1
|
Han J, Xu G, Liu X, Jiang L, Shao K, Yang H, Zhu G, Ding A, Shang Z, Chen L, Dou J. Carbonate composite materials for the leaching remediation of uranium-contaminated soils: Mechanistic insights and engineering applications. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136814. [PMID: 39662348 DOI: 10.1016/j.jhazmat.2024.136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
In this study, a composite leaching agent consisting of Na2CO3, NaHCO3, H2O2, and deep eutectic solvents was synthesized, and its composition and application conditions were optimized to mitigate soil contamination resulting from uranium mining. Laboratory and pilot field tests revealed that the use of this agent facilitated up to 92.6 % removal of uranium from contaminated soils. Analytical characterization through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) revealed that CO32- readily formed complexes with uranium, increasing its mobility and desorption from soil particles. The safety of the leaching process was confirmed through plant growth tests and enzyme activity assays. Moreover, the leaching strategy not only adheres to environmentally sustainable principles but also replenishes carbon and nitrogen in the soil, thereby aiding in the restoration of its functional use.
Collapse
Affiliation(s)
- Juncheng Han
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinyao Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Likun Jiang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kexin Shao
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Haotian Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Guangsheng Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhaorong Shang
- Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, PR China
| | - Ling Chen
- China Institute of Atomic Energy, Beijing 102413, PR China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
2
|
Jia X, Lin S, Wang Y, Zhang Q, Jia M, Li M, Chen Y, Cheng P, Hong L, Zhang Y, Ye J, Wang H. Recruitment and Aggregation Capacity of Tea Trees to Rhizosphere Soil Characteristic Bacteria Affects the Quality of Tea Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:1686. [PMID: 38931118 PMCID: PMC11207862 DOI: 10.3390/plants13121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
There are obvious differences in quality between different varieties of the same plant, and it is not clear whether they can be effectively distinguished from each other from a bacterial point of view. In this study, 44 tea tree varieties (Camellia sinensis) were used to analyze the rhizosphere soil bacterial community using high-throughput sequencing technology, and five types of machine deep learning were used for modeling to obtain characteristic microorganisms that can effectively differentiate different varieties, and validation was performed. The relationship between characteristic microorganisms, soil nutrient transformation, and tea quality formation was further analyzed. It was found that 44 tea tree varieties were classified into two groups (group A and group B) and the characteristic bacteria that distinguished them came from 23 genera. Secondly, the content of rhizosphere soil available nutrients (available nitrogen, available phosphorus, and available potassium) and tea quality indexes (tea polyphenols, theanine, and caffeine) was significantly higher in group A than in group B. The classification result based on both was consistent with the above bacteria. This study provides a new insight and research methodology into the main reasons for the formation of quality differences among different varieties of the same plant.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan 364012, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan 364012, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.); (J.Y.)
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|
3
|
Tian H, Wang L, Zhu X, Zhang M, Li L, Liu Z, Abolfathi S. Biodegradation of microplastics derived from controlled release fertilizer coating: Selective microbial colonization and metabolism in plastisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170978. [PMID: 38365031 DOI: 10.1016/j.scitotenv.2024.170978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Coated controlled-release fertilizers (CRFs) are widely used in agriculture, and the persistent presence of residual polymer coating has raised environmental concerns. This study investigates the underlying degradation dynamics of microplastics (MPs) derived from three typical materials used in CRFs, including polyethylene (PE), epoxy (EP), and polyurethane (PU), through a soil degradation test. The formation of surface biofilm, the succession process, and metabolic characteristics of microbial community are revealed by laser scanning confocal microscope, 16S rRNA sequencing, and non-targeted metabolomics analysis. The weight loss rates of PE, EP, and PU after 807 days of degradation were 16.70 %, 2.79 %, and 4.86 %, respectively. Significant secondary MPs were produced with tears and holes appeared in the coating cross sections and pyrolysis products were produced such as ethers, acids, and esters for PE; alkanes, olefins and their branched-chain derivatives for EP; and short-chain fatty acids and benzene molecules for PU. The coating surface selectively recruited the bacteria of Chujaibacter and Ralstonia and fungus of Fusarium and Penicillium, forming biofilm composed of lipids, proteins, and living cells. The metabolism of amino acids and polymers was enhanced to protect against MP-induced stress. The metabolites or intermediates of organic acids and derivatives, oxygen-contained organic compounds, and benzenoids on CRF surface increased significantly compared with soil, but there were no significant differences among different coating types. This study provides insights to the underlying mechanisms of biodegradation and microenvironmental changes of MPs in soil.
Collapse
Affiliation(s)
- Hongyu Tian
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lingyun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaofan Zhu
- Faculty of Engineering, University of Bristol, Bristol BS8 1TH, United Kingdom
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lei Li
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, United States
| | - Zhiguang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Soroush Abolfathi
- School of Engineering, University of Warwick, Coventry CV47AL, United Kingdom
| |
Collapse
|
4
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
5
|
Chen H, Yang L, Zhao S, Xu H, Zhang Z. Long-term toxic effects of iron-based metal-organic framework nanopesticides on earthworm-soil microorganism interactions in the soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170146. [PMID: 38278247 DOI: 10.1016/j.scitotenv.2024.170146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
With the widespread use of controlled-release nanopesticides in field conditions, the interactions between these nanopesticides and biological systems are complex and highly uncertain. The toxicity of iron-based metal organic frameworks (CF@MIL-101-SL) loaded with chlorfenapyr (CF) to terrestrial invertebrate earthworms in filter paper and soil environments and the potential mechanisms of interactions in the nanopesticide-earthworm-cornfield soil microorganism system were investigated for the first time. The results showed that CF@MIL-101-SL was more poisonous to earthworms in the contact filter paper test than suspension concentrate of CF (CF-SC), and conversely, CF@MIL-101-SL was less poisonous to earthworms in the soil test. In the soil environment, the CF@MIL-101-SL treatment reduced oxidative stress and the inhibition of detoxifying enzymes, and reduced tissue and cellular substructural damage in earthworms compared to the CF-SC treatment. Long-term treatment with CF@MIL-101-SL altered the composition and abundance of microbial communities with degradative functions in the earthworm intestine and soil and affected the soil nitrogen cycle by modulating the composition and abundance of nitrifying and denitrifying bacterial communities in the earthworm intestine and soil, confirming that soil microorganisms play an important role in reducing the toxicity of CF@MIL-101-SL to earthworms. In conclusion, this study provides new insights into the ecological risks of nanopesticides to soil organisms.
Collapse
Affiliation(s)
- Huiya Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Liupeng Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Shiji Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|