1
|
Ding J, Xue Q, Guo W, Cheng G, Zhang L, Huang T, Wu D, Tong J, Yang C, Gao Y, Li Z. Mechanism of astragaloside A against lung adenocarcinoma based on network pharmacology combined with molecular dynamics simulation technique. Sci Rep 2025; 15:12033. [PMID: 40200025 PMCID: PMC11978951 DOI: 10.1038/s41598-025-94793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
This study explores the mechanisms of Astragaloside A (AS-A), a significant active ingredient in Astragalus, This traditional Chinese medicine is both a medication and a food, combating lung adenocarcinoma using network pharmacology, molecular docking, molecular dynamics, and experimental validation. A protein-protein interaction (PPI) network was developed, identifying 10 key targets, including STAT3 and AKT1. GO and KEGG enrichment analyses indicated that these targets primarily participated in biological processes and pathways, including oxidative stress and the PI3K-Akt signalling pathway. Molecular docking and dynamic simulation evaluated AS-A's binding mode and stability with key targets. In molecular docking, 14 key targets of the HIF-1 signalling pathway had different binding energies with AS-A, such as the binding energy of PIK3R1 being -9.3. Kinetic simulations indicated the stability of the protein-ligand complex, as evidenced by RMSD values ranging from 0.2 to 0.4 nm. RMSF analysis showed that the protein residue flexibility characteristics were stable, the Rg values were stable, the number of hydrogen bonds was 10-20, and the solvent-accessible surface area was stable. Cell experiments showed that AS-A could regulate the expression of key signalling molecules such as STAT3 and AKT in lung adenocarcinoma models. This study provides insights into the mechanism of AS-A in treating lung adenocarcinoma. It proposes a new direction for anticancer research in traditional Chinese medicines, especially medications and foods.
Collapse
Affiliation(s)
- Jian Ding
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Qian Xue
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Weizhen Guo
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Gang Cheng
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Lu Zhang
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Tantan Huang
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Di Wu
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Institute of Respiratory Disease Prevention and Treatment, Anhui Academy of Chinese Medicine, Hefei, 230031, China
| | - Jiabing Tong
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Cheng Yang
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Yating Gao
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
| | - Zegeng Li
- Department of First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
- Institute of Respiratory Disease Prevention and Treatment, Anhui Academy of Chinese Medicine, Hefei, 230031, China.
| |
Collapse
|
2
|
Zhang PP, Tang JN, Xiang BY, Li L, Xie MZ, Qu HY. Unlocking the potential of Radix Astragali and its active ingredients in gastric ulcer therapy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-15. [PMID: 40111320 DOI: 10.1080/10286020.2025.2475475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
We studied the protective effects of Radix Astragali (RA) on gastric ulcer (GU). A literature search was conducted using databases from Web of Science, PubMed, Springer, ScienceDirect, Science Direct Chinese National Knowledge Infrastructure (CNKI), and Wanfang. The inclusion criteria for this study were limited to reports on the effects of RA, AS-IV, cycloastragenol, astragalus polysaccharide (APS), and astragalosides (AST) in the treatment of gastric ulcers. Any studies involving gastric lesions that were precancerous or cancerous were eliminated. The search period was from database inception through June 2024. The results suggested RA hold promiseas potential novel therapeutics for the therapy of GU.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Jing-Ni Tang
- Medical School, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| | - Bo-Yu Xiang
- Medical School, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| | - Liang Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Meng-Zhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Hao-Yu Qu
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- School of informatics, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| |
Collapse
|
3
|
Zhou C, Wu K, Gu M, Yang Y, Tu J, Huang X. Reversal of chemotherapy resistance in gastric cancer with traditional Chinese medicine as sensitizer: potential mechanism of action. Front Oncol 2025; 15:1524182. [PMID: 40052129 PMCID: PMC11882405 DOI: 10.3389/fonc.2025.1524182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Gastric cancer (GC) remains one of the most common types of cancer, ranking fifth among cancer-related deaths worldwide. Chemotherapy is an effective treatment for advanced GC. However, the development of chemotherapy resistance, which involves the malfunction of several signaling pathways and is the consequence of numerous variables interacting, seriously affects patient treatment and leads to poor clinical outcomes. Therefore, in order to treat GC, it is imperative to find novel medications that will increase chemotherapy sensitivity and reverse chemotherapy resistance. Traditional Chinese medicine (TCM) has been extensively researched as an adjuvant medication in recent years. It has been shown to have anticancer benefits and to be crucial in enhancing chemotherapy sensitivity and reducing chemotherapy resistance. Given this, the mechanism of treatment resistance in GC is summed up in this work. The theoretical foundation for TCM as a sensitizer in adjuvant treatment of GC is established by introducing the primary signal pathways and possible targets implicated in improving chemotherapy sensitivity and reversing chemotherapy resistance of GC by TCM and active ingredients.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese
Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Liu Y, Yu X, Shen H, Hong Y, Hu G, Niu W, Ge J, Xuan J, Qin JJ, Li Q. Mechanisms of traditional Chinese medicine in the treatment and prevention of gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156003. [PMID: 39305742 DOI: 10.1016/j.phymed.2024.156003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Gastric cancer (GC) ranks as the fifth most prevalent malignancy worldwide. Conventional treatments, including radiotherapy and chemotherapy, often induce severe side effects and significant adverse reactions, and they may also result in drug resistance. Consequently, there is a critical need for the development of new therapeutic agents. Traditional Chinese Medicine (TCM) and natural products are being extensively researched due to their low toxicity, multi-targeted approaches, and diverse pathways. Scholars are increasingly focusing on identifying active anticancer components within TCM. PURPOSE This review aims to summarise research conducted over the past 14 years on the treatment of GC using TCM. The focus is on therapeutic targets, mechanisms, and efficacy of Chinese medicine and natural products, including monomer compounds, extracts or analogues, and active ingredients. METHODS Relevant articles on TCM and GC were retrieved from PubMed using appropriate keywords. The collected articles were screened and classified according to the types of TCM, with an emphasis on the molecular mechanisms underlying the treatment of GC. RESULTS The research on TCM indicates that TCM and natural products can effectively inhibit the metastasis, proliferation, and invasion of tumour cells. They can also induce apoptosis, autophagy and improve the chemosensitivity of drug-resistant cells. Additionally, injections derived from Chinese herbal medicine, when used as an adjunct to conventional chemotherapy, can significantly improve the prognosis of GC patients by reducing chemotherapy toxicity. CONCLUSION This review summarises the progress of TCM treatment of GC over the past 14 years, and discusses its therapeutic application of GC, which proves that TCM is a promising treatment strategy for GC in the future.
Collapse
Affiliation(s)
- Yanyang Liu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuefei Yu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China
| | - Huize Shen
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yangjian Hong
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaofeng Hu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenyuan Niu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Xuan
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Li J, Niu Y, Yuan L, Jiang W, Jiao T, Dou H, Nan Y. Research Progress in the Medicine-Food Dual Use of Astragalus for Gastrointestinal Tumors. J Med Food 2024; 27:1145-1157. [PMID: 39431943 DOI: 10.1089/jmf.2024.k.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Gastrointestinal tumors have a major impact on human life expectancy and quality of life and are a major cause of personal and social hygiene stress. Gastrointestinal tumors are the main cause of cancer-related death, and the main treatment methods are surgery, radiotherapy, and chemotherapy. However, they also cause great damage to the body and have a poor prognosis after surgery. Therefore, we urgently need safe and effective drugs to intervene in gastrointestinal tumors. In recent years, Traditional Chinese Medicine has been widely used in tumor treatment as a complementary and alternative therapy. Astragalus membranaceus is one of the main herbal medicines with tonic effect and one of the important components of many antitumor herbal compounds. Astragalus polysaccharides, saponins, and flavonoids are the main active components of Astragalus, all of which have antitumor effects. In this article, we studied the mechanism of action of Astragalus and its active ingredients in the intervention of gastrointestinal tumors in recent years and suggested a new approach for the study of Astragalus intervention in gastrointestinal tumors from the perspective of the homology of medicine and food.
Collapse
Affiliation(s)
- Jiaqing Li
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Yang Niu
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Ling Yuan
- Pharmacy College of Ningxia Medical University, Yinchuan, China
| | - Wenjie Jiang
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
| | - Taiqiang Jiao
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Hongli Dou
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Marxist College of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yi Nan
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
| |
Collapse
|
6
|
Liu J, Sun Y, Chen W, Deng L, Chen M, Dong J. Proteomic analysis reveals the molecular mechanism of Astragaloside in the treatment of non-small cell lung cancer by inducing apoptosis. BMC Complement Med Ther 2023; 23:461. [PMID: 38102661 PMCID: PMC10722856 DOI: 10.1186/s12906-023-04305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Astragaloside III (AS III), a saponin-like metabolite derived from the traditional Chinese medicine Astragali Radix, has been shown to be effective in the treatment of cancer and heart failure, and a variety of digestive disorders. However, its molecular mechanism in the treatment of non-small cell lung cancer (NSCLC) is unknown. METHODS Human lung cancer A549 cells and NCI-H460 cells and a normal human lung epithelial cell BEAS-2B were treated with different concentrations of AS III. CCK-8 and EdU staining were used to determine the anti-proliferative effects of AS III in vitro. Quantitative proteomic analysis was performed on A549 cells treated with the indicated concentrations of AS III, and the expression levels of apoptosis-related proteins were examined by Western blotting. RESULTS AS III treatment significantly inhibited proliferation and increased apoptosis in A549 and H460 cells and modulated functional signaling pathways associated with apoptosis and metabolism. At the molecular level, AS III promoted a reduction in the expression of ANXA1 (p < 0.01), with increased levels of cleaved Caspase 3 and PARP 1. In addition, AS III treatment significantly decreased the LC3-I/LC3-II ratio. The results of experiment in vitro showed that AS III promoted NSCLC apoptosis by down-regulating the phosphorylation levels of P38, JNK, and AKT (p < 0.01), inhibiting the expression of Bcl-2 (p < 0.01), and up-regulating the expression of Bax (p < 0.01). CONCLUSION These findings provide a mechanism whereby AS III treatment induces apoptosis in NSCLC cells, which may be achieved in part via modulation of the P38, ERK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Li Z, Qi J, Guo T, Li J. Research progress of Astragalus membranaceus in treating peritoneal metastatic cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116086. [PMID: 36587879 DOI: 10.1016/j.jep.2022.116086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peritoneal metastasis is a manifestation of advanced cancer often associated with a poor prognosis and poor response to treatment. Astragalus membranaceus (Fisch.) Bunge is a commonly used medicinal material in traditional Chinese medicine with various biological activities. In patients with cancer, Astragalus membranaceus has demonstrated anti-tumor effects, immune regulation, postoperative recurrence and metastasis prevention, and survival prolongation. AIM OF THE STUDY Peritoneal metastasis results from tumor cell and peritoneal microenvironment co-evolution. We aimed to introduce and discuss the specific mechanism of action of Astragalus membranaceus in peritoneal metastasis treatment to provide a new perspective for treatment and further research. MATERIALS AND METHODS We consulted reports on the anti-peritoneal metastases effects of Astragalus membranaceus from PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases, as well as Google Scholar. Meanwhile, we also obtained data from published medical works and doctoral and master's theses. Then, we focused on the research progress of Astragalus membranaceus in peritoneal metastatic cancer treatment. Plant names are provided in accordance with "The Plant List" (www.theplantlist.org). RESULTS To date, more than 200 compounds have been isolated from Astragalus membranaceus. Among them, Astragalus polysaccharides, saponins, and flavonoids are the main bioactive components, and their effects on cancer have been extensively studied. In this review, we systematically summarize the effects of Astragalus membranaceus on the peritoneal metastasis microenvironment and related mechanisms, including maintaining the integrity of peritoneal mesothelial cells, restoring the peritoneal immune microenvironment, and inhibiting the formation of tumor blood vessels, matrix metalloproteinase, and dense tumor spheroids. CONCLUSIONS Our analysis demonstrates that Astragalus membranaceus could be a potential therapeutic for preventing the occurrence of peritoneal metastasis. However, it might be too early to recommend its use owing to the paucity of reliable in vivo experiment, clinical data, and evidence of clinical efficacy. In addition, previous studies of Astragalus membranaceus report inconsistent and contradictory findings. Therefore, detailed in vitro, in vivo, and clinical studies on the mechanism of Astragalus membranaceus in peritoneal metastatic cancer treatment are warranted.
Collapse
Affiliation(s)
- Zhiyuan Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Jinfeng Qi
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
8
|
Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, Farzaei MH, Mojarrab M. Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites 2023; 13:metabo13030323. [PMID: 36984763 PMCID: PMC10052344 DOI: 10.3390/metabo13030323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Syed Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| |
Collapse
|
9
|
Wani AK, Akhtar N, Sharma A, El-Zahaby SA. Fighting Carcinogenesis with Plant Metabolites by Weakening Proliferative Signaling and Disabling Replicative Immortality Networks of Rapidly Dividing and Invading Cancerous Cells. Curr Drug Deliv 2023; 20:371-386. [PMID: 35422214 DOI: 10.2174/1567201819666220414085606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer, an uncontrolled multistage disease causing swift division of cells, is a leading disease with the highest mortality rate. Cellular heterogeneity, evading growth suppressors, resisting cell death, and replicative immortality drive the tumor progression by resisting the therapeutic action of existing anticancer drugs through a series of intrinsic and extrinsic cellular interactions. The innate cellular mechanisms also regulate the replication process as a fence against proliferative signaling, enabling replicative immortality through telomere dysfunction. AREA COVERED The conventional genotoxic drugs have several off-target and collateral side effects associated with them. Thus, the need for the therapies targeting cyclin-dependent kinases or P13K signaling pathway to expose cancer cells to immune destruction, deactivation of invasion and metastasis, and maintaining cellular energetics is imperative. Compounds with anticancer attributes isolated from plants and rich in alkaloids, terpenes, and polyphenols have proven to be less toxic and highly targetspecific, making them biologically significant. This has opened a gateway for the exploration of more novel plant molecules by signifying their role as anticancer agents in synergy and alone, making them more effective than the existing cytotoxic regimens. EXPERT OPINION In this context, the current review presented recent data on cancer cases around the globe, along with discussing the fundamentals of proliferative signaling and replicative immortality of cancer cells. Recent findings were also highlighted, including antiproliferative and antireplicative action of plant-derived compounds, besides explaining the need for improving drug delivery systems.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab (144411), India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab (144411), India
| | - Arun Sharma
- Department of Pharmacy, School of Pharmaceutical Sciences, Lovely Professional University, Punjab (144411), India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
10
|
Zhang Y, Liang L, Wang Y, Cui Y, Hao C, Xin H. Anti-cancer effects of Shenqishiyiwei granules in gastric cancer are mediated via modulation of the immune system. J Funct Foods 2022; 98:105280. [DOI: 10.1016/j.jff.2022.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Ai Y, Zhao Z, Wang H, Zhang X, Qin W, Guo Y, Zhao M, Tang J, Ma X, Zeng J. Pull the plug: Anti‐angiogenesis potential of natural products in gastrointestinal cancer therapy. Phytother Res 2022; 36:3371-3393. [PMID: 35871532 DOI: 10.1002/ptr.7492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yanling Ai
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Hengyi Wang
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Weihan Qin
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Yanlei Guo
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Maoyuan Zhao
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Department of Geriatrics Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
12
|
TANG Z, WANG Y, HUANG Y. Astragalus polysaccharide inhibits apoptosis and inflammation to alleviate chronic atrophic gastritis through NF-κB signaling pathway in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.121921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yi WANG
- Xiaochang County Maternal and Child Health Hospital, China
| | - Yan HUANG
- The First Affiliated Hospital of Hubei University of Science and Technology, China
| |
Collapse
|
13
|
Sheik A, Kim K, Varaprasad GL, Lee H, Kim S, Kim E, Shin JY, Oh SY, Huh YS. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153698. [PMID: 34479785 DOI: 10.1016/j.phymed.2021.153698] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cancer is the most dreadful disease increasing rapidly causing an economic burden globally. A standardized chemotherapy regimen planned with curative intent weakens the immune system and damages healthy cells making the patient prone to infections and severe side effects with pain and fatigue. PURPOSE Astragalus membranaceus (AM) has a long history of use in the treatment of severe adverse diseases. For thousands of years, it has been used in mixed herbal decoctions for the treatment of cancer. Due to growing interest in this plant root for its application to treat various types of cancers and tumors, has attracted researcher's interest. METHOD The literature search was done from core collections of electronic databases such as Web of Science, Google Scholar, PubMed and Science Direct using keywords given below and terms like pharmacological and phytochemical details of this plant. OUTCOME Astragalus membranaceus has demonstrated the ability to modulate the immune system during drug therapy making the patient physically fit and prolonged life. It has become a buzzword of herbalists as it is one of the best of seven important adaptogenic herbs with a protective effect against chronic stress and cancer. It demonstrated significant amelioration of the perilous toxic effects induced by concurrently administered chemo onco-drugs. CONCLUSION The natural phytoconstituents of this plant formononetin, astragalus polysaccharide, and astragalosides which show high potential anti-cancerous activity are studied and discussed in detail. One of them are used in clinical trials to overcome cancer related fatigue. Overall, this review aims to provide an insight into Astragalus membranaceus status in cancer therapy.
Collapse
Affiliation(s)
- Aliya Sheik
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Kwanwoo Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Ganji Lakshmi Varaprasad
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Suheon Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Eunsu Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Jin-Yong Shin
- Chungcheong Division Reliability Center, Korea Confomity Laboratories, Yuseong-gu, Daejeon, 34027, Republic of Korea
| | - Seo Yeong Oh
- Research Group of Consumer Safety, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea.
| |
Collapse
|
14
|
Cheng M, Hu J, Zhao Y, Jiang J, Qi R, Chen S, Li Y, Zheng H, Liu R, Guo Q, Zhang X, Qin Y, Hua B. Efficacy and Safety of Astragalus-Containing Traditional Chinese Medicine Combined With Platinum-Based Chemotherapy in Advanced Gastric Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:632168. [PMID: 34422628 PMCID: PMC8371531 DOI: 10.3389/fonc.2021.632168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background Astragalus-containing traditional Chinese medicine (TCM) is widely used as adjunctive treatment to platinum-based chemotherapy (PBC) in patients with advanced gastric cancer (AGC) in China. However, evidence regarding its efficacy remains limited. This study aimed to evaluate the efficacy and safety of Astragalus-containing TCM combined with PBC in AGC treatment. Methods We searched for literature (up to July 19, 2020) in eight electronic databases. The included studies were reviewed by two researchers. The main outcomes were the objective response rate (ORR), disease control rate (DCR), survival rate, quality of life (QOL), adverse drug reactions (ADRs), and peripheral blood lymphocyte levels. The effect estimate of interest was the risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CIs). Trial sequential analysis (TSA) was used to detect the robustness of the primary outcome and to calculate the required information size (RIS). Certainty of the evidence was assessed using the GRADE profiler. Results Results based on available literature showed that, compared with patients treated with PBC alone, those treated with Astragalus-containing TCM had a better ORR (RR: 1.24, 95% CI: 1.15–1.34, P < 0.00001), DCR (RR: 1.10, 95% CI: 1.06–1.14, P < 0.00001), 1-year survival rate (RR: 1.41, 95% CI: 1.09–1.82, P = 0.009), 2-year survival rate (RR: 3.13, 95% CI: 1.80–5.46, P < 0.0001), and QOL (RR: 2.03, 95% CI: 1.70–2.43, P < 0.00001 and MD: 12.39, 95% CI: 5.48–19.30, P = 0.0004); higher proportions of CD3+ T cells and CD3+ CD4+ T cells; higher ratio of CD4+/CD8+ T cells; nature killer cells; and lower incidence of ADRs. Subgroup analysis showed that both oral and injection administration of Astragalus-containing TCM increased tumor response. Whether treatment duration was ≥8 weeks or <8 weeks, Astragalus-containing TCM could increase tumor response in AGC patients. Furthermore, Astragalus-containing TCM combined with oxaliplatin-based chemotherapy could increase the ORR and DCR; when with cisplatin, it could only increase the ORR. Conclusion Current low to moderate evidence revealed that Astragalus-containing TCM combined with PBC had better efficacy and less side effects in the treatment of AGC; however, more high-quality randomized studies are warranted. Systematic Review Registration PROSPERO, identifier CRD42020203486.
Collapse
Affiliation(s)
- Mengqi Cheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Hu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuwei Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuntai Chen
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinggang Qin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Yoon SS, Kim EH, Lee JY, Yoon SW. Prolonged Progression-Free Survival in a Patient With Malignant Pleural Mesothelioma Following Korean Herbal Medicine Treatment Alone: A Case Report. Integr Cancer Ther 2021; 19:1534735420908345. [PMID: 32100581 PMCID: PMC7045291 DOI: 10.1177/1534735420908345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Korean herbal medicine treatment (KHMT) involves treating with a combination of natural products, which have been used for thousands of years. Recently, it has been reported to be effective and safe in cancer patients. This case report demonstrates the efficacy of KHMT in a 49-year-old man with malignant pleural mesothelioma (MPM), a rare and highly aggressive cancer. The patient showed recurrent pleural effusion and was diagnosed with epithelioid MPM at cT3NxM0 stage III in December 2017. The multidisciplinary care team recommended multimodal treatment based on an extrapleural pneumonectomy, but he refused this because the treatment was aggressive and the effectiveness was unclear. He decided to undergo pemetrexed plus cisplatin chemotherapy if his condition worsened. He visited the Korean Medicine Cancer Center for alternative treatment options. A KHMT regimen, consisting of twice-daily Gunchil-dan and thrice-daily Bangam-tang, was initiated in December 2017. Since commencement of KHMT, computed tomography and X-ray imaging scans have shown no significant interval changes and progression. At 21 months into treatment (September 2019), no significant adverse events have occurred. Given that the median overall survival of patients with MPM is approximately 1 year, the ongoing progression-free survival of this patient for 21 months is relatively long. This case, therefore, suggests that KHMT is a potential treatment option for MPM patients.
Collapse
Affiliation(s)
- Sung Soo Yoon
- Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Eun Hye Kim
- Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jee Young Lee
- Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Seong Woo Yoon
- Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
16
|
Wang L, Yang L, Xiong F, Nie X, Li C, Xiao Y, Zhou G. Nitrogen Fertilizer Levels Affect the Growth and Quality Parameters of Astragalus mongolica. Molecules 2020; 25:E381. [PMID: 31963357 PMCID: PMC7024162 DOI: 10.3390/molecules25020381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Owing to overexploitation, wild resources of Astragalus mongolica, a Chinese herbal plant that is widely distributed in the arid and semi-arid areas of Northern China, have gradually become exhausted, and therefore, commercial cultivation is increasingly important to meet the growing demand for astragalus and reduce the pressure on wild populations. Nitrogen level is an important factor that affects the yield and quality of A. mongolica. However, uniform standards for fertilization among production areas have not yet been determined. In this study, the effect of nitrogen fertilizer treatment on the yield and quality of A. mongolica in the Qinghai-Tibet Plateau was explored using a control treatment (no added nitrogen, N0) and five different nutrient levels: 37.5 kg/ha (N1), 75 kg/ha (N2), 112.5 kg/ha (N3), 150 kg/ha (N4), and 187.5 kg/ha (N5). According to grey relational analysis, the optimal nitrogen fertilizer treatment was the N4 level followed by the N5 and N2 levels. Nitrogen fertilizer significantly increased the root biomass, plant height, root length, and root diameter. However, nitrogen fertilization had no significant effect on the content of Astragaloside IV and mullein isoflavone glucoside. The content of ononin and calycosin continually accumulated throughout the growing period. The results showed that the ononin and calycosin content under N4 and N2 is higher than other levels and there is not significantly different between different nitrogen fertilizer levels about them. The content of formononetin decreased gradually with the progression of the growing season. The optimal nitrogen fertilizer treatment for A. mongolica is recommended to be 150 kg/ha and the content of active compounds and yield were observed to reach the maximum in October.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.W.); (L.Y.); (F.X.); (X.N.); (C.L.); (Y.X.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lucun Yang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.W.); (L.Y.); (F.X.); (X.N.); (C.L.); (Y.X.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
| | - Feng Xiong
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.W.); (L.Y.); (F.X.); (X.N.); (C.L.); (Y.X.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqing Nie
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.W.); (L.Y.); (F.X.); (X.N.); (C.L.); (Y.X.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbin Li
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.W.); (L.Y.); (F.X.); (X.N.); (C.L.); (Y.X.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanming Xiao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.W.); (L.Y.); (F.X.); (X.N.); (C.L.); (Y.X.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (L.W.); (L.Y.); (F.X.); (X.N.); (C.L.); (Y.X.)
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Xining 810008, China
| |
Collapse
|
17
|
Shkondrov A, Krasteva I, Ionkova I, Popova P, Zarev Y, Mihaylova R, Konstantinov S. Production of saponins from in vitro cultures of Astragalus glycyphyllos and their antineoplastic activity. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1671222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Aleksandar Shkondrov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Ilina Krasteva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Iliana Ionkova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Pavlinka Popova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Yancho Zarev
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
18
|
Babich O, Prosekov A, Zaushintsena A, Sukhikh A, Dyshlyuk L, Ivanova S. Identification and quantification of phenolic compounds of Western Siberia Astragalus danicus in different regions. Heliyon 2019; 5:e02245. [PMID: 31453402 PMCID: PMC6700501 DOI: 10.1016/j.heliyon.2019.e02245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/24/2018] [Accepted: 08/05/2019] [Indexed: 12/31/2022] Open
Abstract
The potential of phenolic compounds of medicinal plants including Astragalus danicus L is determined by but not limited to their antioxidant activity. Their anti-inflammatory, antitumor, and other useful properties are known, which allows using these phytochemicals within preventive activities to reduce the risk of many serious diseases. Chromatographic analysis of the Astragalus danicus L. biomaterial from the plant samples collected in three regions of the Kemerovo region (Western Siberia, Russia) established the presence of compounds of flavonols (isorhamnetin glucoside, kaempferol glucoside), flavones (apigenin 7-glucoside), phenylpropanoids (chlorogenic acid) in the aerial part of plants. The total content of phenolic compounds in plant samples ranged from 100.75 ± 3.87 mg/g (Yashkinsky district) to 190.95 ± 7.34 mg/g (Belovsky district). The content of chlorogenic acid in the studied samples was from 0.14 ± 0.01 mg/g to 1.16 ± 0.04 mg/g. Isorhamnetin glucoside was found only in samples of plants from two districts - Prokopievsky (41.39 ± 1.58 mg/g) and Belovsky (95.0 ± 3.66 mg/g). The content of glucosides of kaempferol ranged from 0.38 ± 0.01 mg/g to 0.55 ± 0.02 mg/g. Its content is almost twice as high as the content in the well-known analogues of Astragalus. Apigenin-7-glucoside was isolated in Astragalus samples for the first time, in a small amount (3.34 ± 0.13 mg/g) in a sample of plants of one growing zone. Studies have confirmed that the content of flavonoids in plants significantly depends not only on the genetic characteristics of plants, but also on the hydrothermal regime, the climatic conditions of different botanical and geographical areas of the habitat. This work shows that Astragalus danicus L. growing in Kemerovo region is a promising raw material for pharmacological preparations.
Collapse
Affiliation(s)
- Olga Babich
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Alexandra Zaushintsena
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Andrey Sukhikh
- Central Research Laboratory, Kemerovo State Medical University, 22a Voroshilova Street, Kemerovo, 650056, Russia
| | - Lyubov Dyshlyuk
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Svetlana Ivanova
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Corresponding author.
| |
Collapse
|
19
|
Graziani V, Esposito A, Scognamiglio M, Chambery A, Russo R, Ciardiello F, Troiani T, Potenza N, Fiorentino A, D'Abrosca B. Spectroscopic Characterization and Cytotoxicity Assessment towards Human Colon Cancer Cell Lines of Acylated Cycloartane Glycosides from Astragalus boeticus L. Molecules 2019; 24:molecules24091725. [PMID: 31058835 PMCID: PMC6539726 DOI: 10.3390/molecules24091725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
In several European countries, especially in Sweden, the seeds of the species Astragalus boeticus L. were widely used as coffee substitutes during the 19th century. Nonetheless, data regarding the phytochemistry and the pharmacological properties of this species are currently extremely limited. Conversely, other species belonging to the Astragalus genus have already been extensively investigated, as they were used for millennia for treating various diseases, including cancer. The current work was addressed to characterize cycloartane glycosides from A. boeticus, and to evaluate their cytotoxicity towards human colorectal cancer (CRC) cell lines. The isolation of the metabolites was performed by using different chromatographic techniques, while their chemical structures were elucidated by nuclear magnetic resonance (NMR) (1D and 2D techniques) and electrospray-ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry. The cytotoxic assessment was performed in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in Caco-2, HT-29 and HCT-116 CRC cells. As a result, the targeted phytochemical study of A. boeticus enabled the isolation of three new cycloartane glycosides, 6-O-acetyl-3-O-(4-O-malonyl)-β-d-xylopyranosylcycloastragenol (1), 3-O-(4-O-malonyl)-β-d-xylopyranosylcycloastragenol (2), 6-O-acetyl-25-O-β-d-glucopyranosyl-3-O-β-d-xylopyranosylcycloastragenol (3) along with two known compounds, 6-O-acetyl-3-O-β-d-xylopyranosylcycloastragenol (4) and 3-O-β-d-xylopyranosylcycloastragenol (5). Importantly, this work demonstrated that the acetylated cycloartane glycosides 1 and 4 might preferentially inhibit cell growth in the CRC cell model resistant to epidermal growth factor receptor (EGFR) inhibitors.
Collapse
Affiliation(s)
- Vittoria Graziani
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Assunta Esposito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Monica Scognamiglio
- Department of Biochemistry, Max Planck Institute for Chemical Ecology-Beutenberg Campus, Hans-Knöll-Straße, 8 D-07745 Jena, Germany.
| | - Angela Chambery
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Fortunato Ciardiello
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131 Napoli, Italy.
| | - Teresa Troiani
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131 Napoli, Italy.
| | - Nicoletta Potenza
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Brigida D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
20
|
Wang P, Jiang S, Zhao Y, Sun S, Wen X, Guo X, Jiang Z. A UPLC-MS/MS Method for Simultaneous Determination of Six Bioactive Compounds in Rat Plasma, and its Application to Pharmacokinetic Studies of Naoshuantong Granule in Rats. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180409143452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
It is urgently needed to clarify the pharmacokinetic mechanism for the multibioactive
constituents in Traditional Chinese Medicines for its clinical applications. A rapid, sensitive
and reliable ultra-performance liquid chromatography-tandem mass spectrometry method was developed
and validated for the simultaneous determination of Danshensu, Ferulic acid, Astragaloside IV,
Naringin, Neohesperidin and Puerarin after oral administration of Naoshuantong Granule using Carbamazepine
as internal standard (IS).
Methods:
The plasma samples were pretreated by liquid-liquid extraction method using ethyl acetate
after acidification, and separated on a Waters ACQUITY UPLC® BEH C18 column (50×2.1 mm, i.d.,
1.7 µm) by gradient elution with a mobile phase composing of water (containing 0.1% formic acid) and
acetonitrile at a flow rate of 0.2 mL/min. Multiple reaction monitoring (MRM) mode with both positive
and negative ion mode was operated using an electrospray ionization (ESI) to detect the six compounds.
Result:
All calibration curves showed good linearity (r>0.99) over a wide concentration range. The
intra- and inter-day precision (RSD%) was below 8.4% and the accuracy (RE%) ranged from 91.1% to
107.5%. The extraction recoveries of the six analytes and IS in the plasma were more than 77.9% and
no severe matrix effect was observed.
Conclusion:
The fully validated method was successfully applied to the pharmacokinetics of Naoshuantong
Granule.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Shenmeng Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yu Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Shuo Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Xiaoli Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Xingjie Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Zhen Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
21
|
Oyenihi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:54-72. [PMID: 30287197 DOI: 10.1016/j.jep.2018.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the severe side effects associated with most of the conventional cancer medications, as well as the expanding body of evidence indicating secondary toxicity of these drugs, individuals with cancer are increasingly turning to natural alternatives. Similarly, the pharmaceutical industry is in search of natural products to treat cancer. An understanding of the specific active components in plant products with which anti-cancer efficacy is achieved is required for this research to move forward. AIM OF THE STUDY To integrate data from cancer-relatestudies on plant-derived products or extracts, to elucidate whether these products may have similar active ingredients and/or mechanisms of action, that can explain their efficacy. This review also includes a discussion of the methodological complexities and important considerations involved in accurate isolation and characterisation of active substances from plant material. CONCLUSIONS From the literature reviewed, most plant products with consistently reported anti-cancer efficacy contains high levels of polyphenols or other potent antioxidants and their mechanisms of action correlate to that reported for isolated antioxidants in the context of cancer. This suggests that natural products may indeed become the panacea against this chronic disease - either as therapeutic medicine strategy or to serve as templates for the design of novel synthetic drugs. The recommendation is made that antioxidant activity of plant actives and especially polyphenols, should be the focus of anti-cancer drug discovery initiatives. Lastly, researchers are advised to exploit current techniques of chemical compound characterisation when investigating polyphenol-rich plants to enable the easy consolidation of research findings from different laboratories.
Collapse
Affiliation(s)
- A B Oyenihi
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
22
|
Sheng J, Zou X, Cheng Z, Xiang Y, Yang W, Lin Y, Cui R. Recent Advances in Herbal Medicines for Digestive System Malignancies. Front Pharmacol 2018; 9:1249. [PMID: 30524272 PMCID: PMC6256117 DOI: 10.3389/fphar.2018.01249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Herbal medicines, as an important part of traditional Chinese medicine (TCM), have been used to treat digestive system malignancies (DSM) for many years, and have gradually gained recognition worldwide. The role of herbal medicines in the comprehensive treatment of DSM is being improved from adjuvant treatment of the autologous immune function in cancer patients, to the treatment of both the symptoms and disease, direct inhibition of tumor cell growth and proliferation, and induction of tumor cell autophagy and apoptosis. Their specific mechanisms in these treatments are also being explored. The paper reviews the current anti-tumor mechanisms of TCM, including single herbal medicines, Chinese herbal formulations, Chinese medicine preparations and TCM extract, and their application in the comprehensive treatment of digestive system tumors, providing a reference for clinical application of TCM.
Collapse
Affiliation(s)
- Jiyao Sheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yien Xiang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Lin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Zheng Y, Dai Y, Liu W, Wang N, Cai Y, Wang S, Zhang F, Liu P, Chen Q, Wang Z. Astragaloside IV enhances taxol chemosensitivity of breast cancer via caveolin-1-targeting oxidant damage. J Cell Physiol 2018; 234:4277-4290. [PMID: 30146689 DOI: 10.1002/jcp.27196] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
Accumulating evidence suggests that caveolin-1 (CAV-1) is a stress-related oncotarget and closely correlated to chemoresistance. Targeting CAV-1 might be a promising strategy to improve chemosensitivity for breast cancer treatment. Astragaloside IV (AS-IV), a bioactive compound purified from Astragalus membranaceus, has been shown to exhibit multiple bioactivities, including anticancer. However, the involved molecular targets are still ambiguous. In this study, we investigated the critical role of CAV-1 in mediating the chemosensitizing effects of AS-IV to Taxol on breast cancer. We found that AS-IV could enhance the chemosensitivity of Taxol with minimal direct cytotoxicity on breast cancer cell lines MCF-7 and MDA-MB-231, as well as the nontumor mammary epithelial cell line MCF-10A. AS-IV was further demonstrated to aggravate Taxol-induced apoptosis and G2/M checkpoint arrest. The phosphorylation of mitogen-activated protein kinase (MAPK) signaling extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK), except p38, was also abrogated by a synergistic interaction between AS-IV and Taxol. Moreover, AS-IV inhibited CAV-1 expression in a dose-dependent manner and reversed CAV-1 upregulation induced by Taxol administration. Mechanism study further demonstrated that AS-IV treatment triggered the eNOS/NO/ONOO- pathway via inhibiting CAV-1, which led to intense oxidant damage. CAV-1 overexpression abolished the chemosensitizing effects of AS-IV to Taxol by inhibiting oxidative stress. In vivo experiments further validated that AS-IV increased Taxol chemosensitivity on breast cancer via inhibiting CAV-1 expression, followed by activation of the eNOS/NO/ONOO- pathway. Taken together, our findings not only suggested the potential of AS-IV as a promising candidate to enhance chemosensitivity, but also highlighted the significance of CAV-1 as the target to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Yifeng Zheng
- Guangzhou University of Chinese Medicine, Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Translational Research Laboratory of Chinese Medicine & Cancer Stress Signaling, College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Dai
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Weiping Liu
- Guangzhou University of Chinese Medicine, Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- Guangzhou University of Chinese Medicine, Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Translational Research Laboratory of Chinese Medicine & Cancer Stress Signaling, College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Discipline of Integrated Chinese and Western Medicine, Post-Doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Youli Cai
- Guangzhou University of Chinese Medicine, Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Discipline of Integrated Chinese and Western Medicine, Post-Doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- Guangzhou University of Chinese Medicine, Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Translational Research Laboratory of Chinese Medicine & Cancer Stress Signaling, College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- Guangzhou University of Chinese Medicine, Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Translational Research Laboratory of Chinese Medicine & Cancer Stress Signaling, College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Discipline of Integrated Chinese and Western Medicine, Post-Doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengxi Liu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Translational Research Laboratory of Chinese Medicine & Cancer Stress Signaling, College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhiyu Wang
- Guangzhou University of Chinese Medicine, Integrative Research Laboratory of Breast Cancer, The Research Centre of Integrative Medicine, Discipline of Integrated Chinese and Western Medicine & The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Translational Research Laboratory of Chinese Medicine & Cancer Stress Signaling, College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Discipline of Integrated Chinese and Western Medicine, Post-Doctoral Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Graziani V, Scognamiglio M, Belli V, Esposito A, D'Abrosca B, Chambery A, Russo R, Panella M, Russo A, Ciardiello F, Troiani T, Potenza N, Fiorentino A. Metabolomic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells. Sci Rep 2018; 8:5309. [PMID: 29593231 PMCID: PMC5871890 DOI: 10.1038/s41598-018-23704-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of bioactive compounds from natural sources entails an extremely lengthy process due to the timescale and complexity of traditional methodologies. In our study, we used a rapid NMR based metabolomic approach as tool to identify secondary metabolites with anti-proliferative activity against a panel of human colorectal cancer cell lines with different mutation profiles. For this purpose, fourteen Fabaceae species of Mediterranean vegetation were investigated using a double screening method: 1H NMR profiling enabled the identification of the main compounds present in the mixtures, whilst parallel biological assays allowed the selection of two plant extracts based on their strong anti-proliferative properties. Using high-resolution 2D NMR spectroscopy, putative active constituents were identified in the mixture and isolated by performing a bio-guided fractionation of the selected plant extracts. As a result, we found two active principles: a cycloartane glycoside and protodioscin derivative. Interestingly, these metabolites displayed a preferential anti-proliferative effect on colon cancer cell lines with an intrinsic resistance to anti-EGFR therapies. Our work provides an NMR-based metabolomic approach as a powerful and efficient tool to discover natural products with anticancer activities circumventing time-consuming procedures.
Collapse
Affiliation(s)
- Vittoria Graziani
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy
| | - Monica Scognamiglio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy.,Max Planck Institute for Chemical Ecology - Beutenberg Campus, Hans-Knöll-Straße 8 D-, 07745, Jena, Germany
| | - Valentina Belli
- Dipartimento di Internistica Clinica e Sperimentale "Flaviano Magrassi", Università degli Studi della Campania "Luigi Vanvitelli" Via Pansini, 5 -, I-80131, Napoli, Italy
| | - Assunta Esposito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy
| | - Brigida D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy
| | - Angela Chambery
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy
| | - Marta Panella
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy
| | - Aniello Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy
| | - Fortunato Ciardiello
- Dipartimento di Internistica Clinica e Sperimentale "Flaviano Magrassi", Università degli Studi della Campania "Luigi Vanvitelli" Via Pansini, 5 -, I-80131, Napoli, Italy
| | - Teresa Troiani
- Dipartimento di Internistica Clinica e Sperimentale "Flaviano Magrassi", Università degli Studi della Campania "Luigi Vanvitelli" Via Pansini, 5 -, I-80131, Napoli, Italy.
| | - Nicoletta Potenza
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy.
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43 I-, 81100, Caserta, Italy.
| |
Collapse
|
25
|
Liu P, Zhao H, Luo Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis 2017; 8:868-886. [PMID: 29344421 PMCID: PMC5758356 DOI: 10.14336/ad.2017.0816] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy and the Family Planning program of the 1970s - 1990s, China is rapidly becoming an aging society. Therefore, the investigation of healthspan-extending drugs becomes more urgent. Astragalus membranaceus (Huangqi) is a major medicinal herb that has been commonly used in many herbal formulations in the practice of traditional Chinese medicine (TCM) to treat a wide variety of diseases and body disorders, or marketed as life-prolonging extracts for human use in China, for more than 2000 years. The major components of Astragalus membranaceus are polysaccharides, flavonoids, and saponins. Pharmacological research indicates that the extract component of Astragalus membranaceus can increase telomerase activity, and has antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects. A proprietary extract of the dried root of Astragalus membranaceus, called TA-65, was associated with a significant age-reversal effect in the immune system. Our review focuses on the function and the underlying mechanisms of Astragalus membranaceus in lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer effects, based on experimental and clinical studies.
Collapse
Affiliation(s)
- Ping Liu
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
26
|
Astragaloside IV inhibits breast cancer cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling. Int Immunopharmacol 2016; 42:195-202. [PMID: 27930970 DOI: 10.1016/j.intimp.2016.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/08/2016] [Accepted: 10/02/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Astragaloside IV (AS-IV), the major active triterpenoid in Radix Astragali, has shown anti-tumorigenic properties in certain cancers; however, its role in breast cancer remains unclear. The present study investigated the effects of AS-IV on breast cancer in vitro and in vivo and examined the underlying mechanisms. METHODS The effects of AS-IV on MDA-MB-231 cell proliferation, migration, invasion and metastasis were investigated by MTT and Transwell assays, and western blotting. In addition, an orthotopic mouse tumor model was established for in vivo experiments. RESULTS AS-IV inhibited the viability and invasive potential of MDA-MB-231 breast cancer cells, suppressed the activation of the mitogen activated protein kinase (MAPK) family members ERK1/2 and JNK, and downregulated matrix metalloproteases (MMP)-2 and -9. The effects of AS-IV were mediated by the downregulation of Vav3, a guanine nucleotide exchange factor, leading to decreased levels of activated Rac1, a Rho family GTPase. Vav3 overexpression promoted cell proliferation and invasion in vitro, whereas Vav3 silencing had the opposite effects. AS-IV suppressed orthotopic breast tumor growth and metastasis to the lungs, whereas ectopic expression of Vav3 reversed the inhibitory effect of AS-IV on cell viability, invasiveness, MAPK signaling and MMP expression. CONCLUSION The present results provide a mechanistic explanation for the antitumor effects of AS-IV and suggest its potential in the treatment of metastatic breast cancer.
Collapse
|
27
|
Auyeung KK, Han QB, Ko JK. Astragalus membranaceus: A Review of its Protection Against Inflammation and Gastrointestinal Cancers. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1-22. [DOI: 10.1142/s0192415x16500014] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Astragalus membranaceus is a major medicinal herb commonly used in many herbal formulations in the practice of traditional Chinese medicine (TCM) to treat a wide variety of diseases and body disorders. Among its diversified clinical applications, the potential use of this herb and its chemical constituents in treatments of inflammatory diseases and cancers has been actively investigated in recent years. Astragalus-based treatments have demonstrated significant amelioration of the toxicity induced by other concurrently administered orthodox drugs (e.g., immunosuppressants and cancer chemotherapeutics). The major components of Astragalus membranaceus are polysaccharides, flavonoids, and saponins. Contemporary use of Astragalus membranaceus mainly focuses on its immunomodulating, anti-oxidant, and anti-inflammatory, as well as anticancer effects. In this paper, we summarize the properties of Astragalus membranaceus and its major constituents in the biological system based on experimental and clinical studies. The antitumorigenic mechanisms of a novel Astragalus saponins extract called AST in treating various gastrointestinal cancers are highlighted. We discuss in detail how the Astragalus herb and AST influence the immune system, modulate various cancer signaling pathways, and interact with specific transcription molecules during protection against gastrointestinal inflammation and cancers. This information could help clinicians and scientists develop novel target-specific and effective therapeutic agents that are deprived of major systemic side effects, so as to establish a better treatment regimen in the battle against inflammatory diseases and cancers of the gut.
Collapse
Affiliation(s)
- Kathy K. Auyeung
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Quan-Bin Han
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Joshua K. Ko
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P.R. China
| |
Collapse
|
28
|
TSENG AILUN, YANG CHIHHSUEH, CHEN CHIHHAO, CHEN CHANGHAN, HSU SHIHLAN, LEE MEIHSIEN, LEE HOONGCHIEN, SU LIJEN. An in vivo molecular response analysis of colorectal cancer treated with Astragalus membranaceus extract. Oncol Rep 2016; 35:659-668. [PMID: 26719057 PMCID: PMC4689484 DOI: 10.3892/or.2015.4441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
The fact that many chemotherapeutic drugs cause chemoresistance and side effects during the course of colorectal cancer treatment necessitates development of novel cytotoxic agents aiming to attenuate new molecular targets. Here, we show that Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao (AM), a traditional Chinese medicine, can inhibit tumor growth in vivo and elucidate the underlying molecular mechanisms. The antitumor effect of AM was assessed on the subcutaneous tumors of human colorectal cancer cell line HCT116 grafted into nude mice. The mice were treated with either water or 500 mg/kg AM once per day, before being sacrificed for extraction of tumors, which were then subjected to microarray expression profiling. The gene expression of the extraction was then profiled using microarray analysis. The identified genes differentially expressed between treated mice and controls reveal that administration of AM suppresses chromosome organization, histone modification, and regulation of macromolecule metabolic process. A separate analysis focused on differentially expressed microRNAs revealing involvement of macromolecule metabolism, and intracellular transport, as well as several cancer signaling pathways. For validation, the input of the identified genes to The Library of Integrated Network-based Cellular Signatures led to many chemopreventive agents of natural origin that produce similar gene expression profiles to that of AM. The demonstrated effectiveness of AM suggests a potential therapeutic drug for colorectal cancer.
Collapse
Affiliation(s)
- AILUN TSENG
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan 320, Taiwan, R.O.C
| | - CHIH-HSUEH YANG
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - CHIH-HAO CHEN
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan 320, Taiwan, R.O.C
| | - CHANG-HAN CHEN
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan, R.O.C
| | - SHIH-LAN HSU
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C
| | - MEI-HSIEN LEE
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - HOONG-CHIEN LEE
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - LI-JEN SU
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan 320, Taiwan, R.O.C
- Core Facilities for High Throughput Experimental Analysis of Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan 320, Taiwan, R.O.C
- IHMED Reproductive Medical Center, Taipei 106, Taiwan, R.O.C
| |
Collapse
|
29
|
Abstract
OBJECTIVE To review the anticancer effects of Radix astragali (RA), one of the most commonly used herbs to manage cancer in East Asia, and its constituents and to provide evidence of clinical usage through previously performed clinical studies. METHODS Preclinical and clinical studies related to the anticancer effects of RA were searched from inception to November 2013 in electronic databases. Two reviewers independently investigated 92 eligible studies, extracted all the data of studies and appraised methodological quality of clinical trials. The studies were categorized into in vitro and in vivo experimental studies and clinical studies, and analyzed by saponins, polysaccharides, and flavonoids of RA constituents, RA fraction, and whole extract. RESULTS In preclinical studies, RA was reported to have tumor growth inhibitory effects, immunomodulatory effects, and attenuating adverse effects by cytotoxic agents as well as chemopreventive effects. Saponins seemed to be the main constituents, which directly contributed to suppression of tumor growth through the activation of both intrinsic and extrinsic apoptotic pathway, modulation of intracellular signaling pathway, and inhibition of invasion and angiogenesis. Flavonoids suppressed tumor growth through the similar mechanisms with saponins. Polysaccharides showed immunomodulatory effects, contributing tumor shrinkages in animal models, despite the low cytotoxicity to cancer cells. Most of the clinical studies were performed with low evidence level of study designs because of various limitations. RA whole extracts and polysaccharides of RA were reported to improve the quality of life and ameliorate myelosuppression and other adverse events induced by cytotoxic therapies. CONCLUSION The polysaccharides, saponins, and flavonoids of RA, and the whole extract of RA have been widely reported with their anticancer effects in preclinical studies and showed a potential application as a adjunctive cancer therapeutics with the activities of immunomodulation, anti-proliferation and attenuation of adverse effects induced by cytotoxic therapy.
Collapse
|
30
|
Huang XY, Zhang SZ, Wang WX. Enhanced antitumor efficacy with combined administration of astragalus and pterostilbene for melanoma. Asian Pac J Cancer Prev 2014; 15:1163-9. [PMID: 24606435 DOI: 10.7314/apjcp.2014.15.3.1163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Astragalus, a commonly used traditional Chinese medicine, has exhibited antitumor actions in patients. In this study, in vitro and in vivo antitumor effects of astragalus and synergistic antitumor efficacy in combination with pterostilbene were investigated. Melanoma cells were treated with pterostilbene (Pt), graduated doses of astragalus injection (AI), or these in combination. Cell viability was measured using a MTT assay. Released nucleosomes and caspase activity were measured using enzyme-linked immunosorbent assay. Growth inhibition in vitro and in vivo was also assessed. Analysis of variance and t tests were used for statistical analysis. Significant reduction (p<0.05) in cellular proliferation were observed with AI and AI-Pt in a time- and concentration-dependent manner. Apoptosis and caspase-3/7 activity were significantly increased by AI and AI-Pt treatment (p<0.05). In vivo, AI inhibited melanoma tumor growth, with inhibition rates ranging from 36.5 to 62.3%, by inducing apoptosis via up-regulation Bax expression and the Bax/Bcl-2 ratio and down-regulating Bcl-2 expression. AI significantly inhibits the growth of melanoma in vitro and in vivo by inducing apoptosis. These data suggest that combined treatment of astragalus with pterostilbene enhances antitumor efficacy.
Collapse
Affiliation(s)
- Xin-Yan Huang
- Dermatology Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China E-mail :
| | | | | |
Collapse
|
31
|
Wang Y, Auyeung KK, Zhang X, Ko JK. Astragalus saponins modulates colon cancer development by regulating calpain-mediated glucose-regulated protein expression. Altern Ther Health Med 2014; 14:401. [PMID: 25319833 PMCID: PMC4210535 DOI: 10.1186/1472-6882-14-401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023]
Abstract
Background Glucose-regulated proteins (GRP) are induced in the cancer microenvironment to promote tumor survival, metastasis and drug resistance. AST was obtained from the medicinal plant Astragalus membranaceus, which possesses anti-tumor and pro-apoptotic properties in colon cancer cells and tumor xenograft. The present study aimed to investigate the involvement of GRP in endoplasmic reticulum (ER) stress-mediated apoptosis during colon cancer development, with focus on the correlation between AST-evoked regulation of GRP and calpain activation. Methods The effects of AST on GRP and apoptotic activity were assessed in HCT 116 human colon adenocarcinoma cells. Calpain activity was examined by using a fluorescence assay kit. Immunofluorescence staining and immunoprecipitation were employed to determine the localization and association between calpains and GRP. GRP78 gene silencing was performed to confirm the importance of GRP in anticancer drug activities. The modulation of GRP and calpains was also studied in nude mice xenograft. Results ER stress-mediated apoptosis was induced by AST, as shown by elevation in both spliced XBP-1 and CHOP levels, with parallel up-regulation of GRP. The expression of XBP-1 and CHOP continued to increase after the peak level of GRP was attained at 24 h. Nevertheless, the initial increase in calpain activity as well as calpain I and II protein level was gradually declined at later stage of drug treatment. Besides, the induction of GRP was partly reversed by calpain inhibitors, with concurrent promotion of AST-mediated apoptosis. The knockdown of GRP78 by gene silencing resulted in higher sensitivity of colon cancer cells to AST-induced apoptosis and reduction of colony formation. The association between calpains and GRP78 had been confirmed by immunofluorescence staining and immunoprecipitation. Modulation of GRP and calpains by AST was similarly demonstrated in nude mice xenograft, leading to significant inhibition of tumor growth. Conclusions Our findings exemplify that calpains, in particular calpain II, play a permissive role in the modulation of GRP78 and consequent regulation of ER stress-induced apoptosis. Combination of calpain inhibitors and AST could exhibit a more pronounced pro-apoptotic effect. These results help to envisage a new therapeutic approach in colon cancer by targeting calpain and GRP. Electronic supplementary material The online version of this article (doi:10.1186/1472-6882-14-401) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Chen H, Zhou X, Zhang J. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus. Carbohydr Polym 2014; 111:567-75. [DOI: 10.1016/j.carbpol.2014.05.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/10/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022]
|
33
|
Bissinger R, Modicano P, Alzoubi K, Honisch S, Faggio C, Abed M, Lang F. Effect of saponin on erythrocytes. Int J Hematol 2014; 100:51-9. [DOI: 10.1007/s12185-014-1605-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022]
|
34
|
Yi qi qing re gao attenuates podocyte injury and inhibits vascular endothelial growth factor overexpression in puromycin aminonucleoside rat model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:375986. [PMID: 24963322 PMCID: PMC4055581 DOI: 10.1155/2014/375986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 11/18/2022]
Abstract
Proteinuria is the hallmark of chronic kidney disease. Podocyte damage underlies the formation of proteinuria, and vascular endothelial growth factor (VEGF) functions as an autocrine/paracrine regulator. Yi Qi Qing Re Gao (YQQRG) has been used to treat proteinuria for more than two decades. The objective of this study was to investigate the protective effect and possible mechanisms of YQQRG on puromycin aminonucleoside (PAN) rat model. Eighty male Sprague-Dawley rats were randomized into sham group, PAN group, PAN + YQQRG group, and PAN + fosinopril group. Treatments were started 7 days before induction of nephrosis (a single intravenous injection of 40 mg/kg PAN) until day 15. 24 h urinary samples were collected on days 5, 9, and 14. The animals were sacrificed on days 3, 10, and 15, respectively. Blood samples and renal tissues were obtained for detection of biochemical and molecular biological parameters. YQQRG significantly reduced proteinuria, elevated serum albumin, and alleviated renal pathological lesions. YQQRG inhibited VEGF-A, nephrin, podocin, and CD2AP mRNA expression and elevated nephrin, podocin, and CD2AP protein levels starting on day 3. In conclusion, YQQRG attenuates podocyte injury in the rat PAN model through downregulation of VEGF-A and restoration of nephrin, podocin, and CD2AP protein expression.
Collapse
|
35
|
Auyeung KKW, Law PC, Ko JKS. Combined therapeutic effects of vinblastine and Astragalus saponins in human colon cancer cells and tumor xenograft via inhibition of tumor growth and proangiogenic factors. Nutr Cancer 2014; 66:662-74. [PMID: 24660995 DOI: 10.1080/01635581.2014.894093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our previous study had demonstrated that Astragalus saponins (AST) could reduce the side effects of orthodox chemotherapeutic drugs, while concurrently promote antitumor activity. In the present study, we attempted to investigate the potential synergistic anticarcinogenic effects of AST and a vinca alkaloid vinblastine (VBL). Reduced expression of key proangiogenic and metastatic factors including VEGF, bFGF, metalloproteinase (MMP)-2, and MMP-9 was detected in VBL-treated colon cancer cells, with further downregulation by combined VBL/AST treatment. Subsequently, VBL or AST decreased LoVo cell invasiveness, with further reduction when the drugs were cotreated. Significant growth inhibition and cell cycle arrest at G2/M phase were achieved by either drug treatment with apparent synergistic effects. VBL-induced apoptosis was confirmed but found to be unrelated to induction of the novel apoptotic protein NSAID-activated gene 1. In vivo study in tumor xenograft indicates that combined VBL/AST treatment resulted in sustained regression of tumor growth, with attenuation of the neutropenic and anemic effects of VBL. In addition, downregulation of proangiogenic and proliferative factors was also visualized, with boosting effect by combined drug treatment. These findings have provided evidence that AST combined with adjuvant chemotherapeutics like VBL could alleviate cancer development through diversified modes of action, including the regulation of angiogenesis.
Collapse
Affiliation(s)
- Kathy K W Auyeung
- a Center for Cancer and Inflammation Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | | | | |
Collapse
|
36
|
Lee YW, Chen TL, Shih YRV, Tsai CL, Chang CC, Liang HH, Tseng SH, Chien SC, Wang CC. Adjunctive traditional Chinese medicine therapy improves survival in patients with advanced breast cancer: a population-based study. Cancer 2014; 120:1338-44. [PMID: 24496917 DOI: 10.1002/cncr.28579] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/16/2013] [Accepted: 01/02/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is one of the most common complementary and alternative medicines used in the treatment of patients with breast cancer. However, the clinical effect of TCM on survival, which is a major concern in these individuals, lacks evidence from large-scale clinical studies. METHODS The authors used the Taiwan National Health Insurance Research Database to conduct a retrospective population-based cohort study of patients with advanced breast cancer between 2001 and 2010. The patients were separated into TCM users and nonusers, and Cox regression models were applied to determine the association between the use of TCM and patient survival. RESULTS A total of 729 patients with advanced breast cancer receiving taxanes were included in the current study. Of this cohort, the mean age was 52.0 years; 115 patients were TCM users (15.8%) and 614 patients were TCM nonusers. The mean follow-up was 2.8 years, with 277 deaths reported to occur during the 10-year period. Multivariate analysis demonstrated that, compared with nonusers, the use of TCM was associated with a significantly decreased risk of all-cause mortality (adjusted hazards ratio [HR], 0.55 [95% confidence interval, 0.33-0.90] for TCM use of 30-180 days; adjusted HR, 0.46 [95% confidence interval, 0.27-0.78] for TCM use of >180 days). Among the frequently used TCMs, those found to be most effective (lowest HRs) in reducing mortality were Bai Hua She She Cao, Ban Zhi Lian, and Huang Qi. CONCLUSIONS The results of the current observational study suggest that adjunctive TCM therapy may lower the risk of death in patients with advanced breast cancer. Future randomized controlled trials are required to validate these findings.
Collapse
Affiliation(s)
- Yuan-Wen Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Du JR, Long FY, Chen C. Research Progress on Natural Triterpenoid Saponins in the Chemoprevention and Chemotherapy of Cancer. Enzymes 2014; 36:95-130. [PMID: 27102701 DOI: 10.1016/b978-0-12-802215-3.00006-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Triterpenoid saponins are glycosides with remarkable structural and bioactive diversity. They are becoming increasingly significant in the treatment of cancer due to their efficacy and safety. This chapter provides an update on the sources, pharmacological effects, structure-activity relationships, and clinical studies of anticancer triterpenoid saponins with a particular focus on the molecular mechanisms underlying their therapeutic properties. The correlative references and study reports described were collected through PubMed. The anticancer triterpenoid saponins enable the inhibition of cancer formation and progression by modulating multiple signaling targets related to cellular proliferation, apoptosis, autophagy, metastasis, angiogenesis, inflammation, oxidative stress, multidrug resistance, cancer stem cells, and microRNAs. This review provides new insights into the molecular basis of triterpenoid saponins in the chemoprevention and chemotherapy of cancer.
Collapse
Affiliation(s)
- Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, P.R. China.
| | - Fang-Yi Long
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, P.R. China
| | - Chu Chen
- Institute of Pharmaceutical Research, Sichuan Academy of Chinese Medicine Sciences, Chengdu, P.R. China.
| |
Collapse
|
38
|
Frenkel M, Abrams DI, Ladas EJ, Deng G, Hardy M, Capodice JL, Winegardner MF, Gubili JK, Yeung KS, Kussmann H, Block KI. Integrating dietary supplements into cancer care. Integr Cancer Ther 2013; 12:369-84. [PMID: 23439656 DOI: 10.1177/1534735412473642] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many studies confirm that a majority of patients undergoing cancer therapy use self-selected forms of complementary therapies, mainly dietary supplements. Unfortunately, patients often do not report their use of supplements to their providers. The failure of physicians to communicate effectively with patients on this use may result in a loss of trust within the therapeutic relationship and in the selection by patients of harmful, useless, or ineffective and costly nonconventional therapies when effective integrative interventions may exist. Poor communication may also lead to diminishment of patient autonomy and self-efficacy and thereby interfere with the healing response. To be open to the patient's perspective, and sensitive to his or her need for autonomy and empowerment, physicians may need a shift in their own perspectives. Perhaps the optimal approach is to discuss both the facts and the uncertainty with the patient, in order to reach a mutually informed decision. Today's informed patients truly value physicians who appreciate them as equal participants in making their own health care choices. To reach a mutually informed decision about the use of these supplements, the Clinical Practice Committee of The Society of Integrative Oncology undertook the challenge of providing basic information to physicians who wish to discuss these issues with their patients. A list of leading supplements that have the best suggestions of benefit was constructed by leading researchers and clinicians who have experience in using these supplements. This list includes curcumin, glutamine, vitamin D, Maitake mushrooms, fish oil, green tea, milk thistle, Astragalus, melatonin, and probiotics. The list includes basic information on each supplement, such as evidence on effectiveness and clinical trials, adverse effects, and interactions with medications. The information was constructed to provide an up-to-date base of knowledge, so that physicians and other health care providers would be aware of the supplements and be able to discuss realistic expectations and potential benefits and risks.
Collapse
|
39
|
Law PC, Auyeung KK, Chan LY, Ko JK. Astragalus saponins downregulate vascular endothelial growth factor under cobalt chloride-stimulated hypoxia in colon cancer cells. Altern Ther Health Med 2012; 12:160. [PMID: 22992293 PMCID: PMC3493357 DOI: 10.1186/1472-6882-12-160] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/12/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Our ongoing research has revealed that total saponins extracted from the medicinal herb Radix Astragali (AST) exhibits significant growth-inhibitory and proapoptotic effects in human cancer cells. In the present study, the potential of AST in controlling angiogenesis was further investigated with elaboration of the underlying molecular mechanism in human colon cancer cell and tumor xenograft. RESULTS AST decreased the protein level of VEGF and bFGF in HCT 116 colon cancer cells in a time- and dose-dependent manner. Among the Akt/mTOR signal transduction molecules being examined, AST caused PTEN upregulation, reduction in Akt phosphorylation and subsequent activation of mTOR. AST also suppressed the induction of HIF-1α and VEGF under CoCl2-mimicked hypoxia. These effects were intensified by combined treatment of AST with the mTOR inhibitor rapamycin. Despite this, our data also indicate that AST could attenuate cobalt chloride-evoked COX-2 activation, while such effect on COX-2 and its downstream target VEGF was intensified when indomethacin was concurrently treated. The anti-carcinogenic action of AST was further illustrated in HCT 116 xenografted athymic nude mice. AST significantly suppressed tumor growth and reduced serum VEGF level in vivo. In the tumor tissues excised from AST-treated animals, protein level of p-Akt, p-mTOR, VEGF, VEGFR1 and VEGFR2 was down-regulated. Immunohistochemistry has also revealed that AST effectively reduced the level of COX-2 in tumor sections when compared with that in untreated control. CONCLUSION Taken together, these findings suggest that AST exerts anti-carcinogenic activity in colon cancer cells through modulation of mTOR signaling and downregulation of COX-2, which together reduce VEGF level in tumor cells that could potentially suppress angiogenesis.
Collapse
|
40
|
The molecular basis of wound healing processes induced by lithospermi radix: a proteomics and biochemical analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:508972. [PMID: 23024692 PMCID: PMC3457683 DOI: 10.1155/2012/508972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 12/20/2022]
Abstract
Lithospermi Radix (LR) is an effective traditional Chinese herb in various types of wound healing; however, its mechanism of action remains unknown. A biochemical and proteomic platform was generated to explore the biological phenomena associated with LR and its active component shikonin. We found that both LR ethanol extracts and shikonin are able to promote cell proliferation by up to 25%. The results of proteomic analysis revealed that twenty-two differentially expressed proteins could be identified when fibroblast cells were treated with LR or shikonin. The functions of those proteins are associated with antioxidant activity, antiapoptosis activity, the regulation of cell mobility, the secretion of collagen, the removal of abnormal proteins, and the promotion of cell proliferation, indicating that the efficacy of LR in wound healing may be derived from a synergistic effect on a number of factors induced by the herbal medicine. Furthermore, an animal model confirmed that LR is able to accelerate wound healing on the flank back of the SD rats. Together these findings help to pinpoint the molecular basis of wound healing process induced by LR.
Collapse
|