochar and zeolite enhanced the correlation between bacterial communities and the relationship between NH4+-N, NO3--N, and organic nitrogen was weakened, thus inhibiting the mineralization of organic nitrogen. Therefore, biochar and zeolite played an active role in promoting the transformation and retention of nitrogen components. Biochar and zeolite for kitchen waste also provided a new perspective on the treatment of kitchen waste.
Collapse
Affiliation(s)
- Jiaying Mi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Linlin Hou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiming Hou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Sciences, Liaocheng University, Liaocheng 25200, China
| | - Lina Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
4
|
Sun X, Li Z, Li Z, Liu Y, Zeng J, Wang T, Ni H, Li L. Recycled calcium polypeptides modulate microbial dynamics and enhance bioconversion in kitchen waste-garden waste co-composting system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123988. [PMID: 39742751 DOI: 10.1016/j.jenvman.2024.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The kitchen waste and garden waste (KW-GW) co-composting system provides an effective method for recycling these two types of municipal solid waste; however, further improvements are needed to enhance bioconversion performance. This study investigates a novel composting additive, calcium polypeptides (CPPs), derived from waste animal and plant proteins, which can enhance the bioconversion capacity of biomass in the KW-GW co-composting system. As a pH regulator and an available nitrogen source, CPPs significantly increase the compost matrix pH, prolong the thermophilic phase, and reduce emissions of exhaust gases such as CH4, N2O, NH3, and H2S by 52.5%, 37.9%, 17.5%, and 41.3%, respectively. Moreover, the addition of CPPs to the compost product resulted in a 32.6% increase in humic substance content, while the germination index reached 108.5%, significantly promoting the growth of ryegrass. Microbial diversity analysis revealed that CPPs significantly altered microbial richness and diversity in the KW-GW co-composting system. During the heating phase, CPPs positively correlated with the abundance of thermophilic and lignocellulose-degrading species, such as Bacillus, Corynebacterium, and Aspergillus, along with composting temperature, pH, and electrical conductivity. Conversely, CPPs negatively correlated with the abundance of acidogenic and methanogenic species like Lactobacillus, Streptococcus, and Weissella. In the maturation phase, CPPs positively correlated with the abundance of lignocellulose-degrading and humus-forming species, including Pseudoxanthomonas, Sphingobacterium, and Aspergillus, as well as with the germination index. These results indicate that recycled CPPs improve the microenvironment, boosting biomass conversion in the KW-GW co-composting system, providing a viable approach for resourceful waste biomass reuse.
Collapse
Affiliation(s)
- Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; School of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Zhe Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tan Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Ni
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Cao L, Wang L, Qi Y, Yang S, Gao J, Liu Q, Song L, Hu R, Wang Z, Zhang H. Enhanced effect of ferrous sulfate on nitrogen retention and PBAT degradation during co-composting by combing with biochar-loaded FN1 bacterial composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123749. [PMID: 39709662 DOI: 10.1016/j.jenvman.2024.123749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
The treatment of biodegradable plastics through composting has garnered increasing attention. This study aimed to investigate the effects of Biochar FN1 bacteria and ferrous sulfate on nitrogen retention, greenhouse gas emissions, and degradable plastics during composting and to elucidate their synergistic mechanisms on microbial communities. Compared with the control, applying biochar-loaded FN1 bacteria composites combined with Ferrous sulfate (SGC) markedly accelerated organic matter degradation and reduced cumulative CO2 and NH3 emissions. The synergistic interaction between the composites and Ferrous sulfate significantly enhanced NH4+-N levels in the thermophilic phase and NO3--N levels in the cooling phase, ultimately decreasing nitrogen loss by 14.9% (P < 0.05) and increasing the seed germination index (GI) by 22.5% (P < 0.05). Additionally, PBAT plastic degradation was improved by 31.6% (P < 0.05). The SGC treatment also altered the richness and diversity of the bacterial community in both the compost and the PBAT plastic sphere, particularly affecting Sphingobacterium, Pseudomonas, and Flavobacterium at the genus level. Symbiotic network analysis and Redundancy Analysis revealed that these functional degradation bacteria were significantly positively correlated with NO3--N levels and PBAT degradation. Furthermore, structural equation modelling indicated a positive relationship between PBAT degradation rate and composting temperature (r = 0.69, p < 0.05). The findings suggested that Fe2+ not only enhanced the FN1 activity but also promoted PBAT degradation by increasing ·OH content on the PBAT plastic sphere. Overall, the combined use of biochar-loaded FN1 bacteria and Ferrous sulfate effectively supports nitrogen retention and plastic degradation during composting.
Collapse
Affiliation(s)
- Long Cao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China; Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Linshan Wang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Yanjiao Qi
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China; Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China.
| | - Shen Yang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Jiazhi Gao
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Qiang Liu
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Lisha Song
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Run Hu
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Zifan Wang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China
| | - Hong Zhang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China; Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Wang L, Qi Y, Cao L, Song L, Hu R, Li Q, Zhao Y, Liu J, Zhang H. Promoting role of nitrogen-fixing bacteria and biochar on nitrogen retention and degradation of PBAT plastics during composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125228. [PMID: 39486677 DOI: 10.1016/j.envpol.2024.125228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Since the increasing number of polybutylene adipate terephthalate (PBAT)-based plastics entering the environment, the search for sustainable treatment methods has become a primary focus of contemporary research. Composting offers a novel approach for managing biodegradable plastics. However, a significant challenge in the composting process is how to control nitrogen loss and enhance plastic degradation. In this context, the effect of various additives on nitrogen retention, PBAT plastics degradation, and microbial community dynamics during composting was investigated. The findings revealed that the addition of nitrogen-fixing bacteria Azotobacter vinelandii and biochar (AzBC) significantly improved nitrogen retention and accelerated PBAT rupture within 40 days of composting. Specifically, the PBAT degradation rate in the AzBC group reached 29.6%, which increased by 12.14% (P < 0.05) compared to the control group. In addition, the total nitrogen (TN) content increased by 6.20% (P < 0.05), and the Nitrogen-fixing enzyme (NIT) content increased by 190 IU/L (P < 0.05). Further analysis of GC-MS confirmed the presence of low molecular weight fragmentation products, such as 6-(4-hydroxybutoxy)-6-oxohexanoic acid. The AzBC treatment promoted the proliferation of Klebsiella at the genus level that could enhance nitrogen retention and the bacteria that have the ability to degrade PBAT, such as Proteobacteria and Firmicutes at the phyla level, and Pseudoxanthomonas, Pseudomonas, and Flavobacterium genera at the genera level (P < 0.05). Correlation analysis indicated that the degradation of PBAT is positively correlated with Temperature (T), NIT, and TN, but negatively correlated with the organic matter (OM) content and germination index (GI). In conclusion, the co-application of biochar and Azotobacter vinelandii offers promising sustainable prospects for enhancing PBAT plastic degradation and reducing nitrogen loss during composting.
Collapse
Affiliation(s)
- Linshan Wang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730000, China; Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Yanjiao Qi
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730000, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, 730000, China.
| | - Long Cao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730000, China
| | - Lisha Song
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Run Hu
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, 730000, China
| | - Qian Li
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, 730000, China
| | - Yamin Zhao
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Junyan Liu
- Gansu Jiyang Plastic Co., Ltd, Lanzhou, 730000, China
| | - Hong Zhang
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Chen L, Zhang Z, Yang R, Wang X, Yu J, Jiang H, Zhang W, Xi B, Sun X, Li N. Nano Fe 3O 4 improved the electron donating capacity of dissolved organic matter during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122354. [PMID: 39226814 DOI: 10.1016/j.jenvman.2024.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The effect of Fe3O4 nanoparticles (Fe3O4 NPs) on the electron transfer process in aerobic composting systems remains unexplored. In this study, we compared the electron transfer characteristics of DOM in sludge composting without additives (group CK) and with the addition of 50 mg/kg Fe3O4 NPs additive (group Fe). It was demonstrated that the electron transfer capacity (ETC) and electron donating capacity (EDC) of compost-derived DOM increased by 13%-29% and 40%-47%, respectively, with the addition of Fe3O4 NPs during sludge composting. Analyzing the composition and structure of DOM revealed that Fe3O4 NPs promoted the formation of humic acid-like substances and enhanced the aromatic condensation degree of DOM. Correlation analysis indicated that the increase in EDC of DOM was closely associated with the phenolic group in DOM and influenced by quinone groups and the degree of aromatization of DOM. The higher EDC and the structural evolution of DOM in group Fe reduced the bioaccessibility of Cu, Cr, Ni, Zn. This study contributes to a deeper understanding of the redox evolutionary mechanism of DOM in sludge composting and broadens the application of iron oxides additives.
Collapse
Affiliation(s)
- Liu Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Zeyu Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Rui Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaojie Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jieyu Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hong Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Beidou Xi
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Ningjie Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
8
|
Tao W, Liu J, Hou Y, Shen B, Tang Y, Zhao Y. Characterization of manganese(II)-coupled functional microorganisms in driving lignin degradation during straw composting. Int J Biol Macromol 2024; 277:134192. [PMID: 39069040 DOI: 10.1016/j.ijbiomac.2024.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The intricate structure of lignin in straw makes it challenging to hydrolyze, making it a key focus of current research. However, there has been limited study on the effect of enzyme inducer (MnSO4) combined with functional microorganisms on lignin degradation during straw composting. Based on this, four composting treatment groups were set up in this study. Control (CK), functional microorganism addition treatment (F), Mn2+ enzyme inducer (Mn), and Mn2+ enzyme inducer coupled with functional microorganism addition treatment (FMn) were tested for composting. Manganese(II)-coupled microorganisms improved lignin degradation: FMn > Mn > F > CK. They increased the lignin loss rate from 25.54 % to 42.61 %. Laccase activity increased from 3.45 to 43.74 U/g and manganese peroxidase activity increased from 145.52 to 264.91 U/g. And gene abundance was increased. Microbial community structure and dominant genera changed. Structural equations support the idea that functional microorganisms coupled with manganese can modify physicochemical indices, thereby regulating gene expression and enhancing enzyme activity. Furthermore, the stimulation of fungal growth and increased extracellular laccase and manganese peroxidase activities can affect the degradation of lignin. This study provides new insights and theoretical support for efficient lignin degradation and efficient resource utilization of compost products.
Collapse
Affiliation(s)
- Weiye Tao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junping Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiming Hou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Bingqi Shen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Tang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Vršanská M, Veselá L, Baláková I, Kovaříková E, Jansová E, Knoll A, Voběrková S, Kubíčková L, Vaverková MD. A comprehensive study of food waste management and processing in the Czech Republic: Potential health risks and consumer behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172214. [PMID: 38580122 DOI: 10.1016/j.scitotenv.2024.172214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Food waste is currently a widely discussed phenomenon with significant economic and social consequences. One third of the food produced in the world is wasted at various points along the food supply chain. This article presents a comprehensive study that examines consumer behavior in dealing with food waste and activities in the composting process that enable waste sanitation. The survey conducted as part of this study showed that consumers want to eliminate odors, are concerned about potential infections, and generally sort less food waste. This study suggested that the addition of appropriate additives could be a solution. The results indicated that additives could eliminate negative side effects such as unpleasant odors, the presence of insects and rodents, and act as a prevention of the occurrence of pathogenic organisms. Tea tree oil showed the best positive physical and chemical properties among the additives tested (CaCO3 and citric acid) with a significant effect on inhibiting the growth of bacterial strains such as Salmonella strains and had the strongest antibacterial effect, neutralized unpleasant odors, and stabilized the waste. The use of additives could be a future solution to meet consumer demands, improve the quality of food waste and advance the circular economy to improve the sustainability of agricultural systems.
Collapse
Affiliation(s)
- Martina Vršanská
- Department of Chemistry and Biochemistry, Mendel University in Brno, třída Generála Píky 1999/5, 613 00 Brno, Czech Republic
| | - Lucie Veselá
- Department of Marketing and Trade, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Irena Baláková
- Department of Marketing and Trade, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Ester Kovaříková
- Department of Chemistry and Biochemistry, Mendel University in Brno, třída Generála Píky 1999/5, 613 00 Brno, Czech Republic
| | - Eva Jansová
- Department of Chemistry and Biochemistry, Mendel University in Brno, třída Generála Píky 1999/5, 613 00 Brno, Czech Republic
| | - Aleš Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Stanislava Voběrková
- Department of Chemistry and Biochemistry, Mendel University in Brno, třída Generála Píky 1999/5, 613 00 Brno, Czech Republic
| | - Lea Kubíčková
- Department of Marketing and Trade, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02 776 Warsaw, Poland.
| |
Collapse
|
10
|
Guo T, Zhang S, Song C, Zhao R, Jia L, Wei Z. Response of phosphorus fractions transformation and microbial community to carbon-to-phosphorus ratios during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121145. [PMID: 38788406 DOI: 10.1016/j.jenvman.2024.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Phosphorus (P) is one of the essential nutrient elements for plant growth and development. Sludge compost products can be used as an important source of soil P to solve the shortage of soil P. The difference in the initial carbon-to-phosphorus ratio (C/P) will lead to difference in the bacterial community, which would affect the biological pathway of P conversion in composting. However, few studies have been reported on adjusting the initial C/P of composting to explore P conversion. Therefore, this study investigated the response of P component transformations, bacterial community and P availability to C/P during sludge composting by adjusting initial C/P. The results showed that increasing C/P promoted the mineralization of organic P and significantly increased the content of the labile P. High C/P also increased the relative content of available P, especially when the C/P was at 45 and 60, it reached 60.51% and 60.47%. High C/P caused differences in the community structure, and improved the binding ability of microbial network modules and the competitiveness of microbial communities. Additionally, high C/P strengthened the effect of microbial communities on the transformation of P components. Finally, the study showed that C/P was the main contributor to P content variation (64.7%) and indirectly affected P component conversion by affecting the microbial community. Therefore, adjusting the C/P is crucial to improve the P utilization rate of composting products.
Collapse
Affiliation(s)
- Tong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shubo Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Ran Zhao
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Liming Jia
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
11
|
Yang B, Zhang Y, Chen Z, Yang P, Peng S, Yu J, Wang D, Zhang W. Molecular insights into effects of chemical conditioning on dissolved organic phosphorus transformation and bioavailability during sludge composting. BIORESOURCE TECHNOLOGY 2024; 402:130809. [PMID: 38723729 DOI: 10.1016/j.biortech.2024.130809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Phosphorus is enriched in waste activated sludge (WAS) during wastewater treatment, and organic phosphorus (OP) is a potential slow-release P fertilizer. The chemical coagulants used in sludge dewatering leave numerous residues in WAS that affect sludge composting. In this study, the effects of polyaluminum chloride (PAC) and polyferric sulfate (PFS) on the bioconversion of dissolved OP (DOP) during sludge composting were investigated. The results revealed that PFS conditioning promoted the transformation and bioavailability of DOP, whereas PAC conditioning inhibited. Results indicated that PFS conditioning enhanced the transformation of OP molecules in the thermophilic phase. Through oxidation and dehydrogenation reactions, 1-hydroxy-pentane-3,4-diol-5-phosphate and D-ribofuranose 5-phosphate with high bioactivity were generated in the PFS-conditioned compost. Enzymatic hydrolysis experiments further verified that PFS conditioning enhanced the DOP bioavailability in the compost, whereas PAC conditioning inhibited it. The study has provided molecular insights into the effects of chemical conditioning on DOP conversion during sludge composting.
Collapse
Affiliation(s)
- Boyuan Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zexu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China.
| | - Siwei Peng
- Datang Environment Industry Group Co., Ltd, Beijing 100097, China
| | - Junxia Yu
- Wuhan Municipal Engineering Design & Research Institute Co., Ltd, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
12
|
Wang N, Cui Y, Zhou Y, Liu P, Wang M, Sun H, Huang Y, Wang S. Changes in the Glucose Concentration Affect the Formation of Humic-like Substances in Polyphenol-Maillard Reactions Involving Gibbsite. Molecules 2024; 29:2115. [PMID: 38731606 PMCID: PMC11085651 DOI: 10.3390/molecules29092115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The polyphenol-Maillard reaction is considered one of the important pathways in the formation of humic-like substances (HLSs). Glucose serves as a microbial energy source that drives the humification process. However, the effects of changes in glucose, particularly its concentration, on abiotic pathways remain unclear. Given that the polyphenol-Maillard reaction requires high precursor concentrations and elevated temperatures (which are not present in soil), gibbsite was used as a catalyst to overcome energetic barriers. Catechol and glycine were introduced in fixed concentrations into a phosphate-buffered solution containing gibbsite using the liquid shake-flask incubation method, while the concentration of glucose was controlled in a sterile incubation system. The supernatant fluid and HLS components were dynamically extracted over a period of 360 h for analysis, thus revealing the influence of different glucose concentrations on abiotic humification pathways. The results showed the following: (1) The addition of glucose led to a higher degree of aromatic condensation in the supernatant fluid. In contrast, the supernatant fluid without glucose (Glu0) and the control group without any Maillard precursor (CK control group) exhibited lower degrees of aromatic condensation. Although the total organic C (TOC) content in the supernatant fluid decreased in all treatments during the incubation period, the addition of Maillard precursors effectively mitigated the decreasing trend of TOC content. (2) While the C content of humic-like acid (CHLA) and the CHLA/CFLA ratio (the ratio of humic-like acid to fulvic-like acid) showed varying increases after incubation, the addition of Maillard precursors resulted in a more noticeable increase in CHLA content and the CHLA/CFLA ratio compared to the CK control group. This indicated that more FLA was converted into HLA, which exhibited a higher degree of condensation and humification, thus improving the quality of HLS. The addition of glycine and catechol without glucose or with a glucose concentration of 0.06 mol/L was particularly beneficial in enhancing the degree of HLA humification. Furthermore, the presence of glycine and catechol, as well as higher concentrations of glucose, promoted the production of N-containing compounds in HLA. (3) The presence of Maillard precursors enhanced the stretching vibration of the hydroxyl group (-OH) of HLA. After the polyphenol-Maillard reaction of glycine and catechol with glucose concentrations of 0, 0.03, 0.06, 0.12, or 0.24 mol/L, the aromatic C structure in HLA products increased, while the carboxyl group decreased. The presence of Maillard precursors facilitated the accumulation of polysaccharides in HLA with higher glucose concentrations, ultimately promoting the formation of Al-O bonds. However, the quantities of phenolic groups and phenols in HLA decreased to varying extents.
Collapse
Affiliation(s)
- Nan Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yongquan Cui
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yanhui Zhou
- Agricultural Technology Extension Station of Jiaohe City, Jiaohe 132500, China;
| | - Pingxin Liu
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Mingshuo Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Haihang Sun
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yubao Huang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Shuai Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| |
Collapse
|
13
|
Geng X, Yang H, Gao W, Yue J, Mu D, Wei Z. Greenhouse gas emission characteristics during kitchen waste composting with biochar and zeolite addition. BIORESOURCE TECHNOLOGY 2024; 399:130575. [PMID: 38479629 DOI: 10.1016/j.biortech.2024.130575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.
Collapse
Affiliation(s)
- Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jieyu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
14
|
Chen A, Han Z, Xie X, Song C, Zhang X, Zhao Y. Co-composting sugar-containing waste with chicken manure-A new approach to carbon sequestration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120609. [PMID: 38498961 DOI: 10.1016/j.jenvman.2024.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
Improving resource use is a pressing research issue because of the huge potential organic waste market. Composting is a recycling technique, treatment to achieve the dual effect of resource recovery and zero waste. Waste composition varies: for example, chicken manure is rich in protein, straw contains wood fibres, fruit and vegetables contain sugar, and food waste contains starch. When considering combining waste streams for composting, it is important to ask if this approach can reduce overall composting costs while achieving a more concentrated result. Chicken manure, in particular, presents a unique challenge. This is due to its high protein content. The lack of precursor sugars for glucosamine condensation in chicken manure results in lower humus content in the final compost than other composting methods. To address this, we conducted experiments to investigate whether adding sugary fruits and vegetables to a chicken manure composting system would improve compost quality. To improve experimental results, we used sucrose and maltose instead of fruit and vegetable waste. Sugars added to chicken manure composting resulted in a significant increase in humic substance (HS) content, with improvements of 9.0% and 17.4%, respectively, compared to the control. Sucrose and maltose have a similar effect on the formation of humic substances. These results demonstrate the feasibility of composting fruit and vegetable waste with chicken manure, providing a theoretical basis for future composting experiments.
Collapse
Affiliation(s)
- Anqi Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ziyi Han
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, LiaoCheng, 252000, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Wang Y, Han Z, Liu J, Song C, Wei Z. The biotic effects of lignite on humic acid components conversion during chicken manure composting. BIORESOURCE TECHNOLOGY 2024; 398:130503. [PMID: 38442847 DOI: 10.1016/j.biortech.2024.130503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Han
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Junping Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
16
|
Huang J, Jiang Z, Li A, Jiang F, Tang P, Cui J, Feng W, Fu C, Lu Q. Role of keystone drives polycyclic aromatic hydrocarbons degradation and humification especially combined with aged contaminated soil in co-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120323. [PMID: 38417356 DOI: 10.1016/j.jenvman.2024.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Accumulation of persistent organic pollutants polycyclic aromatic hydrocarbons (PAHs) in soil has become a global problem. Composting is considered one of the more economical methods of soil remediation and is important for the resourceful use of wastes. Agroforestry waste is produced in huge amounts and is utilized at low rates, hence there is an urgent need to manage it. Here, leaf (LVS) or rice straw (SVS) was co-composting with aged contaminated soil to investigate bacteria interaction to PAHs degradation and humus formation. The degradation rate of high molecular weight PAHs (HMW-PAHs) in LVS and SVS reached 58.9% and 52.5%, and the low molecular weight PAHs (LMW-PAHs) were 77.5% and 65%. Meanwhile, the humus increased by 44.8% and 60.5% in LVS and SVS at the end of co-composting. The topological characteristics and community assembly of the bacterial community showed that LVS had higher complexity and more keystones than SVS, suggesting that LVS might more beneficial for the degradation of PAHs. The stability of the co-occurrence network and stochastic processes (dispersal limitation) dominated community assembly made SVS beneficial for humus formation. Mantel test and structural equation models indicated that the transformation of organic matter was important for PAHs degradation and humus formation. Degradation of HMW-PAHs led to bacterial succession, which affected the formation of precursors and ultimately increased the humus content. This study provided potential technology support for improving the quality of agroforestry organic waste composting and degrading PAHs in aged contaminated soil.
Collapse
Affiliation(s)
- Jiayue Huang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Anyang Li
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fangzhi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Pengfei Tang
- Heilongjiang Provincial Ecological Environment Monitoring Center, Harbin, 150056, China
| | - Jizhe Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Wenxuan Feng
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Chang Fu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|