1
|
Nguyen NP, Le QG, Truong VN, Nguyen TND, Phan NTT, Tran MH. In vitro inhibition of 5-α reductase and in vivo suppression of benign prostatic hyperplasia by Physalis angulata ethyl acetate extract. Fitoterapia 2024; 175:105950. [PMID: 38599338 DOI: 10.1016/j.fitote.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The inhibitory effect against 5-α reductase of the ethyl acetate (EA) extract from Physalis angulata was evaluated in vitro using mouse prostate homogenates, and the suppression of benign prostatic hyperplasia (BPH) was assessed in a mouse model of testosterone-induced BPH. The EA extract exhibited a potentially inhibitory effect on 5-α reductase with an IC50 of 197 μg/ml. In BPH mice, the EA extract at a dose of 12 mg/kg was comparable to finasteride 5 mg/kg in suppressing BPH in terms of reducing absolute enlarged prostate weight (p < 0.05 vs. BPH group) and mitigating the hypertrophy of glandular elements and prostate connective tissue. Identification of chemical ingredients in the EA extract by UPLC-QTOF-MS revealed 37 substances belonging chiefly to flavonoids and physalins. Further quantification of the EA extract by HPLC-PDA methods revealed that chlorogenic acid, and rutin were the main components. Molecular docking studies of chlorogenic acid and rutin on 5-α reductase showed their high affinity to the enzyme with binding energies of -9.3 and - 9.2 kcal/mol, respectively compared with finasteride (- 10.3 kcal/mol). Additionally, chlorogenic acid inhibited 5-α reductase with an IC50 of 12.07 µM while rutin did not. The presence of chlorogenic acid in the EA extract may explain the inhibitory effects of the EA extract on 5-α reductase, and thus the suppression of BPH.
Collapse
Affiliation(s)
- Ngoc Phuc Nguyen
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Quoc Giang Le
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Vinh Nghi Truong
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Thi Ngoc Dung Nguyen
- Department of Analytical Chemistry and Drug Quality Control, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | | | - Manh Hung Tran
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
2
|
Santiago-Figueroa I, González-Cortazar M, Estrada-Flores JG, Cuéllar-Ordaz JA, López-Arellano ME, González-Reyes FJ, Olmedo-Juárez A, Higuera-Piedrahita RI. Synergistic Interaction Effect of Artemisia cina n-hexane Extract and Tagetes lucida Ethyl Acetate Extract on Haemonchus Contortus. Acta Parasitol 2024; 69:1132-1140. [PMID: 38568361 PMCID: PMC11182837 DOI: 10.1007/s11686-024-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE We analysed the possible synergistic activity among active extracts from Artemisia cina and Tagetes lucida combinations on Haemonchus contortus, a nematode parasitising sheep. METHODS The work was carried out in vitro on eggs and infective larvae (L3) of H. contortus. The results were analysed with SAS 9.1, applying the ANOVA and Tukey test, and the lethal concentration (LC) values LC50 and LC90 were determined with regression analysis, employing Proc Probit of SAS 9.1. Additionally, the lethal concentration (LC) was calculated with LC50 and LC90 to determine the synergistic effect. RESULTS The results demonstrated a high efficacy of the two plants studied on both nematode eggs and L3 larvae as well as of their combinations. The highest egg hatching inhibition was obtained with a 50/50 combination, and the best larvae mortality was obtained with 25% A. cina and 75% T. lucida at 10 mg/mL. Additionally, this combination showed a synergistic effect. CONCLUSION The two plant species studied here can be applied as natural anthelmintic alternatives due to their high bioactive effect and synergistic response.
Collapse
Affiliation(s)
- Itzel Santiago-Figueroa
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carr. Cuautitlán- Teoloyucan Km 2.5, Col. San Sebastián Xhala, CP 54714, Cuautitlán, México
| | - Manases González-Cortazar
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, 62790, Xochitepec, CP, México
| | - Julieta Gertrudis Estrada-Flores
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México (UAEM), Estado de México, Campus UAEM El Cerrillo, El Cerrillo Piedras Blancas, 50090, Toluca, México
| | - Jorge Alfredo Cuéllar-Ordaz
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carr. Cuautitlán- Teoloyucan Km 2.5, Col. San Sebastián Xhala, CP 54714, Cuautitlán, México
| | - María Eugenia López-Arellano
- Centro de Investigación Disciplinaria en Salud Animal e Inocuidad, Agrícolas y Pecuarias (INIFAP), Instituto Nacional de Investigaciones Forestales, Carr. Fed. Cuernavaca-Cuautla No. 8534, CP 62550, Jiutepec, México
| | | | - Agustín Olmedo-Juárez
- Centro de Investigación Disciplinaria en Salud Animal e Inocuidad, Agrícolas y Pecuarias (INIFAP), Instituto Nacional de Investigaciones Forestales, Carr. Fed. Cuernavaca-Cuautla No. 8534, CP 62550, Jiutepec, México.
| | - Rosa Isabel Higuera-Piedrahita
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carr. Cuautitlán- Teoloyucan Km 2.5, Col. San Sebastián Xhala, CP 54714, Cuautitlán, México.
| |
Collapse
|
3
|
Wang FR, Peng ML, Zhu QF, Yu LL, Zhang LJ, Xu SY, Wang Q, Li J, He X, Liao SG, Ao JL, Xu GB. Withanolides from the active extract of Physalis angulate and their anti-hepatic fibrosis effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117830. [PMID: 38301983 DOI: 10.1016/j.jep.2024.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalis angulata L., a traditional Chinese medicine called "Kuzhi" in China, was used traditionally to treat liver diseases (eg. icterus, hepatitis) as well as malaria, asthma, and rheumatism. AIM OF THE STUDY Our study aimed to investigate the withanolides with anti-hepatic fibrosis effect from P. angulate. MATERIALS AND METHODS Withanolides were obtained from the EtOH extract of P. angulate by bioassay-molecular networking analysis-guided isolation using column chromatography and normal/reversed-phase semipreparative HPLC. The structures of new withanolides were elucidated by combinations of spectroscopic techniques with NMR and ECD calculations. MTT cell viability assay, AO/EB staining method, cell wound healing assay, ELISA and Western blot experiments were employed to evaluate the anti-hepatic fibrosis activity and to uncover related mechanism. Molecular docking analysis and cellular thermal shift assay were used to evaluate and verify the interaction between the active withanolides and their potential targets. RESULTS Eight unreported withanolides, withagulides A-H (1-8), along with twenty-eight known ones were obtained from P. angulate. Withanolides 6, 9, 10, 24, 27, and 29-32 showed marked anti-hepatic fibrosis effect with COL1A1 expression inhibition above 50 %. Physalin F (9), the main component in the active fraction, significantly decreased the TGF β1-stimulated expressions of collagen I and α-SMA in LX-2 cells. Mechanism study revealed that physalin F exerted its anti-hepatic fibrosis effect via the PI3K/AKT/mTOR signaling pathway. CONCLUSION This study suggested that withanolides were an important class of natural products with marked anti-hepatic fibrosis effect. The main withanolide physalin F might be a promising candidate for hepatic fibrosis treatment. The work provided experimental foundation for the use of P. angulate to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Fu-Rui Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Mei-Lin Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Ling-Ling Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Li-Jie Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Shi-Ying Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Qian Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| | - Jun-Li Ao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
4
|
Chaniad P, Phuwajaroanpong A, Plirat W, Konyanee A, Septama AW, Punsawad C. Assessment of antimalarial activity of crude extract of Chan-Ta-Lee-La and Pra-Sa-Chan-Dang formulations and their plant ingredients for new drug candidates of malaria treatment: In vitro and in vivo experiments. PLoS One 2024; 19:e0296756. [PMID: 38206944 PMCID: PMC10783769 DOI: 10.1371/journal.pone.0296756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The emergence and spread of antimalarial drug resistance have become a significant problem worldwide. The search for natural products to develop novel antimalarial drugs is challenging. Therefore, this study aimed to assess the antimalarial and toxicological effects of Chan-Ta-Lee-La (CTLL) and Pra-Sa-Chan-Dang (PSCD) formulations and their plant ingredients. The crude extracts of CTLL and PSCD formulations and their plant ingredients were evaluated for in vitro antimalarial activity using Plasmodium lactate dehydrogenase enzyme and toxicity to Vero and HepG2 cells using the tetrazolium salt method. An extract from the CTLL and PSCD formulations exhibiting the highest selectivity index value was selected for further investigation using Peter's 4-day suppressive test, curative test, prophylactic test, and acute oral toxicity in mice. The phytochemical constituents were characterized using gas chromatography-mass spectrometry (GC-MS). Results showed that ethanolic extracts of CTLL and PSCD formulations possessed high antimalarial activity (half maximal inhibitory concentration = 4.88, and 4.19 g/mL, respectively) with low cytotoxicity. Ethanolic extracts of the CTLL and PSCD formulations demonstrated a significant dose-dependent decrease in parasitemia in mice. The ethanolic CTLL extract showed the greatest suppressive effect after 4 days of suppressive (89.80%) and curative (35.94%) testing at a dose of 600 mg/kg. Moreover, ethanolic PSCD extract showed the highest suppressive effect in the prophylactic test (65.82%) at a dose of 600 mg/kg. There was no acute toxicity in mice treated with ethanolic CTLL and PSCD extracts at 2,000 mg/kg bodyweight. GC-MS analysis revealed that the most abundant compounds in the ethanolic CTLL extract were linderol, isoborneol, eudesmol, linoleic acid, and oleic acid, whereas ethyl 4-methoxycinnamate was the most commonly found compound in the ethanolic PSCD extract, followed by 3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one, flamenol, oleic acid amide, linoleic acid, and oleic acid. In conclusions, ethanolic CTLL and PSCD extracts exhibited high antimalarial efficacy in vitro. The ethanolic CTLL extract at a dose of 600 mg/kg exhibited the highest antimalarial activity in the 4-day suppressive and curative tests, whereas the ethanolic PSCD extract at a dose of 600 mg/kg showed the highest antimalarial activity in the prophylactic test.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
5
|
Kusman IT, Pradini GW, Ma’ruf IF, Fauziah N, Berbudi A, Achadiyani A, Wiraswati HL. The Potentials of Ageratum conyzoides and Other Plants from Asteraceae as an Antiplasmodial and Insecticidal for Malaria Vector: An Article Review. Infect Drug Resist 2023; 16:7109-7138. [PMID: 37954507 PMCID: PMC10638911 DOI: 10.2147/idr.s433328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Background Malaria is a life-threatening disease prevalent in tropical and subtropical regions. Artemisinin combination therapy (ACT) used as an antimalarial treatment has reduced efficacy due to resistance, not only to the parasite but also to the vector. Therefore, it is important to find alternatives to overcome malaria cases through medicinal plants such as Ageratum conyzoides and other related plants within Asteraceae family. Purpose This review summarizes the antimalarial and insecticidal activities of A. conyzoides and other plants belonging to Asteraceae family. Data Source Google Scholar, PubMed, Science Direct, and Springer link. Study Selection Online databases were used to retrieve journals using specific keywords combined with Boolean operators. The inclusion criteria were articles with experimental studies either in vivo or in vitro, in English or Indonesian, published after 1st January 2000, and full text available for inclusion in this review. Data Extraction The antimalarial activity, insecticidal activity, and structure of the isolated compounds were retrieved from the selected studies. Data Synthesis Antimalarial in vitro study showed that the dichloromethane extract was the most widely studied with an IC50 value <10 μg/mL. Among 84 isolated active compounds, 2-hydroxymethyl-non-3-ynoic acid 2-[2,2']-bithiophenyl-5- ethyl ester, a bithienyl compound from the Tagetes erecta plant show the smallest IC50 with value 0.01 and 0.02 µg/mL in Plasmodium falciparum MRC-pf-2 and MRC-pf-56, respectively. In vivo studies showed that the aqueous extract of A. conyzoides showed the best activity, with a 98.8% inhibition percentage using a 100 mg/kg dose of Plasmodium berghei (NK65 Strain). (Z)- γ-Bisabolene from Galinsoga parviflora showed very good insecticidal activity against Anopheles stephensi and Anopheles subpictus with LC50 values of 2.04 μg/mL and 4.05 μg/mL. Conclusion A. conyzoides and other plants of Asteraceae family are promising reservoirs of natural compounds that exert antimalarial or insecticidal activity.
Collapse
Affiliation(s)
| | - Gita Widya Pradini
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Ilma Fauziah Ma’ruf
- Research Center for Climate and Atmosphere, National Research and Innovation Agency, Bandung, 40135Indonesia
| | - Nisa Fauziah
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Afiat Berbudi
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Achadiyani Achadiyani
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Hesti Lina Wiraswati
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| |
Collapse
|
6
|
Tabuti JRS, Obakiro SB, Nabatanzi A, Anywar G, Nambejja C, Mutyaba MR, Omara T, Waako P. Medicinal plants used for treatment of malaria by indigenous communities of Tororo District, Eastern Uganda. Trop Med Health 2023; 51:34. [PMID: 37303066 DOI: 10.1186/s41182-023-00526-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Malaria remains the leading cause of death in sub-Saharan Africa. Although recent developments such as malaria vaccine trials inspire optimism, the search for novel antimalarial drugs is urgently needed to control the mounting resistance of Plasmodium species to the available therapies. The present study was conducted to document ethnobotanical knowledge on the plants used to treat symptoms of malaria in Tororo district, a malaria-endemic region of Eastern Uganda. METHODS An ethnobotanical study was carried out between February 2020 and September 2020 in 12 randomly selected villages of Tororo district. In total, 151 respondents (21 herbalists and 130 non-herbalists) were selected using multistage random sampling method. Their awareness of malaria, treatment-seeking behaviour and herbal treatment practices were obtained using semi-structured questionnaires and focus group discussions. Data were analysed using descriptive statistics, paired comparison, preference ranking and informant consensus factor. RESULTS A total of 45 plant species belonging to 26 families and 44 genera were used in the preparation of herbal medicines for management of malaria and its symptoms. The most frequently mentioned plant species were Vernonia amygdalina, Chamaecrista nigricans, Aloe nobilis, Warburgia ugandensis, Abrus precatorius, Kedrostis foetidissima, Senna occidentalis, Azadirachta indica and Mangifera indica. Leaves (67.3%) were the most used plant part while maceration (56%) was the major method of herbal remedy preparation. Oral route was the predominant mode of administration with inconsistencies in the posology prescribed. CONCLUSION This study showed that the identified medicinal plants in Tororo district, Uganda, are potential sources of new antimalarial drugs. This provides a basis for investigating the antimalarial efficacy, phytochemistry and toxicity of the unstudied species with high percentage use values to validate their use in the management of malaria.
Collapse
Affiliation(s)
- John R S Tabuti
- Department of Environmental Management, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda.
| | - Alice Nabatanzi
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Cissy Nambejja
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Michael R Mutyaba
- National Drug Authority, Ministry of Health, P.O. Box 23096, Kampala, Uganda
| | - Timothy Omara
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), The Tulln University and Research Center (UFT), Konrad-Lorenz-Straße 24, 3430, Tulln an der Donau, Austria
| | - Paul Waako
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| |
Collapse
|
7
|
Chaniad P, Techarang T, Phuwajaroanpong A, Plirat W, Na-Ek P, Konyanee A, Viriyavejakul P, Septama AW, Punsawad C. Preclinical evaluation of antimalarial activity of CPF-1 formulation as an alternative choice for the treatment of malaria. BMC Complement Med Ther 2023; 23:144. [PMID: 37143036 PMCID: PMC10158254 DOI: 10.1186/s12906-023-03973-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Kheaw Hom remedy is a traditional Thai medicine used to treat fever. Some plants used in the Kheaw Hom remedy show promising in vitro antimalarial activity. This study prepared novel formulations of plants from the Kheaw Hom remedy and evaluated their antimalarial and toxicological activities. METHODS Seven new formulations were prepared by combining at least three herbs of six selected plants from the Kheaw Hom remedy, namely Mammea siamensis Kosterm., Mesua ferrea L., Dracaena loureiroi Gagnep., Pogostemon cablin (Blanco) Benth., Kaempferia galanga L, and Eupatorium stoechadosmum Hance. In vitro antimalarial activities of each formulation's aqueous and ethanolic extracts were evaluated using the parasite lactate dehydrogenase (pLDH) assay. Cytotoxicity in Vero and HepG2 cells was assessed using the MTT assay. An extract with good antimalarial potency and selectivity index (SI) was selected for in vivo antimalarial activity using Peter's 4-day suppressive test and acute oral toxicity test in mice. In addition, bioactive compounds were identified using Gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS Among the seven new formulations, ethanolic extracts of CPF-1 (Formulation 1) showed the highest activity with an IC50 value of 1.32 ± 0.66 µg/ml, followed by ethanolic extracts of Formulation 4 and Formulation 6 with an IC50 value of 1.52 ± 0.28 µg/ml and 2.48 ± 0.34 µg/ml, respectively. The highest SI values were obtained for the ethanolic extract of CPF-1 that was selected to confirm its in vivo antimalarial activity and toxicity. The results demonstrated a significant dose-dependent reduction in parasitemia. Maximum suppressive effect of the extract (72.01%) was observed at the highest dose administered (600 mg/kg). No significant toxicity was observed after the administration of 2000 mg/kg. Using GC-MS analysis, the most abundant compound in the ethanolic extract of CPF-1 was ethyl p-methoxycinnamate (14.32%), followed by 2-propenoic acid, 3-phenyl-, ethyl ester, (E)- (2.50%), and pentadecane (1.85%). CONCLUSION The ethanolic extract of CPF-1 showed promising in vitro and in vivo antimalarial efficacy, with no toxic effects at a dose of 2000 mg/kg, suggesting that the ethanolic extract of CPF-1 may serves as a new herbal formulation for the treatment of malaria. Additional research is required for safety and clinical pharmacology studies.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Tachpon Techarang
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prasit Na-Ek
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), West Java, 16915, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
8
|
Indradi RB, Muhaimin M, Barliana MI, Khatib A. Potential Plant-Based New Antiplasmodial Agent Used in Papua Island, Indonesia. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091813. [PMID: 37176870 PMCID: PMC10181418 DOI: 10.3390/plants12091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Resistance to antimalarial medicine remains a threat to the global effort for malaria eradication. The World Health Organization recently reported that artemisinin partial resistance, which was defined as delayed parasite clearance, was detected in Southeast Asia, particularly in the Greater Mekong subregion, and in Africa, particularly in Rwanda and Uganda. Therefore, the discovery of a potential new drug is important to overcome emerging drug resistance. Natural products have played an important role in drug development over the centuries, including the development of antimalarial drugs, with most of it influenced by traditional use. Recent research on traditional medicine used as an antimalarial treatment on Papua Island, Indonesia, reported that 72 plant species have been used as traditional medicine, with Alstonia scholaris, Carica papaya, Andrographis paniculata, and Physalis minima as the most frequently used medicinal plants. This review aimed to highlight the current research status of these plants for potential novel antiplasmodial development. In conclusion, A. paniculata has the highest potential to be developed as an antiplasmodial, and its extract and known bioactive isolate andrographolide posed strong activity both in vitro and in vivo. A. scholaris and C. papaya also have the potential to be further investigated as both have good potential for their antiplasmodial activities in vivo. However, P. minima is a less studied medicinal plant; nevertheless, it opens the opportunity to explore the potential of this plant.
Collapse
Affiliation(s)
- Raden Bayu Indradi
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Herbal Study, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Muhaimin Muhaimin
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Herbal Study, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kuliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| |
Collapse
|
9
|
Intan PR, Noviantari A. Response to Article "Evaluation of the Anti-Malarial Activity of the Crude Root Extract and Solvent Fraction of Sesamum indicum (Fabaceae)" [Letter]. J Exp Pharmacol 2023; 15:215-216. [PMID: 37162809 PMCID: PMC10164382 DOI: 10.2147/jep.s418029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Affiliation(s)
- Putri Reno Intan
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong - Bogor, West Java, Indonesia
- Correspondence: Putri Reno Intan, Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Genomic Building, Cibinong Science Center, Jalan Raya Bogor Km. 46, Cibinong - Bogor, West Java, 16911, Indonesia, Email
| | - Ariyani Noviantari
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong - Bogor, West Java, Indonesia
| |
Collapse
|
10
|
Antiplasmodial Properties of Aqueous and Ethanolic Extracts of Ten Herbal Traditional Recipes Used in Thailand against Plasmodium falciparum. Trop Med Infect Dis 2022; 7:tropicalmed7120417. [PMID: 36548672 PMCID: PMC9786625 DOI: 10.3390/tropicalmed7120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the in vitro and in vivo antiplasmodial efficacy and toxicity of aqueous and ethanolic extracts from traditional recipes used in Thailand. The aqueous and ethanolic extracts of ten traditional recipes were tested for in vitro antiplasmodial activity (parasite lactate dehydrogenase assay), cytotoxicity (MTT assay), and hemolysis). Oxidant levels were measured using cell-permeable probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate fluorescent dye-based assays. The best candidate was chosen for testing in mouse models using 4-day suppressive and acute toxicity assays. An in vitro study showed that ethanolic extracts and three aqueous extracts exhibited antiplasmodial activity, with an IC50 in the range of 2.8-15.5 µg/mL. All extracts showed high CC50 values, except for ethanolic extracts from Benjakul, Benjalotiga, and Trikatuk in HepG2 and Benjalotiga and aqueous extract from Chan-tang-ha in a Vero cell. Based on the results of the in vitro antiplasmodial activity, an aqueous extract of Triphala was chosen for testing in mouse models. The aqueous extract of Triphala exhibited good antiplasmodial activity, was safe at an oral dose of 2 g/kg, and is a potential candidate as a new source for the development of antimalarial drugs.
Collapse
|
11
|
Chaniad P, Phuwajaroanpong A, Techarang T, Horata N, Chukaew A, Punsawad C. Evaluation of the antimalarial activity and toxicity of Mahanil-Tang-Thong formulation and its plant ingredients. BMC Complement Med Ther 2022; 22:51. [PMID: 35219319 PMCID: PMC8882293 DOI: 10.1186/s12906-022-03531-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Novel potent antimalarial agents are urgently needed to overcome the problem of drug-resistant malaria. Herbal treatments are of interest because plants are the source of many pharmaceutical compounds. The Mahanil-Tang-Thong formulation is a Thai herbal formulation in the national list of essential medicines and is used for the treatment of fever. Therefore, this study aimed to evaluate the antimalarial activity of medicinal plants in the Mahanil-Tang-Thong formulation.
Methods
Nine medicinal plant ingredients of the Mahanil-Tang-Thong formulation were used in this study. Aqueous and ethanolic extracts of all the plants were analyzed for their phytochemical constituents. All the extracts were used to investigate the in vitro antimalarial activity against Plasmodium falciparum K1 (chloroquine-resistant strain) by using the lactate dehydrogenase (pLDH) method and cytotoxicity in Vero cells by using the 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, an extract with potent in vitro antimalarial activity and no toxicity was selected to determine the in vivo antimalarial activity with Peters’ 4-day suppressive test against the Plasmodium berghei ANKA strain. Acute toxicity was evaluated in mice for 14 days after the administration of a single oral dose of 2000 mg/kg.
Results
This study revealed that ethanolic extracts of Sapindus rarak DC., Tectona grandis L.f., Myristica fragrans Houtt. and Dracaena loureiri Gagnep. exhibited potent antimalarial activity, with half-maximal inhibitory concentration (IC50) values of 2.46, 3.21, 8.87 and 10.47 μg/ml, respectively, while the ethanolic of the formulation exhibited moderate activity with an IC50 value of 37.63 μg/ml and its aqueous extract had no activity (IC50 = 100.49 μg/ml). According to the in vitro study, the ethanolic wood extract of M. fragrans was selected for further investigation in an in vivo mouse model. M. fragrans extract at doses of 200, 400, and 600 mg/kg body weight produced a dose-dependent reduction in parasitemia by 8.59, 31.00, and 52.58%, respectively. No toxic effects were observed at a single oral dose of 2000 mg/kg body weight.
Conclusion
This study demonstrates that M. fragrans is a potential candidate for the development of antimalarial agents.
Collapse
|
12
|
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2022; 148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
13
|
Phuwajaroanpong A, Chaniad P, Horata N, Muangchanburee S, Kaewdana K, Punsawad C. In Vitro and In Vivo Antimalarial Activities and Toxicological Assessment of Pogostemon Cablin (Blanco) Benth. J Evid Based Integr Med 2021; 25:2515690X20978387. [PMID: 33302700 PMCID: PMC7734539 DOI: 10.1177/2515690x20978387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the antimalarial activities and toxicity of Pogostemon cablin extracts. In vitro activities against the chloroquine-resistant Plasmodium falciparum K1 strain were assessed by using the Plasmodium lactate dehydrogenase enzyme (pLDH) assay, while in vivo activity against the Plasmodium berghei ANKA strain in mice was investigated using a 4-day suppressive test. The in vitro and in vivo toxicity were determined in Vero cells and mice, respectively. The ethanolic extract possessed antimalarial activity with an IC50 of 24.49 ± 0.01 µg/ml, whereas the aqueous extract showed an IC50 of 549.30 ± 0.07 µg/ml. Cytotoxic analyses of the ethanolic and aqueous extracts revealed a nontoxic effect on Vero cells at a concentration of 80 µg/ml. Based on a preliminary study of in vitro antimalarial activity, the ethanolic extract was chosen as a potential agent for further in vivo antimalarial activity analysis in mice. The ethanolic extract, which showed no toxic effect on mice at a dose of 2000 mg/kg body weight, significantly suppressed parasitemia in mice by 38.41%, 45.12% and 89.00% at doses of 200, 400 and 600 mg/kg body weight, respectively. In conclusion, this study shows that the ethanolic P. cablin extract possesses in vitro and in vivo antimalarial activity without toxic effects.
Collapse
Affiliation(s)
| | - Prapaporn Chaniad
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Natharinee Horata
- Faculty of Medical Technology, Huachiew Chalermprakiet University, Samutprakan, Thailand
| | - Saowanee Muangchanburee
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
14
|
Tajbakhsh E, Kwenti TE, Kheyri P, Nezaratizade S, Lindsay DS, Khamesipour F. Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature. Malar J 2021; 20:349. [PMID: 34433465 PMCID: PMC8390284 DOI: 10.1186/s12936-021-03866-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Close to half a million people mainly children in Africa, die every year from the disease. With the rising resistance to frontline drugs (artemisinin-based combinations), there is a need to accelerate the discovery and development of newer anti-malarial drugs. A systematic review was conducted to identify the African medicinal plants with significant antiplasmodial and/or anti-malarial activity, toxicity, as wells as assessing the variation in their activity between study designs (in vitro and in vivo). METHODS Key health-related databases including Google Scholar, PubMed, PubMed Central, and Science Direct were searched for relevant literature on the antiplasmodial and anti-malarial activities of African medicinal plants. RESULTS In total, 200 research articles were identified, a majority of which were studies conducted in Nigeria. The selected research articles constituted 722 independent experiments evaluating 502 plant species. Of the 722 studies, 81.9%, 12.4%, and 5.5% were in vitro, in vivo, and combined in vitro and in vivo, respectively. The most frequently investigated plant species were Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia meanwhile Fabaceae, Euphorbiaceae, Annonaceae, Rubiaceae, Rutaceae, Meliaceae, and Lamiaceae were the most frequently investigated plant families. Overall, 248 (34.3%), 241 (33.4%), and 233 (32.3%) of the studies reported very good, good, and moderate activity, respectively. Alchornea cordifolia, Flueggea virosa, Cryptolepis sanguinolenta, Zanthoxylum chalybeum, and Maytenus senegalensis gave consistently very good activity across the different studies. In all, only 31 (4.3%) of studies involved pure compounds and these had significantly (p = 0.044) higher antiplasmodial activity relative to crude extracts. Out of the 198 plant species tested for toxicity, 52 (26.3%) demonstrated some degree of toxicity, with toxicity most frequently reported with Azadirachta indica and Vernonia amygdalina. These species were equally the most frequently inactive plants reported. The leaves were the most frequently reported toxic part of plants used. Furthermore, toxicity was observed to decrease with increasing antiplasmodial activity. CONCLUSIONS Although there are many indigenous plants with considerable antiplasmodial and anti-malarial activity, the progress in the development of new anti-malarial drugs from African medicinal plants is still slothful, with only one clinical trial with Cochlospermum planchonii (Bixaceae) conducted to date. There is, therefore, the need to scale up anti-malarial drug discovery in the African region.
Collapse
Affiliation(s)
- Elahe Tajbakhsh
- Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tebit Emmanuel Kwenti
- Department of Biomedical Science, Faculty of Health Sciences, Regional Hospital Buea, Buea, Cameroon
- Department of Public Health and Hygiene, Faculty of Health Sciences, University of Buea, Yaoundé, Cameroon
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, Yaoundé, Cameroon
| | - Parya Kheyri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Saeed Nezaratizade
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - David S Lindsay
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 1410 Prices Fork Road, Blacksburg, VA, 24061-0342, USA
| | - Faham Khamesipour
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Continuous Cultures of Plasmodium Falciparum Established in Tanzania from Patients with Acute Malaria. Mediterr J Hematol Infect Dis 2021; 13:e2021036. [PMID: 34007424 PMCID: PMC8114889 DOI: 10.4084/mjhid.2021.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
Background Malaria morbidity and mortality, almost entirely from Plasmodium falciparum, are still rampant in Africa: therefore, it is important to study the biology of the parasite and the parasite-host cell interactions. In vitro cultivation of Plasmodium falciparum is most useful for this purpose, as well as for investigating drug resistance and possible new therapies. Here we report that the Trager & Jensen continuous culture of P. falciparum can be established in a laboratory in Tanzania with minimal facilities and with modest expenditure. Methodology This was an in-vitro set up of continuous culture of Plasmodium falciparum study, carried out in 2016–2020 at Muhimbili university of health and allied sciences, Dar-es salaam. Parasite samples were obtained from patients with acute malaria, frozen parasites, and live cultures. Data was collected and analyzed using GraphPad Prism version 8. Results We have successfully achieved exponential growth of existing strains that are used worldwide, as well as of parasites in clinical samples from patients with acute malaria. In the aim to optimize growth we have compared human serum and bovine serum albumin as components of the culture media. Additionally, culture synchronization has been achieved using sorbitol. Conclusion This experimental system is now available to our institution and to researchers aiming at investigating drug sensitivity and mechanisms of protection against Plasmodium falciparum that accrue from various genes expressed in red cells.
Collapse
|
16
|
Dkhil MA, Al-Quraishy S, Al-Shaebi EM, Abdel-Gaber R, Thagfan FA, Qasem MA. Medicinal plants as a fight against murine blood-stage malaria. Saudi J Biol Sci 2021; 28:1723-1738. [PMID: 33732056 PMCID: PMC7938113 DOI: 10.1016/j.sjbs.2020.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Malaria is an infectious parasitic disease affecting most of countries worldwide. Due to antimalarial drug resistance, researchers are seeking to find another safe efficient source for treatment of malaria. Since many years ago, medicinal plants were widely used for the treatment of several diseases. In general, most application is done first on experimental animals then human. In this article, medicinal plants as antimalarial agents in experimental animals were reviewed from January 2000 until November 2020. MATERIALS AND METHODS In this systematic review published articles were reviewed using the electronic databases NCBI, ISI Web of knowledge, ScienceDirect and Saudi digital library to check articles and theses for M.Sc/Ph.D. The name of the medicinal plant with its taxon ID and family, the used Plasmodium species, plant part used and its extract type and the country of harvest were described. RESULTS AND CONCLUSION The reviewed plants belonged to 83 families. Medicinal plants of families Asteraceae, Meliaceae Fabaceae and Lamiaceae are the most abundant for use in laboratory animal antimalarial studies. According to region, published articles from 33 different countries were reviewed. Most of malaria published articles are from Africa especially Nigeria and Ethiopia. Leaves were the most common plant part used for the experimental malaria research. In many regions, research using medicinal plants to eliminate parasites and as a defensive tool is popular.
Collapse
Affiliation(s)
- Mohamed A. Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Esam M. Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Felwa Abdullah Thagfan
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmood A.A. Qasem
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
17
|
Taek MM, Tukan GD, Prajogo BEW, Agil M. Antiplasmodial Activity and Phytochemical Constituents of Selected Antimalarial Plants Used by Native People in West Timor Indonesia. Turk J Pharm Sci 2021; 18:80-90. [PMID: 33634682 DOI: 10.4274/tjps.galenos.2019.29000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives To document traditional antimalarial plants used by Tetun ethnic people in West Timor Indonesia and evaluate the antiplasmodial activity and phytochemicals of several plants that are widely used as oral medicine. Materials and Methods A field study to document antimalarial plants followed by laboratory works to test antiplasmodial activity and identify the phytochemical constituents of some selected plants extract were applied. The inhibitory potency of ethanolic extracts of Strychnos ligustrina wood, roots of Calotropis gigantea, Fatuoa pilosa, and Neoalsomitra podagrica, whole plant of Cleome rutidosperma and Physalis angulata, stem barks of Alstonia spectabilis, Alstonia scholaris, Jatropha curcas and Plumeria alba, and leaves of Melia azedarach on the Plasmodium falciparum 3D7 strain in vitro were tested. Gas chromatography-mass spectrometry instrument was used to analyze the phytochemicals of the extracts. Results The Tetun ethnic people use 50 plant species as antimalarials. P. angulata, J. curcas, and A. spectabilis extracts show strong antiplasmodial activity with IC50 values of 0.22, 0.22, and 1.23 μg/mL, respectively; N. podagrica, A. scholaris, F. pilosa, and P. alba were moderate antiplasmodials with IC50 values of 11.60, 15.46, 24.92, and 36.39 μg/mL, respectively; and C. rutidosperma, M. azedarach, S. ligustrina, and C. gigantea were weak antiplasmodials with IC50 values of 54.25, 63.52, 63.91, and 66.49 μg/mL, respectively. The phytochemicals identification data indicate that these 11 plants contain alkaloids, terpenoids, steroids, coumarins, alcohols, thiols, phenolics, aldehydes, fatty acids, esters, and so forth. Conclusion Plants widely used as antimalarials by the Tetun ethnic people is proven to have antiplasmodial activity.
Collapse
Affiliation(s)
- Maximus M Taek
- Widya Mandira Catholic University Faculty of Mathematics and Natural Sciences, Department of Chemistry, Kupang, Indonesia
| | - Gerardus D Tukan
- Widya Mandira Catholic University Faculty of Mathematics and Natural Sciences, Department of Chemistry, Kupang, Indonesia
| | - Bambang E W Prajogo
- Airlangga University Faculty of Pharmacy, Department of Pharmacognosy and Phytochemistry, Surabaya, Indonesia
| | - Mangestuti Agil
- Airlangga University Faculty of Pharmacy, Department of Pharmacognosy and Phytochemistry, Surabaya, Indonesia
| |
Collapse
|
18
|
Ram TS, Munikumar M, Raju VN, Devaraj P, Boiroju NK, Hemalatha R, Prasad PVV, Gundeti M, Sisodia BS, Pawar S, Prasad GP, Chincholikar M, Goel S, Mangal A, Gaidhani S, Srikanth N, Dhiman KS. In silico evaluation of the compounds of the ayurvedic drug, AYUSH-64, for the action against the SARS-CoV-2 main protease. J Ayurveda Integr Med 2021; 13:100413. [PMID: 33654345 PMCID: PMC7906523 DOI: 10.1016/j.jaim.2021.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Outbreak of Corona Virus Disease in late 2019 (COVID-19) has become a pandemic global Public health emergency. Since there is no approved anti-viral drug or vaccine declared for the disease and investigating existing drugs against the COVID-19. Objective AYUSH-64 is an Ayurvedic formulation, developed and patented by Central Council of Research in Ayurvedic Sciences, India, has been in clinical use as anti-malarial, anti-inflammatory, anti-pyretic drug for few decades. Thus, the present study was undertaken to evaluate AYUSH-64 compounds available in this drug against Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) Main Protease (Mpro; PDB ID: 6LU7) via in silico techniques. Materials and methods Different molecular docking software's of Discovery studio and Auto Dock Vina were used for drugs from selected AYUSH-64 compounds against SARS-CoV-2. We also conducted 100 ns period of molecular dynamics simulations with Desmond and further MM/GBSA for the best complex of AYUSH-64 with Mpro of SARS-CoV-2. Results Among 36 compounds of four ingredients of AYUSH-64 screened, 35 observed to exhibits good binding energies than the published positive co–crystal compound of N3 pepetide. The best affinity and interactions of Akuammicine N-Oxide (from Alstonia scholaris) towards the Mpro with binding energy (AutoDock Vina) of −8.4 kcal/mol and Discovery studio of Libdock score of 147.92 kcal/mol. Further, molecular dynamics simulations with MM-GBSA were also performed for Mpro– Akuammicine N-Oxide docked complex to identify the stability, specific interaction between the enzyme and the ligand. Akuammicine N-Oxide is strongly formed h-bonds with crucial Mpro residues, Cys145, and His164. Conclusion The results provide lead that, the presence of Mpro– Akuammicine N-Oxide with highest Mpro binding energy along with other 34 chemical compounds having similar activity as part of AYUSH-64 make it a suitable candidate for repurposing to management of COVID-19 by further validating through experimental, clinical studies. Main protease (Mpro) is a molecular drug target for the 2019-nCoV of epidemic disease of COVID-19. Docking strategies implemented to identify AUSH-64 having dual role as immunomodualtor and inhibition against Mpro of SARS-CoV-2. Molecular dynamics stability analysis revealed that 2019-nCoV Mpro – Akuammicine N-Oxide is stable. Akuammicine N-Oxide may represent potential treatment options against Mpro of 2019-nCoV.
Collapse
Key Words
- 2019 novel coronavirus, 2019-nCOV
- AYUSH-64
- Absorption, Distribution, Metabolism, Excretion, and Toxicity, ADME/T
- COVID-19
- Coronavirus disease of 2019, COVID-19
- Coronavirus, CoV
- Dynamics simulations
- Main Protease
- Main protease, Mpro
- Middle East Respiratory Syndrome, MERS
- Molecular Docking
- Molecular Dynamics simulations, MD simulations
- Molecular Mechanics/Generalized Born Surface Area, MM/GBSA
- Number of atoms, Pressure, Temperature, NPT
- Protein Data Bank, PDB
- RNA‐dependent RNA polymerase, RdRp
- Radius of Gyration, rGyr
- Root Mean Square Deviation, RMSD
- Root Mean Square Fluctuation, RMSF
- SARS-CoV-2
- Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2
- Severe Acute Respiratory Syndrome, SARS
- Simulation Event Analysis, SEA
- Simulation Quality Analysis, SQA
- World Health Organization, WHO
Collapse
Affiliation(s)
- Thrigulla Saketh Ram
- Research Officer (Ayurveda), CCRAS-National Institute of Indian Medical Heritage, Revenue Board Colony, Gaddiannaram, Hyderabad-500036, Telangana State, India
| | - Manne Munikumar
- Scientist-C (Bioinformatics), NIN-TATA Centre for Excellence in Public Health Nutrition, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Vankudavath Naik Raju
- Scientist-C (Programmer), Nutrition Information, Communication & Health Education (NICHE), ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Parasannanavar Devaraj
- Scientist-C, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Naveen Kumar Boiroju
- Scientist-C, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Rajkumar Hemalatha
- Scientist-G, Director, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - P V V Prasad
- Assistant Director In-charge, CCRAS-National Institute of Indian Medical Heritage, Revenue Board Colony, Gaddiannaram, Hyderabad-500036, Telangana State, India
| | - Manohar Gundeti
- Research Officer (Ayurveda), CCRAS-Raja Ramdeo Anandilal Podar (RRAP) Central Ayurveda Research Institute for Cancer, Mumbai
| | - Brijesh S Sisodia
- Asst. Director (Biochemistry), CCRAS-Regional Ayurveda Research Institute for Drug Development, Gwalior
| | - Sharad Pawar
- Research Officer, Scientist-2 (Pharmacognosy), CCRAS-Regional Ayurveda Institute for Fundamental Research, Pune
| | - G P Prasad
- Assistant Director (Ayurveda), CCRAS-Regional Ayurveda Institute for Fundamental Research, Pune
| | - Mukesh Chincholikar
- Research Officer (Ayurveda), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Sumeet Goel
- Research Officer (Ayurveda), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Anupam Mangal
- Assistant Director (Pharmacognosy), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Sudesh Gaidhani
- Assistant Director (Pharmacology), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - N Srikanth
- Deputy Director General, Central Council for Research in Ayurvedic Sciences, New Delhi
| | - K S Dhiman
- Director General, Central Council for Research in Ayurvedic Sciences, New Delhi
| |
Collapse
|
19
|
Ibrahim ZY, Uzairu A, Shallangwa GA, Abechi SE. Molecular modeling and design of some β-amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives against chloroquine sensitive, 3D7 strain of Plasmodium falciparum. Heliyon 2021; 7:e05924. [PMID: 33553724 PMCID: PMC7851792 DOI: 10.1016/j.heliyon.2021.e05924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Resistance nature of Plasmodium falciparum (P. falciparum) to the most effective antimalarial drug, Artemisinin, intimidate the global goal of total eradication of malarial. In an attempt to overcome this challenge, the research was aimed at designing derivatives of β-amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles with improve activity against the P. falciparum through structural modifications of the most active compound (design template), and their activity determined using the developed theoretical predictive model. To achieve this, the geometries were optimized via density functional theory (DFT) using B3LYP/6-31G∗ basis set to generate molecular descriptors for model development. Analysis of the developed model and the descriptors mean effect lead to the design of derivatives with improved activity. Five (5) theoretical models were developed, where the model {pIC50 = 5.95067(SpMin5_Bhi) - 0.0323461(RDF45m) + 0.0203865 (RDF95e) + 0.0499285 (L1m) - 3.50822} with the highest coefficient of determination (R2) of 0.9367, cross-validated R2 (Q2cv) of 0.8242, and the external validated R2 (R2pred) of 0.9462, selected as the best model. The mean effect analysis revealed descriptor SpMin5_Bhi as the most contributive. The descriptor encodes the first ionization potentials of the compounds and are influenced by electron-withdrawing/donating substituents. Hence, structural modifications of the compound with the highest activity (a design template) using electron-withdrawing substituents such as –NO2, –SO3H, -Br, –I, –CH2CH3, and –CH3 was done at a different positions, to obtain five (5) hypothetical novel compounds. The statistical results, shows the robustness, excellent prediction power, and validity of the selected model. Descriptor analysis revealed the first ionization potential (SpMin5_Bhi) to play a significant role in the activity of β-amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives. The five design derivatives of β-amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles with higher activities revealed compound 21C to have an antimalarial activity of pIC50 = 6.7573 higher than it co-designed compounds and even the standard drug. This claim could be verified through molecular docking to determine their interaction with the target protein.
Collapse
Affiliation(s)
- Zakari Ya'u Ibrahim
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B, 1045, Zaria, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B, 1045, Zaria, Nigeria
| | - Gideon Adamu Shallangwa
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B, 1045, Zaria, Nigeria
| | - Stephen Eyije Abechi
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B, 1045, Zaria, Nigeria
| |
Collapse
|
20
|
Ezzat SM, Salem MA, Zayed A. Plants against malarial and typhoid fever. PHYTOCHEMISTRY, THE MILITARY AND HEALTH 2021:285-312. [DOI: 10.1016/b978-0-12-821556-2.00024-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Antimalarial Plants Used across Kenyan Communities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4538602. [PMID: 32617107 PMCID: PMC7306085 DOI: 10.1155/2020/4538602] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
Malaria is one of the serious health problems in Africa, Asia, and Latin America. Its treatment has been met with chronic failure due to pathogenic resistance to the currently available drugs. This review attempts to compile phytotherapeutical information on antimalarial plants in Kenya based on electronic data. A comprehensive web search was conducted in multidisciplinary databases, and a total of 286 plant species from 75 families, distributed among 192 genera, were retrieved. Globally, about 139 (48.6%) of the species have been investigated for antiplasmodial (18%) or antimalarial activities (97.1%) with promising results. However, there is no record on the antimalarial activity of about 51.4% of the species used although they could be potential sources of antimalarial remedies. Analysis of ethnomedicinal recipes indicated that mainly leaves (27.7%) and roots (19.4%) of shrubs (33.2%), trees (30.1%), and herbs (29.7%) are used for preparation of antimalarial decoctions (70.5%) and infusions (5.4%) in Kenya. The study highlighted a rich diversity of indigenous antimalarial plants with equally divergent herbal remedy preparation and use pattern. Further research is required to validate the therapeutic potential of antimalarial compounds from the unstudied claimed species. Although some species were investigated for their antimalarial efficacies, their toxicity and safety aspects need to be further investigated.
Collapse
|
22
|
Zhan X, Luo X, He J, Zhang C, Liao X, Xu X, Feng S, Yu C, Jiang Z, Meng Y, Shen C, Wang H, Lu J. Bioactive compounds induced in Physalis angulata L. by methyl-jasmonate: an investigation of compound accumulation patterns and biosynthesis-related candidate genes. PLANT MOLECULAR BIOLOGY 2020; 103:341-354. [PMID: 32227258 DOI: 10.1007/s11103-020-00996-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/09/2020] [Indexed: 05/14/2023]
Abstract
We employed both metabolomic and transcriptomic approaches to explore the accumulation patterns of physalins, flavonoids and chlorogenic acid in Physalis angulata and revealed the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Physalis angulata L. is an annual Solanaceae plant with a number of medicinally active compounds. Despite the potential pharmacological benefits of P. angulata, the scarce genomic information regarding this plant has limited the studies on the mechanisms of bioactive compound biosynthesis. To facilitate the basic understanding of the main chemical constituent biosynthesis pathways, we performed both metabolomic and transcriptomic approaches to reveal the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Untargeted metabolome analysis showed that most physalins, flavonoids and chlorogenic acid were significantly upregulated. Targeted HPLC-MS/MS analysis confirmed variations in the contents of two important representative steroid derivatives (physalins B and G), total flavonoids, neochlorogenic acid, and chlorogenic acid between MeJA-treated plants and controls. Transcript levels of a few steroid biosynthesis-, flavonoid biosynthesis-, and chlorogenic acid biosynthesis-related genes were upregulated, providing a potential explanation for MeJA-induced active ingredient synthesis in P. angulata. Systematic correlation analysis identified a number of novel candidate genes associated with bioactive compound biosynthesis. These results may help to elucidate the regulatory mechanism underlying MeJA-induced active compound accumulation and provide several valuable candidate genes for further functional study.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiujun Luo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jinyu He
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chengchao Zhang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xinyue Liao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xinyun Xu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shangguo Feng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chunna Yu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhifang Jiang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yijun Meng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huizhong Wang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Jiangjie Lu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China.
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
23
|
Taek MM, Banilodu L, Neonbasu G, Watu YV, E.W. BP, Agil M. Ethnomedicine of Tetun ethnic people in West Timor Indonesia; philosophy and practice in the treatment of malaria. Integr Med Res 2019; 8:139-144. [PMID: 31304086 PMCID: PMC6600717 DOI: 10.1016/j.imr.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Interactions between humans and diseases for a long time have encourage people to construct concepts related to the disease and create strategies to prevent and treat the disease. OBJECTIVES To document philosophy and practice of ethnomedicine of Tetun ethnic people in the prevention and treatment of malaria. METHODS This research was a field study using ethnobotany and anthropology approaches. It was conducted among the Tetun people who settled in the Belu and Malaka districts from April to December 2017. A total of 94 informants consists of public healer, home healer and traditional medicine users were involved in semi-structured interviews and discussions. RESULTS Tetun ethnic has local knowledge that malaria is caused by naturalistic factors that affect the hot-cold balance in the body. Prevention and treatment of malaria are intended to maintain and restore the hot-cold balance in the body. They use various local medicinal plants for the treatment of malaria, by drinking, bathing, massage, inhalation and cataplasm. Plants used have been proven scientifically to have pharmacological activity as true antimalarials and/or indirect antimalarials. CONCLUSION Ethnomedicine practice of Tetun people on malaria is proven to contain scientific truth, although it is built on the basis of concepts that are different or even contrary to the true etiology of malaria.
Collapse
Affiliation(s)
- Maximus M. Taek
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Widya Mandira Catholic University, Kupang, Indonesia
| | - Leonardus Banilodu
- Department of Biology, Faculty of Mathematics and Natural Sciences, Widya Mandira Catholic University, Kupang, Indonesia
| | - Gregorius Neonbasu
- Department of Anthropology, Faculty of Social Sciences, Widya Mandira Catholic University, Kupang, Indonesia
| | - Yohanes Vianney Watu
- Department of Philosophy, Faculty of Philosophy and Religion, Widya Mandira Catholic University, Kupang, Indonesia
| | - Bambang Prajogo E.W.
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Mangestuti Agil
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
24
|
Mouthé Happi G, Tchaleu Ngadjui B, Green IR, Fogué Kouam S. Phytochemistry and pharmacology of the genus Entandrophragma over the 50 years from 1967 to 2018: a ‘golden’ overview. J Pharm Pharmacol 2018; 70:1431-1460. [DOI: 10.1111/jphp.13005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/10/2018] [Indexed: 02/02/2023]
Abstract
Abstract
Objectives
For centuries, the genus Entandrophragma (Meliaceae), endemic to Africa, has been used in traditional medicine for the treatment of several illnesses. This review deals with large range of phytochemicals from the genus Entandrophragma and their pharmacological potentials covering the period from 1967 to 2018.
Key findings
Phytochemical investigations of the genus Entandrophragma led to the report of about 166 secondary metabolites which have been thoroughly summarized herein including some of their semisynthetic derivatives obtained from chemical transformations as well as their biological activities in the medicinal and agricultural domains. The limonoids or meliacins and their precursor called protolimonoids (protomeliacins) reported so far represent almost 69.28% of the total secondary metabolites obtained from the genus, and they display the most potent biological activities. Collectively, both classes of metabolites constitute the markers of Entandrophragma. However, squalene-type triterpenoids and sesquiterpenoids were reported only from the species E. cylindricum and therefore could be its chemotaxonomic markers.
Summary
The pharmacological investigations of the extracts of some species exhibited interesting results which support the traditional uses of these Entandrophragma plants in folk medicine. Some compounds revealed promising antiplasmodial and anti-inflammatory activities and deserve therefore further attention for new drug discovery.
Collapse
Affiliation(s)
- Gervais Mouthé Happi
- Department of Chemistry, Training College, University of Yaounde I, Yaounde, Cameroon
| | | | - Ivan Robert Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Simeon Fogué Kouam
- Department of Chemistry, Training College, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
25
|
Mixture design and Doehlert matrix for optimization of the ultrasonic assisted extraction of caffeic acid, rutin, catechin and trans-cinnamic acid in Physalis angulata L. and determination by HPLC DAD. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Medicinal plants for in vitro antiplasmodial activities: A systematic review of literature. Parasitol Int 2017; 66:713-720. [PMID: 28890153 DOI: 10.1016/j.parint.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/25/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023]
Abstract
The increasing resistance of malaria to drugs raise the need to new antimalarial agents. Antiplasmodial herbs and their active compounds are the most promising source the new antimalarial agents. This study aimed to identify the medicinal plants with very good in vitro antiplasmodial activities, with half-maximal inhibitory concentration (IC50)≤1μg/ml, and to determine trends in the process of screening their antiplasmodial activities. A total of 58 reports published in the English language were retrieved from the bibliographical databases. Screening and data extraction were performed by two independent reviewers. The herbs were categorized as very good, good, moderate and inactive if the IC50 values were <0.1μg/ml, 0.1-1μg/ml, >1-5μg/ml and >5μg/ml respectively. We documented 752 medicinal plants belonging to 254 genera. The majority of the plants were reported from Africa followed by Asia. The traditional use for malaria treatment was the most common reason for the selection of the plants for investigation. About 80% of the plants experimented were reported to be inactive. Among plants identified as having very good to good antiplasmodial crude extracts are Harungana madagascariensis, Quassia africana, and Brucea javanica, while Picrolemma spruce, Aspidosperma vargasi, Aspidosperma desmanthum, and Artemisia annua were reported to have individual compound isolates with very good antiplasmodial activities. In conclusion, the number of plant species assessed so far is still small compared with the stock in nature's plant library. A mechanism of systematically approaching and exploring the untouched plant genera needs to be designed.
Collapse
|
27
|
Fentahun S, Makonnen E, Awas T, Giday M. In vivo antimalarial activity of crude extracts and solvent fractions of leaves of Strychnos mitis in Plasmodium berghei infected mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:13. [PMID: 28056932 PMCID: PMC5217609 DOI: 10.1186/s12906-016-1529-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/06/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Malaria is a major public health problem in the world which is responsible for death of millions particularly in sub-Saharan Africa. Today, the control of malaria has become gradually more complex due to the spread of drug-resistant parasites. Medicinal plants are the unquestionable source of effective antimalarials. The present study aimed to evaluate antiplasmodial activity and acute toxicity of the plant Strychnos mitis in Plasmodium berghei infected mice. METHODS Standard procedures were employed to investigate acute toxicity and 4-day suppressive effect of crude aqueous and hydro-methanolic extracts of the leaves of Strychnos mitis against P. berghei in Swiss albino mice. Water, n-hexane and chloroform fractions, obtained from crude hydro-methanolic extract, were also tested for their suppressive effect against P. berghei. RESULTS All crude extracts revealed no obvious acute toxicity in mice up to the highest dose administered (2000 mg/kg). All crude and solvent fractions of the leaves of Strychnos mitis inhibited parasitaemia significantly (p < 0.01). At the highest dose of 600 mg/kg, both aqueous and hydro-methanolic extracts demonstrated higher performance with 95.5 and 93.97% parasitaemia suppression, respectively. All doses of crude extracts and fractions of leaves of Strychnos mitis prolonged survival time of infected mice dose dependently. The highest two doses of the crude aqueous and hydro-methanolic extracts, and chloroform and aqueous fractions prevented weight loss in a dose dependent manner. Whereas, all doses of n-hexane fraction prevented loss of body weight but not in a dose dependent manner. The crude aqueous extract at the doses of 400 mg/kg and 600 mg/kg and hydro-methanolic extract at all dose levels significantly (p < 0.01) prevented packed cell volume reduction. Crude aqueous extract at a dose of 600 mg/kg and hydro-methanolic extract at all dose levels significantly prevented temperature reduction. Phytochemical screening of the crude aqueous and hydro-methanolic extracts revealed the presence of alkaloids, anthraquinones, glycosides, terpenoids, saponins, tannins and phenols. CONCLUSION The results of this study provide support the traditional therapeutic use of Strychnos mitis for treatment of malaria. However, further in-depth study is needed to evaluate the potential of the plant towards the development of new antimalarial agent.
Collapse
Affiliation(s)
| | - Eyasu Makonnen
- School of Medicine, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Tesfaye Awas
- Institute of Biodiversity, P.O. Box 30726, Addis Ababa, Ethiopia
| | - Mirutse Giday
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
28
|
Mukungu N, Abuga K, Okalebo F, Ingwela R, Mwangi J. Medicinal plants used for management of malaria among the Luhya community of Kakamega East sub-County, Kenya. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:98-107. [PMID: 27586821 PMCID: PMC5176009 DOI: 10.1016/j.jep.2016.08.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/27/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Malaria remains a major health problem worldwide especially in sub-Saharan Africa. In Kenya, 80% of the population is at risk of contracting the disease. Pregnant mothers and children under five years are the most affected by this disease. Antimalarial drug resistance poses a major threat in the fight against malaria necessitating continuous search for new antimalarial drugs. Due to inadequate and inaccessible health facilities, majority of people living in rural communities heavily depend on traditional medicine which involves the use of medicinal plants for the management of malaria. Most of these indigenous knowledge is undocumented and risks being lost yet such information could be useful in the search of new antimalarial agents. AIM OF STUDY An ethnobotanical survey was carried out among the Luhya community of Kakamega East sub-County, a malaria epidemic region, with the aim of documenting the plants used in the management of malaria. MATERIALS AND METHODS Semi-structured questionnaires were used to collect information from 21 informants who included traditional medicine practitioners and other caregivers who had experience in use of plants in management of malaria. These were drawn from 4 villages located in Kakamega East sub-county, within Kakamega County based on their differences in topography. Information recorded included plant names, parts used, mode of preparation and administration and the sources of plant materials. A literature search was conducted using PubMed and google scholar to identify the reported traditional uses of these plants and studied antiplasmodial activities. RESULTS In this study, 57% of the informants were aged above 50 years and a total of 61% had either no formal education or had only attained primary school education. A total of 42 plant species belonging to 24 families were identified. Most plants used in the management of malaria in this community belonged to Lamiaceae (18%), Leguminosae (9%) and Compositae (9%) plant families. Plants mostly used included Melia azedarach L, Aloe spp, Ajuga integrifolia Buch. Ham, Vernonia amygdalina Del., Rotheca myricoides (Hochst.) Steane and Mabb, Fuerstia africana T.C.E.Fr., Zanthoxylum gilletii (De Wild.) P.G.Waterman and Leucas calostachys Oliv. Rumex steudelii Hochst.ex A. Rich and Phyllanthus sepialis Müll. Arg are reported for the first time in the management of malaria. Although Clerodendrum johnstonii Oliv. (Jeruto et al., 2011) and Physalis peruviana L.(Ramadan et al., 2015) are reported in other studies for management of malaria, no studies have been carried out to demonstrate their antiplasmodial activity. The plant parts mostly used were the leaves (36%) and stem barks (26%). Majority of these plants were prepared as decoctions by boiling and allowed to cool before administration (66%) while infusions accounted for 28% of the preparations. The literature mined supports the use of these plants for the management of malaria since most of them have demonstrated in-vitro and in-vivo antiplasmodial activities. CONCLUSION Most of the reported plant species in this study have been investigated for antiplasmodial activity and are in agreement with the ethnomedical use. Two (2) plants are reported for the first time in the management of malaria. There is need for documentation and preservation of the rich ethnomedical knowledge within this community given that most of the practitioners are advanced in age and less educated. There is also the danger of over-exploitation of plant species as most of them are obtained from the wild, mainly Kakamega forest. Therefore, there is need for determining the economically and medicinally important plants in this community and planning for their preservation.
Collapse
Affiliation(s)
- Nillian Mukungu
- Department of Pharmacology and Pharmacognosy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya.
| | - Kennedy Abuga
- Department of Pharmaceutical Chemistry, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya.
| | - Faith Okalebo
- Department of Pharmacology and Pharmacognosy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya.
| | - Raphael Ingwela
- Department of Pharmacology and Pharmacognosy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya.
| | - Julius Mwangi
- Department of Pharmacology and Pharmacognosy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya.
| |
Collapse
|
29
|
Da Silva B, Da Silva R, Rodrigues A, Farias L, Do Nascimento J, Silva E. Physalis angulata induces death of promastigotes and amastigotes of Leishmania ( Leishmania ) amazonensis via the generation of reactive oxygen species. Micron 2016; 82:25-32. [DOI: 10.1016/j.micron.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/13/2015] [Accepted: 12/05/2015] [Indexed: 12/26/2022]
|
30
|
Kffuri CW, Lopes MA, Ming LC, Odonne G, Kinupp VF. Antimalarial plants used by indigenous people of the Upper Rio Negro in Amazonas, Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:188-198. [PMID: 26656535 DOI: 10.1016/j.jep.2015.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This is the first intercultural report of antimalarial plants in this region. The aim of this study was to document the medicinal plants used against malaria by indigenous people in the Upper Rio Negro region and to review the literature on antimalarial activity and traditional use of the cited species. MATERIALS AND METHODS Participant observation, semi-structured interviews, and ethnobotanical walks were conducted with 89 informants in five indigenous communities between April 2010 and November 2013 to obtain information on the use of medicinal plants against malaria. We reviewed academic databases for papers published in scientific journals up to January 2014 in order to find works on ethnopharmacology, ethnobotany, and antimalarial activity of the species cited. RESULTS Forty-six plant species belonging to 24 families are mentioned. Fabaceae (17.4%), Arecaceae (13.0%) and Euphorbiaceae (6.5%) account together for 36.9% of these species. Only seven plant species showed a relatively high consensus. Among the plant parts, barks (34.0%) and roots (28.0%) were the most widely used. Of the 46 species cited, 18 (39.1%) have already been studied for their antimalarial properties according to the literature, and 26 species (56.5%) have no laboratory essays on antimalarial activity. CONCLUSIONS Local traditional knowledge of the use of antimalarials is still widespread in indigenous communities of the Upper Rio Negro, where 46 plants species used against malaria were recorded. Our studies highlight promising new plants for future studies: Glycidendron amazonicum, Heteropsis tenuispadix, Monopteryx uaucu, Phenakospermum guianensis, Pouteria ucuqui, Sagotia brachysepala and notably Aspidosperma schultesii, Ampelozizyphus amazonicus, Euterpe catinga, E. precatoria, Physalis angulata, Cocos nucifera and Swartzia argentea with high-use consensus. Experimental validation of these remedies may help in developing new drugs for malaria.
Collapse
Affiliation(s)
- Carolina Weber Kffuri
- Universidade Estadual Paulista, Faculdade de Ciências Agronômica de Botucatu, Departamento de Horticultura, Rua José Barbosa de Barros, 1780, 18.610-307 Botucatu, São Paulo, Brazil.
| | | | - Lin Chau Ming
- Universidade Estadual Paulista, Faculdade de Ciências Agronômica de Botucatu, Departamento de Horticultura, Rua José Barbosa de Barros, 1780, 18.610-307 Botucatu, São Paulo, Brazil
| | - Guillaume Odonne
- CNRS-Guyane(USR 3456), 2 avenue Gustave Charlery, 97300 Cayenne, French Guiana
| | - Valdely Ferreira Kinupp
- Herbário EAFM, Instituto de Educação, Ciência e Tecnologia do Amazonas (IFAM), Manaus, Amazonas, Brazil
| |
Collapse
|
31
|
Lawal B, Shittu OK, Kabiru AY, Jigam AA, Umar MB, Berinyuy EB, Alozieuwa BU. Potential antimalarials from African natural products: A reviw. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:318-43. [PMID: 26649238 PMCID: PMC4665028 DOI: 10.5455/jice.20150928102856] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health, and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in vivo or in vitro against malaria parasite. Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, and Science domain) that report on antiplasmodial activity of natural products from differernts Africa region. A total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%), Fababceae (8.128%), Euphorbiaceae (5.52%), Rubiaceas (5.52%), and Apocyanaceae (5.214%), have received more scientific validation than others. African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against Plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products are of paramount importance.
Collapse
Affiliation(s)
- Bashir Lawal
- Department of Biochemistry, Tropical Disease Research Unit, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| | - Oluwatosin Kudirat Shittu
- Department of Biochemistry, Tropical Disease Research Unit, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| | - Adamu Yusuf Kabiru
- Department of Biochemistry, Tropical Disease Research Unit, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| | - Ali Audu Jigam
- Department of Biochemistry, Tropical Disease Research Unit, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| | - Maimuna Bello Umar
- Department of Biochemistry, Tropical Disease Research Unit, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| | | | - Blessing Uchenna Alozieuwa
- Department of Biochemistry, Tropical Disease Research Unit, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| |
Collapse
|
32
|
da Silva RRP, da Silva BJM, Rodrigues APD, Farias LHS, da Silva MN, Alves DTV, Bastos GNT, do Nascimento JLM, Silva EO. In vitro biological action of aqueous extract from roots of Physalis angulata against Leishmania (Leishmania) amazonensis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26205771 PMCID: PMC4513958 DOI: 10.1186/s12906-015-0717-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Leishmaniasis is an infectious disease caused by various species of the protozoan parasites of the Leishmania genus and transmitted by phlebotomine sandflies. The protozoa multiply in phagocytic cells, mainly macrophages, which play an important role defending the organism from pathogens. The most effective treatment for leishmaniasis is the chemotherapy and besides the high cost, these drugs are toxic and require a long period of treatment. Currently, some herbal products are considered an important alternative source of a new leishmanicidal agent, which includes the plant Physalis angulata, . We evaluated effects of an aqueous extract from roots of Physalis angulata (AEPa) on Leishmania proliferation, morphology and also determined whether physalins were present in the extract contributing to the knowledge of its pharmacological efficacy. METHODS Morphological alterations were determined by light microscopy, transmission and scanning electron microscopy. Host cell viability was evaluated by MTT, and propidium iodide. AEPa were submitted in full HRESITOF analysis. RESULTS AEPa promoted a dose-dependent reduction on promastigotes (IC50 = 39.5 μg/mL ± 5.1) and amastigotes (IC50 = 43.4 μg/mL ± 10.1) growth. This growth inhibition was associated with several morphological alterations observed in promastigote forms. No cytotoxic effect in mammalian cells was detected (IC50 > 4000 μg/mL). Furthemore, the presence of physalins A, B, D, E, F, G and H were described, for the first time, in the P. angulata root. CONCLUSIONS Results demonstrate that AEPa effectively promotes antileishmanial activity with several important morphological alterations and has no cytotoxic effects on host cells.
Collapse
|
33
|
Memvanga PB, Tona GL, Mesia GK, Lusakibanza MM, Cimanga RK. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:76-98. [PMID: 25862959 DOI: 10.1016/j.jep.2015.03.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria is the most prevalent parasitic disease and the foremost cause of morbidity and mortality in the Democratic Republic of Congo. For the management of this disease, a large Congolese population recourses to traditional medicinal plants. To date the efficacy and safety of many of these plants have been validated scientifically in rodent malaria models. In order to generate scientific evidence of traditional remedies used in the Democratic Republic of Congo for the management of malaria, and show the potential of Congolese plants as a major source of antimalarial drugs, this review highlights the antiplasmodial and toxicological properties of the Congolese antimalarial plants investigated during the period of 1999-2014. In doing so, a useful resource for further complementary investigations is presented. Furthermore, this review may pave the way for the research and development of several available and affordable antimalarial phytomedicines. MATERIALS AND METHODS In order to get information on the different studies, a Google Scholar and PubMed literature search was performed using keywords (malaria, Congolese, medicinal plants, antiplasmodial/antimalarial activity, and toxicity). Data from non-indexed journals, Master and Doctoral dissertations were also collected. RESULTS Approximately 120 extracts and fractions obtained from Congolese medicinal plants showed pronounced or good antiplasmodial activity. A number of compounds with interesting antiplasmodial properties were also isolated and identified. Some of these compounds constituted new scaffolds for the synthesis of promising antimalarial drugs. Interestingly, most of these extracts and compounds possessed high selective activity against Plasmodium parasites compared to mammalian cells. The efficacy and safety of several plant-derived products was confirmed in mice, and a good correlation was observed between in vitro and in vivo antimalarial activity. The formulation of several plant-derived products also led to some clinical trials and license of three plant-derived drugs (Manalaria(®), Nsansiphos(®), and Quinine Pharmakina(®)). CONCLUSION The obtained results partly justify and support the use of various medicinal plants to treat malaria in folk medicine in the Democratic Republic of Congo. Antimalarial plants used in Congolese traditional medicine represent an important source for the discovery and development of new antimalarial agents. However, in order to ensure the integration of a larger number of plant-derived products in the Congolese healthcare system, some parameters and trends should be considered in further researches, in agreement with the objectives of the "Traditional Medicine Strategy" proposed by the World Health Organization in 2013. These include evaluation of geographical and seasonal variation, investigation of reproductive biology, assessment of prophylactic antimalarial activity, evaluation of natural products as adjuvant antioxidant therapy for malaria, development of plant-based combination therapies and monitoring of herbal medicines in pharmacovigilance systems.
Collapse
Affiliation(s)
- Patrick B Memvanga
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drugs Development, B.P. 212 Kinshasa XI, Democratic Republic of Congo.
| | - Gaston L Tona
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Gauthier K Mesia
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Mariano M Lusakibanza
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Richard K Cimanga
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacognosy, B.P. 212 Kinshasa XI, Democratic Republic of Congo; University of Antwerp, Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy and Pharmaceutical Analysis, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
34
|
Mangwala Kimpende P, Lusakibanza M, Mesia K, Tona L, Tits M, Angenot L, Frédérich M, Van Meervelt L. Isolation, pharmacological activity and structure determination of physalin B and 5β,6β-epoxyphysalin B isolated from Congolese Physalis angulata L. Acta Crystallogr C 2013; 69:1557-62. [PMID: 24311512 DOI: 10.1107/s010827011303117x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/13/2013] [Indexed: 11/10/2022] Open
Abstract
Physalis angulata L., an annual herb from the Solanaceae family, is widely used in popular medicine in tropical countries to treat a variety of diseases. Two products, (X) and (Y), were isolated from a crude CH2Cl2 extract of dried Congolese Physalis angulata L. plants and crystallized from acetone for structure elucidation. Compound (X) corresponds to a physalin B dimer acetone solvate hydrate (2C28H30O9·C3H6O·0.22H2O), while compound (Y) crystallizes as a mixed crystal containing two physalin B molecules which overlap with 5β,6β-epoxyphysalin B, also known as physalin F, and one acetone molecule in the asymmetric unit (1.332C28H30O9·0.668C28H30O10·C3H6O). Antiplasmodial activity, cytotoxic activity and selectivity indices were determined for crude extracts and the two isolated products (X) and (Y).
Collapse
|
35
|
Sanon S, Gansane A, Ouattara LP, Traore A, Ouedraogo IN, Tiono A, Taramelli D, Basilico N, Sirima SB. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. Afr J Lab Med 2013; 2:81. [PMID: 29043169 PMCID: PMC5637779 DOI: 10.4102/ajlm.v2i1.81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/15/2013] [Indexed: 12/02/2022] Open
Abstract
Background Resistance of malaria parasites to existing drugs complicates treatment, but an antimalarial vaccine that could protect against this disease is not yet available. It is therefore necessary to find new effective and affordable medicines. Medicinal plants could be a potential source of antimalarial agents. Some medicinal plants from Burkina Faso were evaluated for their antiplasmodial and cytotoxic properties in vitro. Methods Crude dichloromethane, methanol, water-methanol, aqueous and alkaloids extracts were prepared for 12 parts of 10 plants. Chloroquine-resistant malaria strain K1 was used for the in vitro sensibility assay. The Plasmodium lactacte dehydrogenase technique was used to determine the 50% inhibitory concentration of parasites activity (IC50). The cytotoxic effects were determined with HepG2 cells, using the tetrazolium-based colorimetric technique, and the selectivity index (SI) was calculated. Results Sixty crude extracts were prepared. Seven extracts from Terminalia avicenoides showed IC50 < 5 µg/mL. The IC50 of dichloromethane, methanol, aqueous and alkaloids extracts ranged between 1.6 µg/mL and 4.5 µg/mL. Three crude extracts from Combretum collinum and three from Ficus capraefolia had an IC50 ranging between 0.2 µg/mL and 2.5 µg/mL. Crude extracts from these three plants had no cytotoxic effect, with SI > 1. The other plants have mostly moderate or no antimalarial effects. Some extracts from Cordia myxa, Ficus capraefolia and Opilia celtidifolia showed cytotoxicity, with an SI ranging between 0.4 and 0.9. Conclusion Our study showed a good antiplasmodial in vitro activity of Terminalia avicenoides, Combretum collinum and Ficus capraefolia. These three plants may contain antiplasmodial molecules that could be isolated by bio-guided phytochemical studies.
Collapse
Affiliation(s)
- Souleymane Sanon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Adama Gansane
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Lamoussa P Ouattara
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Abdoulaye Traore
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa N Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alfred Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università di Milano, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università di Milano, Italy
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| |
Collapse
|
36
|
Kumari P, Sahal D, Jain SK, Chauhan VS. Bioactivity guided fractionation of leaves extract of Nyctanthes arbor tristis (Harshringar) against P falciparum. PLoS One 2012; 7:e51714. [PMID: 23300557 PMCID: PMC3530506 DOI: 10.1371/journal.pone.0051714] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/05/2012] [Indexed: 11/30/2022] Open
Abstract
Background Nyctanthes arbor-tristis (Harshringar, Night Jasmine) has been traditionally used in Ayurveda, Unani and other systems of medicine in India. The juice of its leaves has been used by various tribal populations of India in treatment of fevers resembling malaria. Aim of the study This work reports the antiplasmodial activity guided fractionation of Harshringar leaves extract. Methodology Crude ethanolic Harshringar leaves extract and its RPHPLC purified fractions were studied for antiplasmodial potency against 3D7 (CQ sensitive) and Dd2 (CQ resistant) strains of P.falciparum and subsequently subjected to bioassay guided fractionation using reverse phase chromatography to pursue the isolation of active fractions. Principal Findings Harshringar crude leaves extract and some of its RPHPLC purified fractions exhibited promising antiplasmodial potency against 3D7 and Dd2 strains of P.falciparum. Conclusions The present study has provided scientific validity to the traditional use of leaves extract of Harshringar against malaria leading to the conclusion that this plant holds promise with respect to antimalarial phytotherapy. This is the first scientific report of antiplasmodial activity of RPHPLC fractions of Harshringar leaves extract against P.falciparum strains.
Collapse
Affiliation(s)
- Pinky Kumari
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Dinkar Sahal
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - S. K. Jain
- Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Virander S. Chauhan
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
37
|
Venkatesalu V, Gopalan N, Pillai CR, Singh V, Chandrasekaran M, Senthilkumar A, Chandramouli N. In vitro anti-plasmodial activity of some traditionally used medicinal plants against Plasmodium falciparum. Parasitol Res 2012; 111:497-501. [PMID: 22290450 DOI: 10.1007/s00436-012-2834-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/17/2012] [Indexed: 12/21/2022]
Abstract
The anti-plasmodial activity of different solvent extracts of Adhatoda vasica (root), Caesalpinia pulcherrima (leaf), Carica papaya (pulp), Erythroxylum monogynum (leaf), Lantana camara (whole plant), Ocimum sanctum (root) and Phyllanthus niruri (whole plant) were studied against Plasmodium falciparum. Of the 35 extracts tested, seven extracts showed good anti-plasmodial activity. Methanol extract of C. pulcherrima showed the lowest IC50 value (10.96 μg/mL) followed by methanol extract of A. vasica (IC(50)=11.1 μg/mL), chloroform extract of O. sanctum (IC(50)=11.47 μg/mL), methanol extract of E. monogynum (IC(50)=12.23 μg/mL), acetone extract of C. pulcherrima (IC(50)=12.49 μg/mL), methanol extract of O. sanctum and acetone extract of A. vasica (IC(50)=14.04 μg/mL). The results of the present study justify the use of these medicinal plants in traditional practice, and also, a further study on the isolation of anti-plasmodial molecules from their active crude extracts is in progress.
Collapse
Affiliation(s)
- V Venkatesalu
- Department of Botany, Annamalai University, Annamalai Nagar 608 002 Tamil Nadu, India.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sarr SO, Perrotey S, Fall I, Ennahar S, Zhao M, Diop YM, Candolfi E, Marchioni E. Icacina senegalensis (Icacinaceae), traditionally used for the treatment of malaria, inhibits in vitro Plasmodium falciparum growth without host cell toxicity. Malar J 2011; 10:85. [PMID: 21481272 PMCID: PMC3090372 DOI: 10.1186/1475-2875-10-85] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 04/11/2011] [Indexed: 11/20/2022] Open
Abstract
Background With the aim of discovering new natural active extracts against malaria parasites, Icacina senegalensis was selected after an ethnopharmacological survey conducted on plants used in traditional malaria treatment in Senegal. Methods Different concentrations of the plant extract and fractions were tested on synchronized Plasmodium falciparum cultures at the ring stage using the parasite lactate dehydrogenase assay. Their haemolytic activity and in vitro cytoxicity were evaluated. The chromatographic profiles of active fractions were also established. Results The plant extract and fractions revealed anti-plasmodial activity (IC50 < 5 μg/mL) with no toxicity (Selectivity indexes >10). The dichloromethane fraction showed stronger anti-plasmodial activity than the total extract. Conclusion Anti-plasmodial activity and toxicity of I. senegalensis are reported for the first time and showed promising results in malaria field research.
Collapse
Affiliation(s)
- Serigne O Sarr
- Equipe de Chimie Analytique des Molécules BioActives IPHC-LC4, UMR 7178, Faculté de Pharmacie, 74, route du Rhin, 67400, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wong SK, Lim YY, Abdullah NR, Nordin FJ. Assessment of antiproliferative and antiplasmodial activities of five selected Apocynaceae species. Altern Ther Health Med 2011; 11:3. [PMID: 21232161 PMCID: PMC3032759 DOI: 10.1186/1472-6882-11-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/14/2011] [Indexed: 01/11/2023]
Abstract
Background Studies have shown that the barks and roots of some Apocynaceae species have anticancer and antimalarial properties. In this study, leaf extracts of five selected species of Apocynaceae used in traditional medicine (Alstonia angustiloba, Calotropis gigantea, Dyera costulata, Kopsia fruticosa and Vallaris glabra) were assessed for antiproliferative (APF) and antiplasmodial (APM) activities, and analysed for total alkaloid content (TAC), total phenolic content (TPC) and radical-scavenging activity (RSA). As V. glabra leaf extracts showed wide spectrum APF and APM activities, they were further screened for saponins, tannins, cardenolides and terpenoids. Methods APF and APM activities were assessed using the sulphorhodamine B and lactate dehydrogenase assays, respectively. TAC, TPC and RSA were analysed using Dragendorff precipitation, Folin-Ciocalteu and DPPH assays, respectively. Screening for saponins, tannins, cardenolides and terpenoids were conducted using the frothing, ferric chloride, Kedde and vanillin-H2SO4 tests, respectively. Results Leaf extracts of A. angustiloba, C. gigantea and V. glabra displayed positive APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activity against all six human cancer cell lines tested. DCM extract of A. angustiloba was effective against three cancer cell lines. Against MCF-7 and MDA-MB-231 cell lines, DCM extract of C. gigantea was stronger than standard drugs of xanthorrhizol, curcumin and tamoxifen. All five species were effective against K1 strain of Plasmodium falciparum and three species (C. gigantea, D. costulata and K. fruticosa) were effective against 3D7 strain. Against K1 strain, all four extracts of V. glabra displayed effective APM activity. Extracts of D. costulata were effective against 3D7 strain. Selectivity index values of extracts of A. angustiloba, C. gigantea and V. glabra suggested that they are potentially safe for use to treat malaria. Extracts of K. fruticosa had the highest TAC while D. costulata had the highest TPC and RSA. Phytochemical screening of extracts of V. glabra also showed the presence of terpenoids, tannins and saponins. Conclusions Leaf extracts of C. gigantea and V. glabra showed great promise as potential candidates for anticancer drugs as they inhibited the growth of all six cancer cell lines. Against K1 strain of P. falciparum, all four extracts of V. glabra displayed effective APM activity. The wide spectrum APF and APM activities of V. glabra are reported for the first time and this warrants further investigation into its bioactive compounds.
Collapse
|