1
|
Manna SK, Rout A, Mondal S, Mukhopadhyay S. Recent advancements of chromogenic and fluorogenic organic probes for the sensing of greenhouse gas CO 2: current achievements, challenges and future prospects. Talanta 2025; 295:128296. [PMID: 40373586 DOI: 10.1016/j.talanta.2025.128296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Considering the significant environmental, biological, and industrial importance of CO2, the design, and development of chromogenic and fluorogenic organic probes has become a significant research topic in the past few decades. The design techniques, sensing mechanisms, and uses of organic CO2 probes published since 2019 have all been addressed in this feature article. We initially classified these CO2 probes into two categories: 1. CO2 chemosensor and 2. CO2 chemodosimeter. We again categorize CO2 chemosensors into five distinct types: (i) anion-induced deprotonation strategy; (ii) aggregation-induced emission (AIE)-based chemosensors; (iii) ionic-liquid-based chemosensors; (iv) polymer-based chemosensors; and (v) miscellaneous approaches. This review explores the achievements of these probes, their limitations and challenges, and future opportunities in this field. It also presents a comparison of all these probes. We anticipate that this review will be beneficial to researchers in the design of chromogenic and fluorogenic CO2 probes for biological and environmental applications in the future.
Collapse
Affiliation(s)
- Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur, West Bengal 721657, India.
| | - Arnab Rout
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sanchita Mondal
- Department of Chemistry, Sree Chaitanya College, Habra, North 24 Parganas, West Bengal 743268, India.
| | | |
Collapse
|
2
|
Ekele JU, Webster R, Perez de Heredia F, Lane KE, Fadel A, Symonds RC. Current impacts of elevated CO 2 on crop nutritional quality: a review using wheat as a case study. STRESS BIOLOGY 2025; 5:34. [PMID: 40338468 PMCID: PMC12061828 DOI: 10.1007/s44154-025-00217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 05/09/2025]
Abstract
This review synthesises current research findings and modelling approaches to explore the impact of elevated atmospheric carbon dioxide (eCO2) concentrations on crop productivity, water and nutrient use efficiency, plant nutritional quality, and the implications for global food security. Over recent decades, rising atmospheric CO2 levels have sparked significant concern due to their role in driving climate change. While some studies highlight the potential benefits of eCO2, such as increased crop yields and improved water-use efficiency, many recent investigations reveal a concerning decline in crop nutritional quality. eCO2 has been shown to reduce concentrations of key nutrients, including nitrogen, minerals, vitamins, polyphenols, and other non-nutrient compounds, as well as alter gene expression. These changes are further complicated by interactions with heat stress and drought, presenting significant challenges in predicting sustainable future crop productivity. These nutritional declines exacerbate the global crisis of malnutrition and hidden hunger, threatening the achievement of Sustainable Development Goal 2 (SDG2), which aims to end hunger and ensure food security. Addressing these challenges requires further research, interdisciplinary collaboration, and innovative approaches to mitigate the adverse effects of eCO2 on crop physiology and nutritional content while maximising agricultural sustainability. This review aims to provide insights into the complex mechanisms governing crop responses to eCO2 using wheat as a model and proposes pathways for future research and agricultural practices. These strategies are critical for tackling the intricate dynamics of climate variability, ensuring nutrient-rich food production, and securing food security in the face of a rapidly changing climate.
Collapse
Affiliation(s)
- Jiata Ugwah Ekele
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Richard Webster
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
- Institute of Health Research, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Katie E Lane
- Department of Sports and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Abdulmannan Fadel
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 1555, Al Ain, United Arab Emirates
| | - Rachael C Symonds
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
3
|
Dekamin M, Norooz-Valashedi R, Toranjian A. Environmental, energy, and economic (3E) assessment of viticulture systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65446-65463. [PMID: 39586975 DOI: 10.1007/s11356-024-35575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Given the current trends, it seems obvious that temperatures and atmospheric carbon dioxide levels will rise over the coming years. To deal with climate change, a gradual transition to more sustainable viticulture operations is required. It seems necessary to carry out accurate local studies for future projections. The purpose of the current study was to choose the best grape production system in Jowzan Valley, Malayer, Iran. This region was registered by FAO as a Globally Important Agricultural Heritage System (GIAHS) in 2018. This study seeks to answer the question: if climate change has occurred in the Malayer region, which of the traditional and trellis systems is more sustainable from economic, energy, and environmental aspects? The sixth phase of the Coupled Model Intercomparison Project (CMIP6) was used to project the climate parameters of Malayer in the past and the future. The output of climate models based on rainfall, temperature, and wind (as factors influencing grape yield) in the observation period of 1992-2021 (the base period) and forecasting the future period of 2021-2100 under three scenarios (SSP1-26, SSP2-45, and SSP5-85) were obtained. The determination of hotspots in terms of cost, energy, and environment for two production systems was done with the approaches of material and energy flow cost accounting (MFCA) and life cycle assessment (LCA). The results of these two approaches help us know which of the two systems are currently more sustainable in terms of economic, energy, and environmental aspects. Grape production in 1 hectare was chosen as a functional unit (FU). The system boundary included the foreground processes that the farmer was directly involved in managing. Grape data were collected in the crop year of 2021-2022 from the vineyards of Jowzan region. According to results, under SSP1-26, SSP2-45, and SSP5-85 scenarios, the annual mean temperature is expected to rise at rates of 0.27, 0.477, and 0.82 °C 10a-1 in the future (2021-2100), respectively. From an economic point of view, labor was recognized as the main input. By changing the system from traditional to trellis, production costs can be expected to be halved. The main hotspot in terms of negative products was the loss of grapes during production or harvesting. Such conditions were also true in terms of energy. From the environmental aspect, on-farm emissions and electricity were identified as hotspots. These effects are greatly reduced in the trellis system compared to the traditional system. In the case of changing the system from traditional to trellis, these effects can be reduced to a reasonable extent by improving the efficiency of irrigation and fertilizer distribution through the irrigation system. According to the results obtained from the climate scenarios as well as the results of the economic, environmental, and energy evaluation of the two production systems, it can be concluded that the use of the trellis system can be more sustainable than the traditional system.
Collapse
Affiliation(s)
- Majid Dekamin
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran.
| | - Reza Norooz-Valashedi
- Water Engineering Department, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Amin Toranjian
- Department of Water and Soil Science, Faculty of Agriculture, Malayer University, Malayer, Iran
| |
Collapse
|
4
|
He D, Ma H, Hu D, Wang X, Dong Z, Zhu B. Biochar for sustainable agriculture: Improved soil carbon storage and reduced emissions on cropland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123147. [PMID: 39504664 DOI: 10.1016/j.jenvman.2024.123147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Climate change, driven by excessive greenhouse gas (GHG) emissions from agricultural land, poses a serious threat to ecological security. It is now understood that significant differences exist in the responses of soil GHG emissions and soil carbon (C) sequestration to the application of different C-based materials (i.e., straw, organic manure (OM), and biochar). Therefore, elucidating the mechanisms by which differences in the properties of these materials affect soil GHG emissions is essential to comprehensively investigate the mechanisms through which variations in material properties influence soil GHG emissions. Herein, we conducted a field experiment to evaluate the responses of soil GHG emissions to cropland application of different C-based materials and employed molecular modeling calculations to explore the mechanisms by which differences in the properties of these materials affect soil GHG emissions. The results showed that biochar demonstrated superior resistance to biochemical decomposition and soil GHG adsorption capacity, leading to a significant reduction in soil GHG emissions due to its excellent physicochemical properties. The active surface properties of straw and OM enhanced their interaction with decomposing enzymes and accelerated their biochemical decomposition. Wheat-maize rotation with biochar application reduced CO2 emissions by 1089.8 kg CO2eq ha-1 and increased soil organic carbon by 141.8% compared to the control after one year. Collectively, these results contribute to the optimization of cropland application strategies for crop residues to balance soil C sequestration and soil GHG emissions, and to ensure sustainable agriculture and ecological security.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Ma
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongni Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoguo Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhixin Dong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Aldosari O, Ali ZM, Abdel Aleem SHE, Mostafa MH. Optimizing microgrid performance: Strategic integration of electric vehicle charging with renewable energy and storage systems for total operation cost and emissions minimization. PLoS One 2024; 19:e0307810. [PMID: 39361614 PMCID: PMC11449302 DOI: 10.1371/journal.pone.0307810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/11/2024] [Indexed: 10/05/2024] Open
Abstract
At present, renewable energy sources (RESs) and electric vehicles (EVs) are presented as viable solutions to reduce operation costs and lessen the negative environmental effects of microgrids (μGs). Thus, the rising demand for EV charging and storage systems coupled with the growing penetration of various RESs has generated new obstacles to the efficient operation and administration of these μGs. In this regard, this paper introduces a multi-objective optimization model for minimizing the total operation cost of the μG and its emissions, considering the effect of battery storage system (BSS) and EV charging station load. A day-ahead scheduling model is proposed for optimal energy management (EM) of the μG investigated, which comprises photovoltaics (PVs), fuel cells (FCs), wind turbines (WTs), BSSs, and EV charging stations, with shed light on the viability and benefits of connecting BSS with EV charging stations in the μG. Analyzing three case studies depending on the objective function-Case 1: execute EM to minimize total operation cost and maximize the profits of BSS, Case 2: execute EM to minimize total emission from the μG, and Case 3: execute EM to minimize total operation cost, maximize the profits of BSS, and minimize total emissions from the μG. The main aim of the presented optimization strategy is to achieve the best possible balance between reducing expenses and lessening the environmental impact of greenhouse gas emissions. The krill herd algorithm (KHA) is used to find the optimal solutions while considering various nonlinear constraints. To demonstrate the validity and effectiveness of the proposed solution, the study utilizes the KHA and compares the obtained results with those achieved by other optimization methods. It was demonstrated that such integration significantly enhances the μG's operational efficiency, reduces operating costs, and minimizes environmental impact. The findings underscore the viability of combining EV charging infrastructure with renewable energy to meet the increasing energy demand sustainably. The novelty of this work lies in its multi-objective optimization approach, the integration of EV charging and BSS in μGs, the comparison with other optimization methods, and the emphasis on sustainability and addressing energy demand through the utilization of renewable energy and EVs.
Collapse
Affiliation(s)
- Obaid Aldosari
- Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Wadi Alddawasir, Saudi Arabia
| | - Ziad M Ali
- Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Wadi Alddawasir, Saudi Arabia
- Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan, Egypt
| | - Shady H E Abdel Aleem
- Department of Electrical Engineering, Institute of Aviation Engineering and Technology, Giza, Egypt
| | - Mostafa H Mostafa
- Department of Electrical Power and Machines, International Academy of Engineering and Media Science, Giza, Egypt
| |
Collapse
|
6
|
Xing Y, Wang X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:2285. [PMID: 39204720 PMCID: PMC11360188 DOI: 10.3390/plants13162285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
This review paper synthesizes the current understanding of greenhouse gas (GHG) emissions from field cropping systems. It examines the key factors influencing GHG emissions, including crop type, management practices, and soil conditions. The review highlights the variability in GHG emissions across different cropping systems. Conventional tillage systems generally emit higher levels of carbon dioxide (CO2) and nitrous oxide (N2O) than no-till or reduced tillage systems. Crop rotation, cover cropping, and residue management can significantly reduce GHG emissions by improving soil carbon sequestration and reducing nitrogen fertilizer requirements. The paper also discusses the challenges and opportunities for mitigating GHG emissions in field cropping systems. Precision agriculture techniques, such as variable rate application of fertilizers and water, can optimize crop production while minimizing environmental impacts. Agroforestry systems, which integrate trees and crops, offer the potential for carbon sequestration and reducing N2O emissions. This review provides insights into the latest research on GHG emissions from field cropping systems and identifies areas for further study. It emphasizes the importance of adopting sustainable management practices to reduce GHG emissions and enhance the environmental sustainability of agricultural systems.
Collapse
Affiliation(s)
| | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan’an University, Yan’an 716000, China;
| |
Collapse
|
7
|
Godwin A, Pieralli S, Sofkova-Bobcheva S, Ward A, McGill C. Pollen-mediated gene flow from wild carrots (Daucus carota L. subsp. carota) affects the production of commercial carrot seeds (Daucus carota L. subsp. sativus) internationally and in New Zealand in the context of climate change: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173269. [PMID: 38754518 DOI: 10.1016/j.scitotenv.2024.173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Climate change will impact the carrot seed industry globally. One adaptation strategy to limit climatic impacts on the production of commercial carrot seeds is geographical shift. However, production must be shifted to climate-optimal places that are free from weeds such as wild carrots to avoid genetic contamination via hybridization. The process of gene flow between wild and cultivated carrots is critical to enable management of wild carrots in the face of climate change. This review systematically assesses the resilience of wild carrots to climate change and their impact on commercial carrot seed production globally with a focus on New Zealand as a major carrot seed producer. The literature was critically analyzed based on three specific components: i) resilience of wild carrots to climate change ii) genetic contamination between wild and cultivated carrots, and iii) management of wild carrots. The majority of the articles were published between 2013 and 2023 (64.71 %), and most of these studies were conducted in Europe (37.26 %) and North America (27.45 %). Country-wise analysis demonstrated that the majority of the studies were carried out in the United States (23.53 %) and the Netherlands (11.77 %). There was limited research conducted in other regions, especially in Oceania (1.96 %). Spatial distribution analysis revealed that the wild carrot was reported in around 100 countries. In New Zealand the North Island has a higher incidence of wild carrot invasion than the South Island. The findings indicated that the wild carrot is becoming more adaptable to climate change, compromising the genetic purity of cultivated carrots due to pollen flow from wild to cultivated carrots. Therefore, ongoing research will be helpful in developing sustainable weed management strategies and predicting potential geographical invasiveness. This study provides a guide for scientists, policymakers, industrialists, and farmers to control wild carrots and produce genetically pure commercial seeds amid climate change.
Collapse
Affiliation(s)
- Asharp Godwin
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; Department of Agronomy, Faculty of Agriculture, University of Jaffna, Ariviyal Nagar, Kilinochchi, Sri Lanka.
| | - Simone Pieralli
- European Commission Joint Research Centre, 41092 Seville, Spain
| | - Svetla Sofkova-Bobcheva
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Andrew Ward
- AsureQuality Limited, Batchelar Agriculture Centre, Tennent Drive, PO Box 609, Palmerston North 4440, New Zealand
| | - Craig McGill
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
8
|
Garg A, Basu S, Shetti NP, Bhattu M, Alodhayb AN, Pandiaraj S. Biowaste to bioenergy nexus: Fostering sustainability and circular economy. ENVIRONMENTAL RESEARCH 2024; 250:118503. [PMID: 38367840 DOI: 10.1016/j.envres.2024.118503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Existing fossil-based commercial products present a significant threat to the depletion of global natural resources and the conservation of the natural environment. Also, the ongoing generation of waste is giving rise to challenges in waste management. Conventional practices for the management of waste, for instance, incineration and landfilling, emit gases that contribute to global warming. Additionally, the need for energy is escalating rapidly due to the growing populace and industrialization. To address this escalating desire in a sustainable manner, access to clean and renewable sources of energy is imperative for long-term development of mankind. These interrelated challenges can be effectively tackled through the scientific application of biowaste-to-bioenergy technologies. The current article states an overview of the strategies and current status of these technologies, including anaerobic digestion, transesterification, photobiological hydrogen production, and alcoholic fermentation which are utilized to convert diverse biowastes such as agricultural and forest residues, animal waste, and municipal waste into bioenergy forms like bioelectricity, biodiesel, bio alcohol, and biogas. The successful implementation of these technologies requires the collaborative efforts of government, stakeholders, researchers, and scientists to enhance their practicability and widespread adoption.
Collapse
Affiliation(s)
- Anushka Garg
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech, Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech, Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India.
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India.
| | - Monika Bhattu
- Department of Chemistry, University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Dabravolski SA, Isayenkov SV. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1468. [PMID: 38891277 PMCID: PMC11174624 DOI: 10.3390/plants13111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
10
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|