1
|
Cheng L, Ye A, Tao Y, Zhang Y. Oxidation and Hydrolysis of Ginsenoside Rg5: An Underestimated Degradation Pathway, Isolation, and Characterization of Unknown Degradation Products. ACS OMEGA 2025; 10:15732-15743. [PMID: 40290950 PMCID: PMC12019737 DOI: 10.1021/acsomega.5c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/14/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Ginsenoside Rg5, a secondary ginsenoside derived from the degradation of protopanaxadiol saponins, exhibits various pharmacological activities, including anticancer, anti-inflammatory, antidiabetic, and memory-enhancing effects, making it a promising candidate for natural medicine. However, research on the stability of Rg5, particularly in aqueous solutions, remains limited. This study systematically investigates the stability of ginsenoside Rg5 in water by monitoring its degradation over time under controlled conditions. The stability of the Rg5 aqueous solution was assessed by investigating the influences of temperature and time, employing high-performance liquid chromatography (HPLC) analysis to evaluate its degradation. The findings indicated substantial degradation of Rg5, with approximately 95% decomposition observed after a period of 10 days. The decomposition products were isolated using preparative liquid chromatography and identified through high-resolution mass spectrometry (HR-MS), NMR, and induced circular dichroism (ICD) analyses. A novel derivative was identified, and its degradation pathway was elucidated, encompassing oxidation, hydrolysis, and dehydration processes that culminated in the formation of four distinct stereoisomers. This study elucidates the instability of Rg5 in aqueous environments and offers significant insights into its decomposition mechanism. The findings emphasize the critical importance of optimizing storage conditions and minimizing exposure to water and oxygen to enhance the stability of Rg5, thereby advancing its potential applications in pharmaceutical development and storage.
Collapse
Affiliation(s)
- Leqin Cheng
- School of Chemistry and Pharmaceutical
Engineering, Jilin Institute of Chemical
Technology, Jilin 132022, China
| | - Anqi Ye
- School of Chemistry and Pharmaceutical
Engineering, Jilin Institute of Chemical
Technology, Jilin 132022, China
| | - Yunqi Tao
- School of Chemistry and Pharmaceutical
Engineering, Jilin Institute of Chemical
Technology, Jilin 132022, China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical
Engineering, Jilin Institute of Chemical
Technology, Jilin 132022, China
| |
Collapse
|
2
|
Ke H, Zhang X, Liang S, Zhou C, Hu Y, Huang Q, Wu J. Study on the anti-skin aging effect and mechanism of Sijunzi Tang based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118421. [PMID: 38880400 DOI: 10.1016/j.jep.2024.118421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si Jun Zi Tang (SJZT) is a famous traditional Chinese medicine formula composing of 4 herbal medicines (Ginseng Radix et Rhizoma, Atractylodis macrocephalae Rhizoma, Poria, and Glycyrrhizae Radix et Rhizoma) with tonifying spleen and anti-aging effects. It is also known that SJZT can be used to tone, nourish the skin and accelerate wound healing. However, due to the complexity of the formulation, the anti-aging especially anti-skin aging mechanisms as well as the key components of SJZT have not been fully investigated. Therefore, further in vitro and in vivo experimental studies are particularly needed to investigate the anti-skin ageing efficacy of SJZT. AIM OF THE STUDY The purpose of this article was to explore the therapeutic effect and possible pharmacological mechanism of SJZT in the treatment of skin aging by topical application using network pharmacology and to validate the findings using in vitro and in vivo tests. MATERIALS AND METHODS Network pharmacology method was applied to predict the underlying biological function and mechanism involved in the anti-skin aging effect of SJZT. Molecular docking was used to preliminarily predict the active components of SJZT-Skin Aging. UPLC QTOF MS/MS was carried out to analyze the chemical compounds. Finally, to confirm the anti-skin aging effort of SJZT, a mouse skin-aging model and UVB-induced EpiSCs (epidermal stem cells) senescence model were established. RESULTS PPI network analysis and KEGG studies indicated that TP53, CDKN2A, TNF, IL6, and IL1B might be parts of the core targets associated with EpiSCs senescence. Furthermore, molecular docking suggested the top active components, glycyrrhizin, ginsenoside Rg5, ginsenoside Rh2, liquiritin, polyporenic acid C and atractylenolide II showed strong affinity to the key proteins involved in cellular senescence signaling. UPLC QTOF MS/MS analysis of SJZT confirmed the presence of these key components. In-vivo experiments revealed that SJZT could improve UVB-induced skin thickening, increase the number of collagen fibers, strengthen the structure of elastin fibers, and decrease the expression of MDA, as well as increase the expression of CAT and T-SOD in the skin tissue of mouse. And, in-vitro experiments indicated that SJZT could reduce ROS generation and oxidative stress, increase mitochondrial membrane potential, and upregulate the expression of stem cell markers. Moreover, SJZT could suppress the expression of p53, p-p53 and p21, downregulated p38 phosphorylation. Furthermore, the anti-cellular senescence effect of SJZT on EpiSCs disappeared after treatment with the p38 inhibitor adesmapimod. Taken all together, the regulation of senescence signaling in EpiSCs is an important mechanism of SJZT in combating skin aging. CONCLUSION The research results indicate that SJZT has anti-skin aging effects on UVB-induced skin-aging model, possibly by mediating p38/p53 signaling pathway. These findings strongly demonstrate the great potential of SJZT as an active composite for anti-skin aging and cosmeceutical applications.
Collapse
Affiliation(s)
- Hui Ke
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Xingjiang Zhang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Shuang Liang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Chengyue Zhou
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yunwei Hu
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Qing Huang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Jianxin Wu
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
3
|
He MT, Shin YS, Kim HY, Cho EJ. Carthamus tinctorius seeds- Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function. Nutr Res Pract 2024; 18:647-662. [PMID: 39398878 PMCID: PMC11464282 DOI: 10.4162/nrp.2024.18.5.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson's. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS-TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS-TC combination were analyzed for their potential benefits on memory function. MATERIALS/METHODS Water extracts of CTS, TC, and the CTS-TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment. Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC). RESULTS Behavioral tests showed that the CTS-TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS-TC combination. The acetylcholinesterase protein expression was also downregulated. HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin. CONCLUSION These findings suggest that the CTS-TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS-TC combination, and their effects on memory protection warrant further study.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Yu-Su Shin
- Department of Ginseng and Medicinal Herb, National Institute of Horticulture Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
- BK21 FOUR Program: Precision Nutrition Program for Future Global Leaders, Pusan National University, Busan 46241, Korea
| |
Collapse
|
4
|
Kim B, Kim YS, Li W, Kwon EB, Chung HS, Go Y, Choi JG. Ginsenoside Rg5, a potent agonist of Nrf2, inhibits HSV-1 infection-induced neuroinflammation by inhibiting oxidative stress and NF-κB activation. J Ginseng Res 2024; 48:384-394. [PMID: 39036736 PMCID: PMC11258381 DOI: 10.1016/j.jgr.2024.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 07/23/2024] Open
Abstract
Background Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.
Collapse
Affiliation(s)
- Buyun Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Young Soo Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Wei Li
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Eun-Bin Kwon
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Younghoon Go
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| |
Collapse
|
5
|
Jang S, Lee H, Kim HW, Baek M, Jung S, Kim SJ. Human disease-related long noncoding RNAs: Impact of ginsenosides. J Ginseng Res 2024; 48:347-353. [PMID: 39036728 PMCID: PMC11258377 DOI: 10.1016/j.jgr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 07/23/2024] Open
Abstract
Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA ( lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.
Collapse
Affiliation(s)
| | | | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Wu D, Wang Y, Sun J, Wang X, Huang Y, Sun M. Bioinformatics study of the potential therapeutic effects of ginsenoside Rh3 in reversing insulin resistance. Front Mol Biosci 2024; 11:1339973. [PMID: 38845779 PMCID: PMC11153663 DOI: 10.3389/fmolb.2024.1339973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Background In recent years, the incidence of insulin resistance is increasing, and it can cause a variety of Metabolic syndrome. Ginsenosides have been clinically proven to improve fat metabolism and reduce insulin resistance, but their components and mechanism of action are still unclear. Objective Ginsenoside, a bioactive compound derived from ginseng, exhibits significant potential in treating obesity, diabetes, and metabolic disorders. Despite evidence supporting its efficacy in ameliorating insulin resistance (IR) in obesity, the specific bioactive components and underlying mechanisms remain obscure. In this study, we endeavored to elucidate the potential molecular targets and pathways influenced by ginsenoside Rh3 (GRh3) to ameliorate IR in liver tissue. We employed a comprehensive approach that integrates system pharmacology and bioinformatics analysis. Materials and methods Our methodology involved the identification of candidate targets for GRh3 and the profiling of differentially expressed genes (DEGs) related to IR in individuals with insulin resistance. The coalescence of candidate targets and DEGs facilitated the construction of a "GRh3-targets-disease" network for each tissue type, ultimately yielding 38 shared target genes. Subsequently, we conducted pathway enrichment analysis, established protein-protein interaction (PPI) networks, and identified hub targets among the GRh3 targets and IR-related DEGs. Additionally, we conducted animal experiments to corroborate the role of these hub targets in the context of GRh3. Results Our investigation identified a total of 38 overlapping targets as potential candidates. Notably, our analysis revealed crucial hub targets such as EGFR, SRC, ESR1, MAPK1, and CASP3, alongside implicated signaling pathways, including those related to insulin resistance, the FoxO signaling pathway, the PPAR signaling pathway, and the IL-17 signaling pathway. This study establishes a robust foundation for the mechanisms underlying GRh3's efficacy in mitigating IR. Furthermore, these results suggest that GRh3 may serve as a representative compound within the ginsenoside family. Conclusion This study elucidates the potential molecular targets and associated pathways through which GRh3 ameliorates IR, showcasing its multifaceted nature, spanning multiple targets, pathways, and mechanisms. These findings establish a robust foundation for subsequent experimental inquiries and clinical applications.
Collapse
Affiliation(s)
- Yayun Wang
- Department of Neurology, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital) Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, China
| | - Dongming Wu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yongxin Wang
- Intensive Care Unit II, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital) Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, China
| | - Jingwen Sun
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaona Wang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingliang Sun
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
7
|
Elsaman T, Muddathir AM, Mohieldin EAM, Batubara I, Rahminiwati M, Yamauchi K, Mohamed MA, Asoka SF, Büsselberg D, Habtemariam S, Sharifi-Rad J. Ginsenoside Rg5 as an anticancer drug: a comprehensive review on mechanisms, structure-activity relationship, and prospects for clinical advancement. Pharmacol Rep 2024; 76:287-306. [PMID: 38526651 DOI: 10.1007/s43440-024-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Ali Mahmoud Muddathir
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | | | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Min Rahminiwati
- Division of Pharmacology, School of Veterinary Medicine and Biomedical Science, IPB University, Jln Agathis Dramaga, Bogor, West Java, 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Jl. Taman Kencana No. 3, Bogor, West Java, 16128, Indonesia
| | - Kosei Yamauchi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Shadila Fira Asoka
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Solomon Habtemariam
- Pharmacognosy Research and Herbal Analysis Services UK, Central Avenue , Chatham, Kent, ME4 4TB, UK
| | | |
Collapse
|
8
|
Oh HB, Jeong DE, Lee DE, Yoo JH, Kim YS, Kim TY. Structural Identification of Ginsenoside Based on UPLC-QTOF-MS of Black Ginseng ( Panax Ginseng C.A. Mayer). Metabolites 2024; 14:62. [PMID: 38248865 PMCID: PMC10821434 DOI: 10.3390/metabo14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Black ginseng (BG) is processed ginseng traditionally made in Korea via the steaming and drying of ginseng root through three or more cycles, leading to changes in its appearance due to the Maillard reaction on its surface, resulting in a dark coloration. In this study, we explored markers for differentiating processed ginseng by analyzing the chemical characteristics of BG. We elucidated a new method for the structural identification of ginsenoside metabolites and described the features of processed ginseng using UPLC-QTOF-MS in the positive ion mode. We confirmed that maltose, glucose, and fructose, along with L-arginine, L-histidine, and L-lysine, were the key compounds responsible for the changes in the external quality of BG. These compounds can serve as important metabolic markers for distinguishing BG from conventionally processed ginseng. The major characteristics of white ginseng, red ginseng, and BG can be distinguished based on their high-polarity and low-polarity ginsenosides, and a precise method for the structural elucidation of ginsenosides in the positive ion mode is presented.
Collapse
Affiliation(s)
- Hyo-Bin Oh
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (D.-E.J.); (D.-E.L.); (J.-H.Y.); (T.-Y.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Da-Eun Jeong
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (D.-E.J.); (D.-E.L.); (J.-H.Y.); (T.-Y.K.)
| | - Da-Eun Lee
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (D.-E.J.); (D.-E.L.); (J.-H.Y.); (T.-Y.K.)
| | - Jong-Hee Yoo
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (D.-E.J.); (D.-E.L.); (J.-H.Y.); (T.-Y.K.)
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Tae-Young Kim
- Institute of Jinan Red Ginseng, Jinan-gun 55442, Republic of Korea; (D.-E.J.); (D.-E.L.); (J.-H.Y.); (T.-Y.K.)
| |
Collapse
|
9
|
Tian T, Ko CN, Luo W, Li D, Yang C. The anti-aging mechanism of ginsenosides with medicine and food homology. Food Funct 2023; 14:9123-9136. [PMID: 37766674 DOI: 10.1039/d3fo02580b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the acceleration of global aging and the rise in living standards, the achievement of healthy aging is becoming an imperative issue globally. Ginseng, a medicinal plant that has a long history of dietary intake and remarkable medicinal value, has become a research hotspot in the field of food and medicine. Ginsenosides, especially protopanaxadiol-type saponins and protopanaxatriol-type saponins, are among the most important active ingredients in ginseng. Ginsenosides have been found to exhibit powerful and diverse pharmacological activities, such as antiaging, antitumor, antifatigue and immunity enhancement activities. Their effects in antiaging mainly include (1) promotion of metabolism and stem cell proliferation, (2) protection of skin and nerves, (3) modulation of intestinal flora, (4) maintenance of mitochondrial function, and (5) enhancement of telomerase activity. The underlying mechanisms are primarily associated with the intervention of the signaling pathways in apoptosis, inflammation and oxidative stress. In this review, the mechanism of action of ginsenosides in antiaging as well as the potential values of developing ginsenoside-based functional foods and antiaging drugs are discussed.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
| | - Wenya Luo
- Haikou Orthopedics and Diabetes Hospital, Haikou, Hainan, 570206, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
10
|
Mahmoud AMA, Mantawy EM, Wahdan SA, Ammar RM, El-Demerdash E. Vildagliptin restores cognitive function and mitigates hippocampal neuronal apoptosis in cisplatin-induced chemo-brain: Imperative roles of AMPK/Akt/CREB/ BDNF signaling cascades. Biomed Pharmacother 2023; 159:114238. [PMID: 36640673 DOI: 10.1016/j.biopha.2023.114238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent used to treat many human cancers. Nonetheless, most patients receiving CP suffer from cognitive deficits, a phenomenon termed "chemo-brain". Recently, vildagliptin (Vilda), a DPP-4 inhibitor, has demonstrated promising neuroprotective properties against various neurological diseases. Therefore, the present study aims to investigate the potential neuroprotective properties of Vilda against CP-induced neurotoxicity and elucidate the underlying molecular mechanisms. Chemo-brain was induced in Sprague-Dawley rats by i.p injection of CP at a dose of 5 mg/kg once weekly for four weeks. Vilda was administered daily at a dose (10 mg/kg; P.O) for four weeks. The results revealed that Vilda restored the cognitive function impaired by CP, as assessed by the Morris water maze, Y-maze, and passive avoidance tests. Moreover, Vilda alleviated the CP-induced neurodegeneration, as shown by toluidine blue staining, besides markedly reduced amyloid plaque deposition, as evidenced by Congo red staining. Notably, Vilda boosted cholinergic neurotransmission through the downregulation of the acetylcholinesterase enzyme. In addition, the neuroprotective mechanisms of Vilda include diminishing oxidative stress by reducing MDA levels while raising GSH levels and SOD activity, repressing neuronal apoptosis as shown by elevated Bcl-2 levels together with diminished Bax and caspase-3 expressions, inhibiting neuroinflammation as shown by decreased GFAP expression, and finally boosting hippocampal neurogenesis and survival by upregulating expressions of BDNF and PCNA. These effects were mainly mediated by activating AMPK/Akt/CREB signaling cascades. In summary, Vilda can be considered a promising candidate for guarding against CP-induced chemo-brain and neurodegeneration, thus improving the quality of life of cancer patients.
Collapse
Affiliation(s)
- Abdulla M A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ramy M Ammar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr-Elsheikh, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Fan M, Lan X, Wang Q, Shan M, Fang X, Zhang Y, Wu D, Luo H, Gao W, Zhu D. Renal function protection and the mechanism of ginsenosides: Current progress and future perspectives. Front Pharmacol 2023; 14:1070738. [PMID: 36814491 PMCID: PMC9939702 DOI: 10.3389/fphar.2023.1070738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Nephropathy is a general term for kidney diseases, which refers to changes in the structure and function of the kidney caused by various factors, resulting in pathological damage to the kidney, abnormal blood or urine components, and other diseases. The main manifestations of kidney disease include hematuria, albuminuria, edema, hypertension, anemia, lower back pain, oliguria, and other symptoms. Early detection, diagnosis, and active treatment are required to prevent chronic renal failure. The concept of nephropathy encompasses a wide range of conditions, including acute renal injury, chronic kidney disease, nephritis, renal fibrosis, and diabetic nephropathy. Some of these kidney-related diseases are interrelated and may lead to serious complications without effective control. In serious cases, it can also develop into chronic renal dysfunction and eventually end-stage renal disease. As a result, it seriously affects the quality of life of patients and places a great economic burden on society and families. Ginsenoside is one of the main active components of ginseng, with anti-inflammatory, anti-tumor, antioxidant, and other pharmacological activities. A variety of monomers in ginsenosides can play protective roles in multiple organs. According to the difference of core structure, ginsenosides can be divided into protopanaxadiol-type (including Rb1, Rb3, Rg3, Rh2, Rd and CK, etc.), and protopanaxatriol (protopanaxatriol)- type (including Rg1, Rg2 and Rh1, etc.), and other types (including Rg5, Rh4, Rh3, Rk1, and Rk3, etc.). All of these ginsenosides showed significant renal function protection, which can reduce renal damage in renal injury, nephritis, renal fibrosis, and diabetic nephropathy models. This review summarizes reports on renal function protection and the mechanisms of action of these ginsenosides in various renal injury models.
Collapse
Affiliation(s)
- Meiling Fan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Qunling Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| | - Difu Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| |
Collapse
|
12
|
Kim HJ, Lee MY, Kim GR, Lee HJ, Sayson LV, Ortiz DMD, Cheong JH, Kim M. Korean red ginseng extract attenuates alcohol-induced addictive responses and cognitive impairments by alleviating neuroinflammation. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
13
|
Yun D, Wang Y, Zhang Y, Jia M, Xie T, Zhao Y, Yang C, Chen W, Guo R, Liu X, Dai X, Liu Z, Yuan T. Sesamol Attenuates Scopolamine-Induced Cholinergic Disorders, Neuroinflammation, and Cognitive Deficits in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13602-13614. [PMID: 36239029 DOI: 10.1021/acs.jafc.2c04292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, characterized by memory loss and cognitive deficits accompanied by neuronal damage and cholinergic disorders. Sesamol, a lignan component in sesame oil, has been proven to have neuroprotective effects. This research aimed to investigate the preventive effects of sesamol on scopolamine (SCOP)-induced cholinergic disorders in C57BL/6 mice. The mice were pretreated with sesamol (100 mg/kg/d, p.o.) for 30 days. Behavioral tests indicated that sesamol supplement prevented SCOP-induced cognitive deficits. Sesamol enhanced the expression of neurotrophic factors and postsynaptic density (PSD) in SCOP-treated mice, reversing neuronal damage and synaptic dysfunction. Importantly, sesamol could balance the cholinergic system by suppressing the AChE activity and increasing the ChAT activity and M1 mAChR expression. Sesamol treatment also inhibited the expression of inflammatory factors and overactivation of microglia in SCOP-treated mice. Meanwhile, sesamol improved the antioxidant enzyme activity and suppressed oxidative stress in SCOP-treated mice and ameliorated the oxidized cellular status and mitochondrial dysfunction in SCOP-treated SH-SY5Y cells. In conclusion, these results indicated that sesamol attenuated SCOP-induced cognitive dysfunction via balancing the cholinergic system and reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Duo Yun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Tianzhi Xie
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Cong Yang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, Guangdong518120, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi712100, China
| |
Collapse
|
14
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
15
|
Transcriptome Analysis of the Anti-Proliferative Effects of Ginsenoside Rh3 on HCT116 Colorectal Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155002. [PMID: 35956952 PMCID: PMC9370307 DOI: 10.3390/molecules27155002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
The mechanism of ginsenoside Rh3 activity against cancer remains unclear. This study aimed to investigate the underlying mechanism. The effects of Rh3 on the cell proliferation, migration and invasion, and cycle and apoptosis were analyzed using CCK-8 assay, transwell migration assay and flow cytometry, respectively. The RNA transcriptome was sequenced and data were analyzed by R software. Protein expression and protein-protein interactions were determined by Western blotting and co-immunoprecipitation, respectively. The results showed Rh3 inhibited HCT116 cell proliferation, invasion, and migration, arrested cells at G1 phase; and increased apoptosis. Rh3 downregulated 314 genes and upregulated 371 genes. Gene Set Enrichment Analysis (GSEA) using The Kyoto Encyclopedia of Genes Genomics ranked DNA replication first, while GSEA using Gene Ontology ranked the initiation of DNA replication first. Compared with tumor data from The Cancer Genome Atlas (TCGA), most of genes related to DNA replication were oppositely regulated by Rh3. Furthermore, Rh3 down-regulated key protein expression related to DNA replication (Orc6, Cdt1, and Mcm2), but did not affect the loading of Mcm complexes onto ORC complexes nor the phosphorylation at ser139 of Mcm2. Therefore, Rh3 may inhibit colorectal cancer HCT116 cells by downregulation of genes related to DNA replication.
Collapse
|
16
|
The neuroprotective effect of walnut-derived peptides against glutamate-induced damage in PC12 cells: mechanism and bioavailability. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177:106099. [DOI: 10.1016/j.phrs.2022.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/15/2022]
|
18
|
Yang T, Xu W, Wei X, Zhang Z, Sun Y, Liu H, Yu P, Li W, Yu D. Determination of ginsenoside Rh3 in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2021; 36:e5268. [PMID: 34676576 DOI: 10.1002/bmc.5268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
Ginsenoside Rh3 (GRh3) is a bacterial metabolite of ginsenoside Rg5, which is the main component of hot-processed ginseng. A simple, efficient and sensitive method was developed and validated for the determination of GRh3 in rat plasma by LC-tandem mass spectrometry. After protein precipitation with methanol/acetonitrile (1:1, vol/vol) using propranolol as the internal standard, the target analytes were separated on an XDB C18 column, with methanol containing 0.1% formic acid and water containing 0.1% formic acid used as mobile phases for gradient elution. Mass spectrometry was performed in electrospray ion source-positive ion mode and multiple reaction monitoring mode, monitoring the transitions m/z 622.5 → 425.5 and m/z 260.1 → 116.1 for GRh3 and internal standard, respectively. The concentration range of GRh3 was 20-20,000 ng/mL and the correlation coefficient (r2 ) was greater than 0.99. The accuracy error and relative standard deviation were below 15%. The extraction recovery and matrix effect were 74.2% to 78.7% and 96.9% to 108.4%, respectively. Under different conditions, GRh3 was stable in the range of 1.8%-8.7%. This method has been successfully applied to study the pharmacokinetics of GRh3 with an oral dose of 10.0 mg/kg and an intravenous dose of 2.0 mg/kg in rats, respectively. The absolute bioavailability of GRh3 was 37.6%.
Collapse
Affiliation(s)
- Ting Yang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Wenwu Xu
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Xiyu Wei
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Zhenzhen Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yue Sun
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Houru Liu
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Peihua Yu
- Canada Royal Enoch Phytomedicine Ltd, Vancouver, BC, Canada
| | - Wei Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Dehong Yu
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
19
|
Wang S, Sun-Waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Panossian A, Abdelfatah S, Efferth T. Network Pharmacology of Red Ginseng (Part I): Effects of Ginsenoside Rg5 at Physiological and Sub-Physiological Concentrations. Pharmaceuticals (Basel) 2021; 14:ph14100999. [PMID: 34681222 PMCID: PMC8537973 DOI: 10.3390/ph14100999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Numerous in vitro studies on isolated cells have been conducted to uncover the molecular mechanisms of action of Panax ginseng Meyer root extracts and purified ginsenosides. However, the concentrations of ginsenosides and the extracts used in these studies were much higher than those detected in pharmacokinetic studies in humans and animals orally administered with ginseng preparations at therapeutic doses. Our study aimed to assess: (a) the effects of ginsenoside Rg5, the major “rare” ginsenoside of Red Ginseng, on gene expression in the murine neuronal cell line HT22 in a wide range of concentrations, from 10−4 to 10−18 M, and (b) the effects of differentially expressed genes on cellular and physiological functions in organismal disorders and diseases. Gene expression profiling was performed by transcriptome-wide mRNA microarray analyses in HT22 cells after treatment with ginsenoside Rg5. Ginsenoside Rg5 exhibits soft-acting effects on gene expression of neuronal cells in a wide range of physiological concentrations and strong reversal impact at high (toxic) concentration: significant up- or downregulation of expression of about 300 genes at concentrations from 10−6 M to 10−18 M, and dramatically increased both the number of differentially expressed target genes (up to 1670) and the extent of their expression (fold changes compared to unexposed cells) at a toxic concentration of 10−4 M. Network pharmacology analyses of genes’ expression profiles using ingenuity pathway analysis (IPA) software showed that at low physiological concentrations, ginsenoside Rg5 has the potential to activate the biosynthesis of cholesterol and to exhibit predictable effects in senescence, neuroinflammation, apoptosis, and immune response, suggesting soft-acting, beneficial effects on organismal death, movement disorders, and cancer.
Collapse
Affiliation(s)
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany;
- Correspondence: (A.P.); (T.E.)
| |
Collapse
|
21
|
El Gizawy HA, Abo-Salem HM, Ali AA, Hussein MA. Phenolic Profiling and Therapeutic Potential of Certain Isolated Compounds from Parkia roxburghii against AChE Activity as well as GABA A α5, GSK-3β, and p38α MAP-Kinase Genes. ACS OMEGA 2021; 6:20492-20511. [PMID: 34395996 PMCID: PMC8359133 DOI: 10.1021/acsomega.1c02340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 05/08/2023]
Abstract
Parkia roxburghii belongs to the family Mimosaceae; it has been used since ancient times as a cure for different health complications; such as inflammatory and gynecological diseases and hemiplegia. In this investigation, a reversed-phase-high-performance liquid chromatography (RP-HPLC) profile was carried out for P. roxburghii; also, the isolated bioactive compounds including quercetin, catechin, and biochaninA were individually and/or in combination investigated for their inhibitory effects on scopolamine-induced memory impairments in mice, implying that they have the ability to reduce the neurodegenerative effects of scopolamine and thus could be employed as a more effective therapeutic agent in the treatment of Alzheimer's disease (AD) in humans. The possible interactions of Parkia flavonoids with acetylcholinesterase (AChE), γ-aminobutyric acid A receptor, alpha5 (GABAA α5), glycogen synthase kinase-3 (GSK-3), p38 mitogen-activated protein kinase (p38MAP-kinase), signal-regulated kinase (ERK), and protein-serine/threonine kinase (Akt) were then determined using molecular docking.
Collapse
Affiliation(s)
- Heba A. El Gizawy
- Pharmacognosy
Department, Faculty of Pharmacy, October
6 University, 12585 6th of October City, Egypt
| | - Heba M. Abo-Salem
- Chemistry
and Natural Compounds Department, Pharmaceutical and Drug Industries
Research Division, National Research Center, Dokki, 12585 Giza, Egypt
| | - Ali A. Ali
- Postgraduate
Studies, October 6 University, 12585 Sixth of
October City, Egypt
| | - Mohammed A. Hussein
- Biochemistry
Department, Faculty of Applied Medical Sciences, October 6 University, 12585 Sixth of October City, Egypt
- . Tel: 0020124832580
| |
Collapse
|
22
|
Halder S, Anand U, Nandy S, Oleksak P, Qusti S, Alshammari EM, El-Saber Batiha G, Koshy EP, Dey A. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. Saudi Pharm J 2021; 29:879-907. [PMID: 34408548 PMCID: PMC8363108 DOI: 10.1016/j.jsps.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Memory, one of the most vital aspects of the human brain, is necessary for the effective survival of an individual. 'Memory' can be defined in various ways but in an overall view, memory is the retention of the information that the brain grasps. Different factors are responsible for the disbalance in the brain's hippocampus region and the acetylcholine level, which masters the memory and cognitive functions. Plants are a source of pharmacologically potent drug molecules of high efficacy. Recently herbal medicine has evolved rapidly, gaining great acceptance worldwide due to their natural origin and fewer side effects. In this review, the authors have discussed the mechanisms and pharmacological action of herbal bioactive compounds to boost memory. Moreover, this review presents an update of different herbs and natural products that could act as memory enhancers and how they can be potentially utilized in the near future for the treatment of severe brain disorders. In addition, the authors also discuss the differences in biological activity of the same herb and emphasize the requirement for a higher standardization in cultivation methods and plant processing. The demand for further studies evaluating the interactions of herbal drugs is mentioned.
Collapse
Affiliation(s)
- Swati Halder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, king Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|
23
|
Liu MY, Liu F, Gao YL, Yin JN, Yan WQ, Liu JG, Li HJ. Pharmacological activities of ginsenoside Rg5 (Review). Exp Ther Med 2021; 22:840. [PMID: 34149886 PMCID: PMC8210315 DOI: 10.3892/etm.2021.10272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Ginseng, a perennial plant belonging to genus Panax, has been widely used in traditional herbal medicine in East Asia and North America. Ginsenosides are the most important pharmacological component of ginseng. Variabilities in attached positions, inner and outer residues and types of sugar moieties may be associated with the specific pharmacological activities of each ginsenoside. Ginsenoside Rg5 (Rg5) is a minor ginsenoside synthesized during ginseng steaming treatment that exhibits superior pharmaceutical activity compared with major ginsenosides. With high safety and various biological functions, Rg5 may act as a potential therapeutic candidate for diverse diseases. To date, there have been no systematic studies on the activity of Rg5. Therefore, in this review, all available literature was reviewed and discussed to facilitate further research on Rg5.
Collapse
Affiliation(s)
- Ming-Yang Liu
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fei Liu
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan-Li Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia-Ning Yin
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei-Qun Yan
- Department of Tissue Engineering, School of Pharmaceutical Sciences in Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian-Guo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
24
|
Lee M, Ban JJ, Won BH, Im W, Kim M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington's disease. In Vitro Cell Dev Biol Anim 2021; 57:641-648. [PMID: 34128157 DOI: 10.1007/s11626-021-00595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington's disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Bo Hee Won
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Institute of Women's Life Medical Science, Gangnam Severance Hospital, Seoul, South Korea.
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Neuroscience Research Institute, College of Medicine, Seoul National University , Seoul, South Korea. .,Protein Metabolism and Neuroscience Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
25
|
Guo YR, Jin H, Kim M, Shin MB, Lee JH, Maeng S, Cha SY, Lee J, Koh YH, Kim KY, Kang S, Park H, Suh JW. Synergistic Neuroprotective Effects of Mature Silkworm and Angelica gigas Against Scopolamine-Induced Mild Cognitive Impairment in Mice and H 2O 2-Induced Cell Death in HT22 Mouse Hippocampal Neuronal Cells. J Med Food 2021; 24:505-516. [PMID: 34009025 DOI: 10.1089/jmf.2020.4839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously reported that mature Bombyx mori silkworm (SW) ameliorated scopolamine (Sco)-induced amnesia, and Angelica gigas (AG) prevented cognitive impairment. SW is known for its gastroprotective effects such as improving liver function and alleviating the effects of Parkinson's disease. AG is known for its neuroprotective effects and for lowering the effects of low-density lipoprotein cholesterol. However, the neuroprotective effect of combined SW and AG (SWA-1) treatment and the underlying molecular mechanism by which SWA-1 regulates neurodegenerative diseases remains unclear. We evaluated the neuroprotective effect of SWA-1 against Sco-induced mild cognitive impairment in mice and H2O2-induced cell death in HT22 mouse hippocampal neuronal cells and elucidated the underlying molecular mechanism. Morris water maze and Y-maze tests were performed to examine the learning and memory abilities of mice. The underlying molecular mechanism was investigated by using western blotting. We demonstrated that SWA-1 significantly protects against H2O2-induced cell death in HT22 mouse hippocampal neuronal cells. SWA-1 also significantly reversed Sco-induced spatial learning and memory impairment. Specifically, SWA-1 upregulates the protein levels of phosphorylated extracellular signal-related kinase (Erk1/2) and phosphorylated p38 MAP kinase (p38). SWA-1 remarkably decreased the apoptotic index Bax/Bcl2 expression in the hippocampus of Sco-treated mice. Our results suggest that SWA-1 may be administered as alternative therapy for cognitive impairment and neurodegenerative diseases and should be studied further in human trials.
Collapse
Affiliation(s)
- Yuan-Ri Guo
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Korea.,Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Hui Jin
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Korea
| | - Minsang Kim
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Korea
| | - Myeong Bae Shin
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Korea
| | - Ju Hyeong Lee
- Department of Bioscience and Bioinformatics, Collage of Natural Science, Myongji University, Yongin, Korea
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Seung-Yun Cha
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Jeonghun Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Young Ho Koh
- ILSONG Institute of Life Science, Hallym University, Anyang, Korea
| | - Kee-Young Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Sangkuk Kang
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | | | - Joo Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Korea
| |
Collapse
|
26
|
Kim CJ, Ryu HY, Lee S, Lee HJ, Chun YS, Kim JK, Yu CY, Ghimire BK, Lee JG. Neuroprotective Effect and Antioxidant Potency of Fermented Cultured Wild Ginseng Root Extracts of Panax ginseng C.A. Meyer in Mice. Molecules 2021; 26:3001. [PMID: 34070099 PMCID: PMC8158381 DOI: 10.3390/molecules26103001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
Wild ginseng has better pharmacological effects than cultivated ginseng. However, its industrialization is limited by the inability to grow wild ginseng on a large scale. Herein, we demonstrate how to optimize ginseng production through cultivation, and how to enhance the concentrations of specific ginsenosides through fermentation. In the study, we also evaluated the ability of fermented cultured wild ginseng root extract (HLJG0701-β) to inhibit acetylcholinesterase (AChE), as well as its neuroprotective effects and antioxidant activity. In invitro tests, HLJG0701-β inhibited AChE activity and exerted neuroprotective and antioxidant effects (showing increased catalyst activity but decreased reactive oxygen species concentration). In invivo tests, after HLJG0701-β was orally administered at doses of 0, 125, 250, and 500 mg/kg in an animal model of memory impairment, behavioral evaluation (Morris water maze test and Y-maze task test) was performed. The levels of AChE, acetylcholine (ACh), blood catalase (CAT), and malondialdehyde (MDA) in brain tissues were measured. The results showed that HLJG0701-β produced the best results at a dose of 250 mg/kg or more. The neuroprotective mechanism of HLJG0701-β was determined to involve the inhibition of AChE activity and a decrease in oxidative stress. In summary, both invitro and invivo tests confirmed that HJG0701-β administration can lead to memory improvement.
Collapse
Affiliation(s)
- Chul-Joong Kim
- Research Institute of Biotechnology, HwajinBioCosmetics CO., LTD, Chuncheon 24232, Korea;
| | - Hyeon-Yeol Ryu
- Korea Conformity Laboratories, Yeonsu, Incheon 21999, Korea; (H.-Y.R.); (S.L.)
| | - Somin Lee
- Korea Conformity Laboratories, Yeonsu, Incheon 21999, Korea; (H.-Y.R.); (S.L.)
| | - Han-Joo Lee
- Aribio H&B CO.LTD, Yongin 16914, Korea; (H.-J.L.); (Y.-S.C.); (J.-K.K.)
| | - Yoon-Soek Chun
- Aribio H&B CO.LTD, Yongin 16914, Korea; (H.-J.L.); (Y.-S.C.); (J.-K.K.)
| | - Jong-Kyu Kim
- Aribio H&B CO.LTD, Yongin 16914, Korea; (H.-J.L.); (Y.-S.C.); (J.-K.K.)
| | - Chang-Yeon Yu
- Department of Bio-Resource Sciences, Kangwon National University, Chuncheon 21341, Korea;
| | - Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Gwangjin, Seoul 05029, Korea;
| | - Jae-Geun Lee
- Research Institute of Biotechnology, HwajinBioCosmetics CO., LTD, Chuncheon 24232, Korea;
| |
Collapse
|
27
|
Ma C, Guan H, Lin Q, Liu C, Ju Z, Xue Y, Cheng X, Wang C. Dynamic changes in chemical compositions and anti-acetylcholinesterase activity associated with steaming process of stem-leaf saponins of Panax notoginseng. Biomed Chromatogr 2021; 35:e5077. [PMID: 33475178 DOI: 10.1002/bmc.5077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/01/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
Stem-leaf saponins (SLSs), the total saponins from aerial part of P. notoginseng, are by-products of notoginseng, a famous traditional Chinese medicine. SLSs have been used as a health functional food in China, but its mild effects limited clinical applications in diseases. Inspired by steaming of notoginseng to enhance its pharmacological activity, a steaming protocol was developed to treat SLSs. SLSs were steamed at 100, 120, and 140°C for 1, 2, 3, and 4 h, respectively. The ultra-performance liquid chromatography coupled with quadrupole time-of-flight MS and ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry were applied to analyze the dynamic changes in chemical compositions. The anti-acetylcholinesterase activity of steamed SLS were assessed in vitro by directly determining the metabolic product of acetylcholine/choline. The components of SLSs were significantly changed by steaming. A total of 117 saponins and aglycones were characterized, and 35 of them were newly generated. The anti-acetylcholinesterase activity of steamed SLSs gradually increased with the extension of steamed time and the increase of steamed temperature and reached the maximum after 140°C for 3 h. Furthermore, ginsenosides Rk1 and Rg5, the main components of steamed SLSs, showed dose-dependent anti-acetylcholinesterase activities with half maximal inhibitory concentration (IC50 ) values of 26.88 ± 0.53 μm and 22.41 ± 1.31 μm that were only 1.8- and 1.5-fold higher than that of donepezil with IC50 values of 14.93 ± 4.17 μM, respectively.
Collapse
Affiliation(s)
- Chao Ma
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huida Guan
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Qiyan Lin
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Chang Liu
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China.,Department of Chinese Medicine Identification, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhengcai Ju
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Yafu Xue
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Xuemei Cheng
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| | - Changhong Wang
- Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai, China
| |
Collapse
|
28
|
Abd Al Haleem E, Abd El Ghafour H, El Awdan S. Effect of coenzyme Q10 and/or epigallocatechin gallate on memantine-treated amnesia model in rats. EGYPTIAN PHARMACEUTICAL JOURNAL 2021. [DOI: 10.4103/epj.epj_4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Wang Y, Gao S, Zheng V, Chen L, Ma M, Shen S, Qu J, Zhang H, Gurney ME, O'Donnell JM, Xu Y. A Novel PDE4D Inhibitor BPN14770 Reverses Scopolamine-Induced Cognitive Deficits via cAMP/SIRT1/Akt/Bcl-2 Pathway. Front Cell Dev Biol 2020; 8:599389. [PMID: 33363155 PMCID: PMC7758534 DOI: 10.3389/fcell.2020.599389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
A global, quantitative proteomics/systems-biology analysis of the selective pharmacological inhibition of phosphodiesterase-4D (PDE4D) revealed the differential regulation of pathways associated with neuroplasticity in memory-associated brain regions. Subtype selective inhibitors of PDE4D bind in an allosteric site that differs between mice and humans in a single amino acid (tyrosine vs. phenylalanine, respectively). Therefore to study selective inhibition of PDE4D by BPN14770, a subtype selective allosteric inhibitor of PDE4D, we utilized a line of mice in which the PDE4D gene had been humanized by mutating the critical tyrosine to phenylalanine. Relatively low doses of BPN14770 were effective at reversing scopolamine-induced memory and cognitive deficits in humanized PDE4D mice. Inhibition of PDE4D alters the expression of protein kinase A (PKA), Sirt1, Akt, and Bcl-2/Bax which are components of signaling pathways for regulating endocrine response, stress resistance, neuronal autophagy, and apoptosis. Treatment with a series of antagonists, such as H89, sirtinol, and MK-2206, reversed the effect of BPN14770 as shown by behavioral tests and immunoblot analysis. These findings suggest that inhibition of PDE4D enhances signaling through the cAMP-PKA-SIRT1-Akt -Bcl-2/Bax pathway and thereby may provide therapeutic benefit in neurocognitive disorders.
Collapse
Affiliation(s)
- Yulu Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shichao Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Victor Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ling Chen
- Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Min Ma
- Department of Cell Stress and Biophysical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Hanting Zhang
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | | | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
30
|
Neuroprotective effect of red quinoa seeds extract on scopolamine-induced declarative memory deficits in mice: The role of acetylcholinesterase and oxidative stress. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
31
|
Bao Z, Zhang P, Chen J, Gao J, Lin S, Sun N. Egg yolk phospholipids reverse scopolamine–induced spatial memory deficits in mice by attenuating cholinergic damage. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
Hou W, Wang Y, Zheng P, Cui R. Effects of Ginseng on Neurological Disorders. Front Cell Neurosci 2020; 14:55. [PMID: 32265659 PMCID: PMC7099600 DOI: 10.3389/fncel.2020.00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ginseng (Panax ginseng Meyer), a famous traditional medicinal herb, has been widely used for many centuries. Numerous studies have shown that ginseng has a positive effect on the prevention and treatment of neurological disorders. In this review, we summarized the effects of ginseng in treating neurological diseases, particularly the anti-depressant effects of ginseng. Furthermore, its potential mechanism was also outlined. Therefore, this review may provide new insight into the treatment of ginseng on neurological diseases.
Collapse
Affiliation(s)
- Wei Hou
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peihe Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Lv YC, Gao AB, Yang J, Zhong LY, Jia B, Ouyang SH, Gui L, Peng TH, Sun S, Cayabyab FS. Long-term adenosine A1 receptor activation-induced sortilin expression promotes α-synuclein upregulation in dopaminergic neurons. Neural Regen Res 2020; 15:712-723. [PMID: 31638096 PMCID: PMC6975149 DOI: 10.4103/1673-5374.266916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prolonged activation of adenosine A1 receptor likely leads to damage of dopaminergic neurons and subsequent development of neurodegenerative diseases. However, the pathogenesis underlying long-term adenosine A1 receptor activation-induced neurodegeneration remains unclear. In this study, rats were intraperitoneally injected with 5 mg/kg of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) for five weeks. The mobility of rats was evaluated by forced swimming test, while their cognitive capabilities were evaluated by Y-maze test. Expression of sortilin, α-synuclein, p-JUN, and c-JUN proteins in the substantia nigra were detected by western blot analysis. In addition, immunofluorescence staining of sortilin and α-synuclein was performed to detect expression in the substantia nigra. The results showed that, compared with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg) + CPA co-treated rats, motor and memory abilities were reduced, surface expression of sortin and α-synuclein in dopaminergic neurons was reduced, and total sortilin and total α-synuclein were increased in CPA-treated rats. MN9D cells were incubated with 500 nM CPA alone or in combination with 10 μM SP600125 (JNK inhibitor) for 48 hours. Quantitative real-time polymerase chain reaction analysis of sortilin and α-synuclein mRNA levels in MN9D cells revealed upregulated sortilin expression in MN9D cells cultured with CPA alone, but the combination of CPA and SP600125 could inhibit this expression. Predictions made using Jasper, PROMO, and Alibaba online databases identified a highly conserved sequence in the sortilin promoter that was predicted to bind JUN in both humans and rodents. A luciferase reporter assay of sortilin promoter plasmid-transfected HEK293T cells confirmed this prediction. After sortilin expression was inhibited by sh-SORT1, expression of p-JUN and c-JUN was detected by western blot analysis. Long-term adenosine A1 receptor activation levels upregulated α-synuclein expression at the post-transcriptional level by affecting sortilin expression. The online tool Raptor-X-Binding and Discovery Studio 4.5 prediction software predicted that sortilin can bind to α-synuclein. Co-immunoprecipitation revealed an interaction between sortilin and α-synuclein in MN9D cells. Our findings indicate that suppression of prolonged adenosine A1 receptor activation potently inhibited sortilin expression and α-synuclein accumulation, and dramatically improved host cognition and kineticism. This study was approved by the University Committee of Animal Care and Supply at the University of Saskatchewan (approval No. AUP#20070090) in March 2007 and the Animals Ethics Committee of University of South China (approval No. LL0387-USC) in June 2017.
Collapse
Affiliation(s)
- Yun-Cheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China; Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - An-Bo Gao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College; Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan Province, China
| | - Jing Yang
- Department of Metabolism & Endocrinology, the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Li-Yuan Zhong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Bo Jia
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Shu-Hui Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Le Gui
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Tian-Hong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Sha Sun
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Francisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
34
|
Guo DD, Cheng LQ, Zhang YW, Zheng HC, Ma HY, Li L. An improved method for the preparation of Ginsenoside Rg5 from ginseng fibrous root powder. Heliyon 2019; 5:e02694. [PMID: 31687518 PMCID: PMC6820263 DOI: 10.1016/j.heliyon.2019.e02694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/14/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Ginsenoside-Rg5, which is derived from high temperature-processed ginseng, exhibits beneficial health effects. In the present study, ginsenoside-Rg5 was directly and rapidly prepared through the extraction of ginseng fibrous root powder (GFRP) at atmospheric pressure. The results showed that the highest extraction yield (3.79%) was obtained under optimal conditions (extraction temperature of 85 °C, acid concentration of 0.06 mol/L, sample to solvent ratio of 1:55 g/mL and ethanol concentration of 95% after 4 h). The current method integrates the extraction of original saponins and the modification of the saponins to rare ginsenosides Rg5, which was more simpler operation, more milder preparation condition and more efficient.
Collapse
Affiliation(s)
- Dan-Dan Guo
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Le-Qin Cheng
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yue-Wei Zhang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Hong-Chao Zheng
- National Institute of Diabetes and Digestive and Kidney Diseases, 31 Center Dr, Bethesda, MD, 20892, USA
| | - Hui-Yong Ma
- Herbalife, 20481 Crescent Bay Drive, Lake Forest, CA, 92630, USA
| | - Ling Li
- Tonghua Bai'aojinsen Biotechnology Co., Ltd, Tonghua, 134000, China
| |
Collapse
|
35
|
Jin Y, Cui R, Zhao L, Fan J, Li B. Mechanisms of Panax ginseng action as an antidepressant. Cell Prolif 2019; 52:e12696. [PMID: 31599060 PMCID: PMC6869450 DOI: 10.1111/cpr.12696] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Panax ginseng, a well-known traditional Chinese medicine with multiple pharmacological activities, plays a crucial role in modulating mood disorders. Several recent studies have identified an underlying role of Panax ginseng in the prevention and treatment of depression. However, the cellular and molecular mechanisms remain unclear. MATERIALS AND METHODS In this review, we summarized the recent progress of antidepressant effects and underlying mechanisms of Panax ginseng and its representative herbal formulae. RESULTS The molecular and cellular mechanisms of Panax ginseng and its herbal formulae include modulating monoamine neurotransmitter system, upregulating the expression of neurotrophic factors, regulating the function of HPA axis, and anti-inflammatory action. CONCLUSIONS Therefore, this review may provide theoretical bases and clinical applications for the treatment of depression by Panax ginseng and its representative herbal formulae.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 2019; 30:9-30. [PMID: 29804103 DOI: 10.1515/revneuro-2018-0008] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
A myriad of environmental and genetic factors, as well as the physiologic process of aging, contribute to Alzheimer's disease (AD) pathology. Neuroinflammation is and has been a focus of interest, as a common gateway for initiation of many of the underlying pathologies of AD. Amyloid beta (Aβ) toxicity, increasing RAGE expression, tau hyperphosphorylation, induction of apoptosis, and deregulated autophagy are among other mechanisms, partly entangled and being explained by activation of mitogen-activated protein kinase (MAPK) and MAPK signaling. p38 MAPK is the most essential regulator of Aβ induced toxicity from this family. p38 induces NF-κB activation, glutamate excitotoxicity, and disruption of synaptic plasticity, which are other implications of all justifying the p38 MAPK as a potential target to break the vicious Aβ toxicity cycle. Until recently, many in vivo and in vitro studies have investigated the effects of p38 MAPK inhibitors in AD. The pyridinyl imidazole compounds SB202190 and SB203580 have shown promising anti-apoptotic results in vivo. MW108 inhibits activation of p38 and is able to postpone cognitive decline in animal models. The PD169316, with anti-inflammatory, anti-oxidative, and anti-apoptotic features, has improved spatial memory in vivo. Natural compounds from Camellia sinensis (green tea), polyphenols from olive oil, pinocembrin from propolis, and the puerarine extract isoflavones, have shown strong anti-apoptotic features, mediated by p38 MAPK inhibition. Use of these drug targets is limited due to central nervous system side effects or cross-reactivity with other kinases, predicting the low efficacy of these drugs in clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Kheiri
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
37
|
Chen J, Li M, Qu D, Sun Y. Neuroprotective Effects of Red Ginseng Saponins in Scopolamine-Treated Rats and Activity Screening Based on Pharmacokinetics. Molecules 2019; 24:molecules24112136. [PMID: 31174251 PMCID: PMC6600263 DOI: 10.3390/molecules24112136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/24/2022] Open
Abstract
Ginseng has been used to alleviate age-related dementia and memory deterioration for thousands of years. This study investigated the protective effect of red ginseng saponins against scopolamine-induced cerebral injury. Meanwhile, pharmacokinetics of ginsenosides in normal and scopolamine-treated rats were compared. After scopolamine injection, glutathione, catalase and superoxide dismutase levels were significantly decreased when compared with control group. Compared with SA group, pretreatment of rats with red ginseng saponins could increase glutathione, catalase and superoxide dismutase level. Treatment with red ginseng saponins significantly decreased malondialdehyde level. In the pharmacokinetic analysis, a pattern recognition analysis method was used to investigate the pharmacokinetics of the absorbed compounds in blood. The pharmacokinetic parameters of Rg1, Rg2, Rh3, Rg5 and Rk1 in model group had higher area under the curve (AUC), mean residence time (MRT) and peak plasma concentration (Cmax) values; area under the curve (AUC) values and peak plasma concentration (Cmax) of model group was significantly different from that of normal group (p < 0.05). The Cmax value of Rk3, Rh1, Rh2 and Rh4 in model group was higher than normal group, but their AUC values were not significantly different. There was no significantly difference in time at Cmax (Tmax), AUC and Cmax values of Rb1, Rb2 Re, Rc, Rd and Rf between the model and normal group. 16 ginsenosides were grouped into three separate clusters according to principal component analysis (PCA) score plot based on pharmacokinetic data. The results suggested red ginseng saponins have significant protective effect against scopolamine-induced memory deficit and scopolamine-induced rats could lead to the changes of pharmacokinetic behaviors of ginsenosides.
Collapse
Affiliation(s)
- Jianbo Chen
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China.
| | - Meijia Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China.
| | - Di Qu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China.
| | - Yinshi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China.
| |
Collapse
|
38
|
Nasr M, Wahdan SA. Neuroprotective effects of novel nanosystems simultaneously loaded with vinpocetine and piracetam after intranasal administration. Life Sci 2019; 226:117-129. [PMID: 30981765 DOI: 10.1016/j.lfs.2019.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/23/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
AIMS The study aim was to test the efficacy of a novel created hybrid nanosystem compared to other nanosystems in treatment of scopolamine induced memory impairment. MAIN METHODS The fabrication and characterization of nanoformulations (microemulsion, liposomes, ethosomes, transfersomes and transethosomes) coencapsulating two cognitive enhancers; piracetam and vinpocetine delivered intranasally, in addition to a novel nanocomposite microemulsion/vesicular nanoformulation was described. KEY FINDINGS Formulations delivered the drugs across sheep nasal mucosa, with cumulative percentage reaching 29.99% for vinpocetine and 57.78% for piracetam. While the solution form of the drugs was totally ineffective, the selected transethosomal, microemulsion and nanocomposite formulations reversed the scopolamine induced effect on the step through latency of passive avoidance test and the spontaneous alternation behavior in Y maze test, further confirmed by histopathlogical examination. All three nanoformulations significantly decreased the acetylcholinesterase activity and the extent of lipid peroxidation by 32-42%. The nanocomposite formulation was superior to the microemulsion and transethosomal formulations in its anti-inflammatory and antiapoptotic effects, delineated by higher extent of inhibition of COX-2 and caspase 3 expression respectively. SIGNIFICANCE Results support the hypothesis that the novel microemulsion/vesicular nanocomposite system is a promising neuroprotective modality for intranasal brain targeting which is worthy of exploitation in other brain diseases.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
39
|
Zhang D, Wang A, Feng J, Zhang Q, Liu L, Ren H. Ginsenoside Rg5 induces apoptosis in human esophageal cancer cells through the phosphoinositide‑3 kinase/protein kinase B signaling pathway. Mol Med Rep 2019; 19:4019-4026. [PMID: 30942438 PMCID: PMC6471319 DOI: 10.3892/mmr.2019.10093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 12/03/2022] Open
Abstract
The role of ginsenoside in the prevention of cancer has been well established. Ginsenoside Rg5 is one of the main components isolated from red ginseng, which has been demonstrated to have anti-tumor effects by inhibiting cell proliferation and causing DNA damage. However, the role of ginsenoside Rg5 and its molecular mechanisms remain unclear in human esophageal cancer. In the present study, Rg5 was investigated as a novel drug for the chemotherapy of esophageal cancer in in vitro experiments. Esophageal cancer Eca109 cells were exposed to various concentrations of ginsenoside Rg5 (0–32 µΜ) for 24 h. Subsequent cell proliferation assays demonstrated that treatment with ginsenoside Rg5 resulted in the dose-dependent inhibition of proliferation, while a significant increase in apoptotic rate and increased activities of caspase-3, −8 and −9 were observed. In addition, the mitochondrial membrane potential was decreased and the cytoplasmic free calcium level increased following treatment with ginsenoside Rg5. Furthermore, the expression of B-cell lymphoma 2 and phosphorylated-protein kinase B (p-Akt) decreased. The specific phosphoinositide-3 kinase (PI3K) inhibitor LY294002 promoted this effect, while insulin-like growth factor-1, a specific PI3K activator, inhibited this action. Taken together, the results suggested that ginsenoside Rg5 may have a tumor-suppressive effect on esophageal cancer by promoting apoptosis and may be associated with the downregulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Aifu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jueping Feng
- Department of Oncology, Wuhan Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430035, P.R. China
| | - Qi Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Linlin Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hui Ren
- Department of General Surgery, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
40
|
Chen LX, Qi Z, Shao ZJ, Li SS, Qi YL, Gao K, Liu SX, Li Z, Sun YS, Li PY. Study on Antidepressant Activity of Pseudo-Ginsenoside HQ on Depression-Like Behavior in Mice. Molecules 2019; 24:E870. [PMID: 30823679 PMCID: PMC6429332 DOI: 10.3390/molecules24050870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
Suppressive effects of ginsenoside Rh₂ (Rh₂), (24R)-pseudo-ginsenoside HQ (R-PHQ), and (24S)-pseudo-ginsenoside HQ (S-PHQ) against lipopolysaccharide (LPS)-induced depression-like behavior were evaluated using the forced swimming test (FST) and tail suspension test (TST) in mice. Pretreatment with Rh₂, R-PHQ, and S-PHQ significantly decreased immobility time in FST and TST with clear dose-dependence, and significantly downregulated levels of serum tumor necrosis factor-α and interleukin-6, and upregulated superoxide dismutase activity in the hippocampus of LPS-challenged mice. Furthermore, R-PHQ and S-PHQ significantly increased the expression of the brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), sirtuin type 1 (Sirt1), and nuclear-related factor 2, and inhibited the phosphorylation of inhibitor of κB-α and nuclear factor-κB (NF-κB) in the hippocampus of LPS-challenged mice. Additionally, the antidepressant-like effect of R-PHQ was found related to the dopaminergic (DA), γ-aminobutyric acid (GABA)ergic, and noradrenaline systems, while the antidepressive effect of S-PHQ was involved in the DA and GABAergic systems. Taken together, these results suggested that Rh₂, R-PHQ, and S-PHQ produced significant antidepressant-like effects, which may be related to the BDNF/TrkB and Sirt1/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Li-Xue Chen
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Zi-Jun Shao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Shan-Shan Li
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Yu-Li Qi
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Kun Gao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Song-Xin Liu
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Yin-Shi Sun
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ping-Ya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
41
|
Semi-synthesis and anti-tumor activity of novel 25-OCH3-PPD derivatives incorporating aromatic moiety. Bioorg Med Chem Lett 2019; 29:189-193. [DOI: 10.1016/j.bmcl.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
|
42
|
Zhang Z, Zhang S, Lui CNP, Zhu P, Zhang Z, Lin K, Dai Y, Yung KKL. Traditional Chinese medicine-based neurorestorative therapy for Alzheimer’s and Parkinson’s disease. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The prevalence of multiple neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has been dramatically increasing, particularly in the aging population. However, the currently available therapies merely alleviate the symptoms of these diseases and are unable to retard disease progression significantly. Traditional Chinese medicine (TCM) has been used in clinical practice for thousands of years for ameliorating symptoms or interfering with the pathogenesis of aging- associated diseases. Modern pharmacological studies have proved that TCM imparts disease-modifying therapeutic effects against these diseases, such as protection of neurons, clearance of protein aggregates, and regulation of neuroinflammation. This review summarizes the evidence from recent studies on AD and PD therapies regarding the neuroprotective activities and molecular mechanisms of a series of TCM formulations comprising herbs and their active ingredients. The findings of this review support the use of TCM as an alternative source of therapy for the treatment of neurodegenerative diseases.
Collapse
|
43
|
Lu C, Wang Y, Xu T, Li Q, Wang D, Zhang L, Fan B, Wang F, Liu X. Genistein Ameliorates Scopolamine-Induced Amnesia in Mice Through the Regulation of the Cholinergic Neurotransmission, Antioxidant System and the ERK/CREB/BDNF Signaling. Front Pharmacol 2018; 9:1153. [PMID: 30369882 PMCID: PMC6194227 DOI: 10.3389/fphar.2018.01153] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
Genistein (GE) was reported to exert a wide spectrum of biological activities, including antioxidant, anti-inflammatory, anti-mutagenic, anticancer, and cardio-protective effects. In addition, both clinical and preclinical studies have recently suggested GE a potential neuroprotective and memory-enhancing drug against neurodegenerative diseases. The animal model of scopolamine (Scop)-induced amnesia is widely used to study underlying mechanisms and treatment of cognitive impairment in neurodegenerative diseases. However, there is no report about the effects of GE on Scop-induced amnesia in mice. Therefore, the present study was carried out to investigate the beneficial effects and potential mechanism of GE against Scop-induced deficits in mice. The mice were orally pretreated with either GE (10, 20, and 40 mg/kg) or donepezil (1.60 mg/kg) for 14 days. After the pretreatment, the open field test was conducted to assess the effect of GE on the locomotor activity of mice. Thereafter, mice were daily injected with Scop (0.75 mg/kg) intraperitoneally to induce memory deficits and subjected to the cognitive behavioral tests including the Object Location Recognition (OLR) experiment and Morris Water Maze (MWM) task. After the behavioral tests, biochemical parameter assay and western blot analysis were used to examine the underlying mechanisms of its action. The results showed that GE administration significantly improved the cognitive performance of Scop-treated mice in OLR and Morris water maze tests, exerting the memory-enhancing effects. Additionally, GE remarkably promoted the cholinergic neurotransmission and protected against the oxidative stress damage in the hippocampus of Scop-treated mice, as indicated by decreasing AChE activity, elevating ChAT activity and Ach level, increasing SOD activity, lowering the level of MDA and increasing GSH content. Furthermore, GE was found to significantly upregulate the expression levels of p-ERK, p-CREB and BDNF proteins in the hippocampus of Scop-treated mice. Taken together, these results for the first time found that GE exerts cognitive-improving effects in Scop-induced amnesia and suggested it may be a potential candidate compound for the treatment of some neurodegenerative diseases such as Alzheimer's Disease (AD).
Collapse
Affiliation(s)
- Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teng Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijing Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Wang S, Su G, Zhang Q, Zhao T, Liu Y, Zheng L, Zhao M. Walnut ( Juglans regia) Peptides Reverse Sleep Deprivation-Induced Memory Impairment in Rat via Alleviating Oxidative Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10617-10627. [PMID: 30226056 DOI: 10.1021/acs.jafc.8b03884] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this study was to determine the neuroprotective effects of walnut protein hydrolysates (WPH) against memory deficits induced by sleep deprivation (SD) in rat and further to identify and characterize the potent neuroprotective peptides against glutamate-induced apoptosis in PC12 cells. Results showed that a remarkable amelioration effect on behavioral performance in Morris water maze test was observed for WPH and its low molecular weight fraction WPHL, especially for WPHL. Additionally, a reduction of antioxidant defense (catalase, glutathione peroxidase (GSH-px), and superoxide dismutase (SOD)) and an increase of malondialdehyde content induced by SD were normalized in brain of rat after oral administration of WPH and WPHL. Then three neuroprotective peptides including GGW, VYY, and LLPF were identified from WPHL, which could protect PC12 cells against glutamate-induced apoptosis with relative cell viability of 78.29 ± 3.09%, 80.65 ± 1.74%, and 83.97 ± 3.06%, respectively, versus glutamate group 48.61 ± 3.99%. The possible mechanism underlying their protective effects of GGW and VYY could be related to their strong radical scavenging activity as well as their ability to reduce reactive oxygen species production and the depletion of SOD and GSH-px in PC12 cells. Notably, the marked neuroprotective effects of LLPF, which did not show obvious free-radical scavenging activity in vitro, could be attributed to its strong effects on inhibiting Ca2+ influx and mitochondrial membrane potential collapse. Additionally, all these peptides could regulate the expression of apoptosis-related proteins (Bax and Bcl-2). Therefore, walnut peptides might be regarded as the potential nutraceuticals against neurodegenerative disorders associated with memory deficits.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Qi Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Tiantian Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Yang Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100048 , China
| |
Collapse
|
45
|
Jakaria M, Haque ME, Kim J, Cho DY, Kim IS, Choi DK. Active ginseng components in cognitive impairment: Therapeutic potential and prospects for delivery and clinical study. Oncotarget 2018; 9:33601-33620. [PMID: 30323902 PMCID: PMC6173364 DOI: 10.18632/oncotarget.26035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment is a state that affects thinking, communication, understanding, and memory, and is very common in various neurological disorders. Among many factors, age-related cognitive decline is an important area in mental health research. Research to find therapeutic medications or supplements to treat cognitive deficits and maintain cognitive health has been ongoing. Ginseng and its active components may have played a role in treating chronic disorders. Numerous preclinical studies have confirmed that ginseng and its active components such as ginsenosides, gintonin, and compound K are pharmacologically efficacious in different models of and are linked to cognitive impairment. Among their several roles, they act as an anti-neuroinflammatory and help fight against oxidative stress and modulate the cholinergic signal. These roles may be involved in enhancing cognition and attenuating impairment. There have been some clinical studies on the activity of ginseng in cognitive impairment, but many ginseng species and active compounds remain to be investigated. In addition, new formulations of active ginseng components such as nanoparticles and liposomes could be used for preclinical and clinical models of cognitive impairment. Here, we discuss the therapeutic potential of active ginseng components in cognitive impairment and their chemistry and pharmacokinetics and consider prospects for their delivery and clinical study with respect to cognitive impairment.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Md. Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - In-Su Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
46
|
Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res 2018; 43:361-367. [PMID: 31308807 PMCID: PMC6606839 DOI: 10.1016/j.jgr.2018.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/02/2022] Open
Abstract
Panax ginseng, known as Koran ginseng, one of the most commonly used traditional plants, has been demonstrated to show a wide range of pharmacological applications. Ginsenosides are the major active ingredients found in ginseng and are responsible for the biological and pharmacological activities, such as antioxidation, antiinflammation, vasorelaxation, and anticancer actions. Existing studies have mostly focused on identifying and purifying single ginsenosides and investigating pharmacological activities and molecular mechanisms in cells and animal models. However, ginsenoside studies based on clinical trials have been very limited. Therefore, this review aimed to discuss the currently available clinical trials on ginsenosides and provide insights and future directions for developing ginsenosides as efficacious and safe drugs for human disease.
Collapse
|
47
|
Hong C, Yang P, Li S, Guo Y, Wang D, Wang J. In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. Molecules 2018; 23:E2113. [PMID: 30135411 PMCID: PMC6225384 DOI: 10.3390/molecules23092113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Ginsenoside Rg5 has been proved to have a wide range of pharmacological activities. However, the in vitro and in vivo metabolism pathways of ginsenosides are still unclear, which impedes the understanding of their in vivo fate. In this paper, the possible metabolic process of Rg5 was studied and the metabolites are identified. Methods: Samples from rat liver microsomes (RLMs) in vitro and from rat urine, plasma and feces in vivo were collected for analysis after oral administration of Rg5. A rapid analysis technique using ultra-performance liquid chromatography (UPLC)/quadrupole-time-of-flight mass spectrometry (QTOF-MS) was applied for detecting metabolites of Rg5 both in vitro and in vivo. Results: A feasible metabolic pathway was proposed and described for ginsenoside Rg5. A total of 17 metabolic products were detected in biological samples, including the RLMs (four), rat urine (two), feces (13) and plasma (four). Fifteen of them have never been reported before. Oxidation, deglycosylation, deoxidation, glucuronidation, demethylation and dehydration were found to be the major metabolic reactions of Rg5. Conclusions: The present study utilized a reliable and quick analytical tool to explore the metabolism of Rg5 in rats and provided significant insights into the understanding of the metabolic pathways of Rg5 in vitro and in vivo. The results could be used to not only evaluate the efficacy and safety of Rg5, but also identify potential active drug candidates from the metabolites.
Collapse
Affiliation(s)
- Chao Hong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Shuping Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Yizhen Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
- Institute of Materia Medica, Academy of Integrated Chinese and Western Medicine, Fudan University, Shanghai 200040, China.
| |
Collapse
|
48
|
Zhou QL, Zhu DN, Yang XW, Xu W, Wang YP. Development and validation of a UFLC-MS/MS method for simultaneous quantification of sixty-six saponins and their six aglycones: Application to comparative analysis of red ginseng and white ginseng. J Pharm Biomed Anal 2018; 159:153-165. [PMID: 29990881 DOI: 10.1016/j.jpba.2018.06.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/26/2018] [Accepted: 06/24/2018] [Indexed: 12/12/2022]
Abstract
A new and sensitive ultra fast liquid chromatography coupled with electrospray ionization triple quadrupole tandem mass spectrometry (UFLC-MS/MS) method was developed to evaluate the quality of Red ginseng (RG) and to find out its chemical markers by comparing with multi-batches of RG and white ginseng (WG). This innovative method could quantify sixty-six saponins and their six aglycones including 10 pairs of 20(S) and 20(R) epimers within 35 min simultaneously. All compounds could be determined in individual multiple-reaction monitoring channel without interference, and the optimized method was rapid, accurate, precise, reproducible and efficient. Using the orthogonal partial least squared discriminant analysis, ginsenosides Rg5, Rh4, Rk1, Rs4, F4, and 20(S)-Rg3 were found to be the characteristic components of RG, the six compounds should be suggested as quality control markers to distinguish RG from WG. These findings will be significant for standardizing the processing procedures of RG and ensuring the consistent quality, as well as consequently the efficacy of RG in clinical applications. Results will be helpful in providing crucial chemical profiles of RG.
Collapse
Affiliation(s)
- Qi-Le Zhou
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China; Beijing Institute of Nutritional Resources, Beijing Academy of Science and Technology, Beijing, 100069, China
| | - Di-Na Zhu
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, 100088, China; College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Ying-Ping Wang
- Institute of Special Wild Economic Animals and Plants Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| |
Collapse
|
49
|
Zhou J, Yang WS, Suo DQ, Li Y, Peng L, Xu LX, Zeng KY, Ren T, Wang Y, Zhou Y, Zhao Y, Yang LC, Jin X. Moringa oleifera Seed Extract Alleviates Scopolamine-Induced Learning and Memory Impairment in Mice. Front Pharmacol 2018; 9:389. [PMID: 29740317 PMCID: PMC5928465 DOI: 10.3389/fphar.2018.00389] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE) on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM) tests. MSE (250 or 500 mg/kg) was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg) for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Wu-Shuang Yang
- Department of Neurosurgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Da-Qin Suo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Ying Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Lu Peng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Lan-Xi Xu
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Kai-Yue Zeng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Tong Ren
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Ying Wang
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Yu Zhou
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Yun Zhao
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Li-Chao Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
50
|
Peng M, Yi YX, Zhang T, Ding Y, Le J. Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review. Front Pharmacol 2018; 9:188. [PMID: 29593531 PMCID: PMC5859349 DOI: 10.3389/fphar.2018.00188] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 12/05/2022] Open
Abstract
Panax notoginseng (Sanqi), a traditional Chinese medical drug which has been applied to medical use for over four centuries, contains high content of dammarane-type tetracyclic triterpenoid saponins. A number of stereoisomeric dammarane-type saponins exist in this precious herb, and some are particularly regarded as “biomarkers” in processed notoginseng. Contemporary researches have indicated that some saponin stereoisomers may show stereospecific pharmacological activities, such as anti-tumor, antioxidative, anti-photoaging, anti-inflammatory, antidiabetic, and neuro-protective activities, as well as stereoselective effects on ion channel current regulation, cardiovascular system, and immune system. The current review provides a comprehensive overview of chemical compositions of raw and processed P. notoginseng with a particular emphasis on saponin stereoisomers. Besides, the pharmacological and pharmacokinetic researches, as well as determination and biotechnological preparation methods of stereoisomeric saponins in notoginseng are discussed extensively.
Collapse
Affiliation(s)
- Ming Peng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Ya X Yi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Le
- Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|