1
|
Aobulikasimu N, Zheng D, Guan P, Xu L, Liu B, Li M, Huang X, Han L. The Anti-inflammatory Effects of Isoflavonoids from Radix Astragali in Hepatoprotective Potential against LPS/D-gal-induced Acute Liver Injury. PLANTA MEDICA 2023; 89:385-396. [PMID: 36509104 DOI: 10.1055/a-1953-0369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Radix Astragali (RA) is an important Traditional Chinese Medicine widely used in the treatment of various diseases, such as pneumonia, atherosclerosis, diabetes, kidney and liver fibrosis. The role of isoflavonoids from RA in the treatment of liver injury remains unclear. The study aimed to explore hepatoprotective and anti-inflammatory effects of isoflavonoids from Astragalus mongholicus. Network pharmacological analysis showed that RA had a multi-target regulating effect on alleviating liver injury and inhibiting inflammation through its active ingredients, among which isoflavones were closely related to its key molecular targets. The anti-inflammatory and liver protection effects of isoflavonoids of RA were investigated using lipopolysaccharide (LPS)-induced RAW 264.7 cells in vitro and LPS/D-galactosamine (D-gal)-induced acute liver injury mice in vivo. The experimental results showed that methylnissolin (ML) and methylnissolin-3-O-β-D-glucoside (MLG) presented more notable anti-inflammatory effects. Both of them suppressed the release of pro-inflammatory cytokines, such as iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated RAW 264.7 cells. In vivo investigation demonstrated that ML markedly meliorated liver injury in LPS/D-gal-induced mice. Western blot results revealed that ML and MLG down-regulated the expression of proinflammatory cytokines via NF-κB signaling pathway. The isoflavonoids, methylnissolin (ML), and methylnissolin-3-O-β-D-glucoside (MLG), play a vital role in the hepatoprotective and anti-inflammatory effects of RA.
Collapse
Affiliation(s)
- Nuerbiye Aobulikasimu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Lixiao Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Bo Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Minglei Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Lim JS, Bae J, Lee S, Lee DY, Yao L, Cho N, Bach TT, Yun N, Park SJ, Cho YC. In Vitro Anti-Inflammatory Effects of Symplocos sumuntia Buch.-Ham. Ex D. Don Extract via Blockage of the NF-κB/JNK Signaling Pathways in LPS-Activated Microglial Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:3095. [PMID: 36432823 PMCID: PMC9693526 DOI: 10.3390/plants11223095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Symplocos sumuntia Buch.-Ham. ex D. Don (S. sumuntia) is a traditional medicinal herb used in Asia to treat various pathologies, including cough, stomachache, tonsillitis, hypertension, and hyperlipidemia. Although the anti-inflammatory activity of S. sumuntia has been reported, little is known about its anti-inflammatory activity and molecular mechanisms in microglial cells. Therefore, we investigated the inhibitory effects of S. sumuntia methanol extract (SSME) on the inflammatory responses in lipopolysaccharide (LPS)-treated BV2 cells. The SSME significantly inhibited the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase-2 expression, as well as the production of nitric oxide (NO), a proinflammatory mediator. The production of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β, was suppressed by the SSME in the LPS-induced BV2 cells. The mechanism underlying the anti-inflammatory effects of SSME involves the suppression of the LPS-stimulated phosphorylation of mitogen-activated protein kinases (MAPKs) such as JNK. Moreover, we showed that the LPS-stimulated nuclear translocation of the nuclear factor-κB (NF-κB)/p65 protein, followed by IκB degradation, was decreased by the SSME treatment. Collectively, these results showed that the SSME induced anti-inflammatory effects via the suppression of the MAPK signaling pathways, accompanied by changes in the NF-κB translocation into the nucleus. Therefore, SSME may be employed as a potential therapeutic candidate for various inflammatory diseases.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Jaehoon Bae
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Seoyoung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
- Department of Research, Lab Technology System Co., Ltd., Daejeon 35365, Republic of Korea
| | - Lulu Yao
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Namki Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122000, Vietnam
| | - Narae Yun
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Ahmed IA, Mikail MA, Zamakshshari NH, Mustafa MR, Hashim NM, Othman R. Trends and challenges in phytotherapy and phytocosmetics for skin aging. Saudi J Biol Sci 2022; 29:103363. [PMID: 35813113 PMCID: PMC9260296 DOI: 10.1016/j.sjbs.2022.103363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Free radicals, oxidative stress, and inflammation contribute to the etiology of most chronic diseases. Natural products can be incorporated into cosmetics, cosmeceuticals, and nutricosmetics to tackle inflammation-related diseases. The use of alternative green extraction solvents such as natural deep eutectic solvents and electrochemically reduced water is trending. Delivery systems are important for the enhancement of the bioavailability, stability, solubility, and controlled release profile of the bioactives.
Oxidative stress and inflammation mostly contribute to aging and age-related conditions including skin aging. The potential of natural products in the form of naturally-derived cosmetics, cosmeceuticals, and nutricosmetics have, however, not been fully harnessed. This review, thus, critically analyzes the potential roles of natural products in inflammation-related skin aging diseases due to the increasing consumers’ concerns and demands for efficacious, safe, natural, sustainable, and religiously permitted alternatives to synthetic products. The information and data were collated from various resources and literature databases such as PubMed, Science Direct, Wiley, Springer, Taylor and Francis, Scopus, Inflibnet, Google, and Google Scholar using relevant keywords and Medical Subject Headings (MeSH). The role of green extraction solvents as promising alternatives is also elucidated. The potential enhancements of the bioavailability, stability, solubility and controlled release profile of the bioactives using different delivery systems are also presented. The current potential global market value, motivators, drivers, trends, challenges, halal, and other regulatory certifications for cosmeceuticals and nutricosmetics are equally discussed. The adoption of the suggested extractions and delivery systems would enhance the stability, bioavailability, and target delivery of the bioactives.
Collapse
|
4
|
Abekura F, Park J, Lim H, Kim H, Choi H, Lee M, Kim C. Mycobacterium tuberculosis
glycolipoprotein LprG inhibits inflammation through NF‐κB signaling of ERK1/2 and JNK in LPS‐induced murine macrophage cells. J Cell Biochem 2022; 123:772-781. [DOI: 10.1002/jcb.30220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Fukushi Abekura
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Junyoung Park
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hakseong Lim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hee‐Do Kim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hyunju Choi
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Moon‐Jo Lee
- Department of Herb Science Dong‐Eui Institute of Technology Busan Republic of Korea
| | - Cheorl‐Ho Kim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center Seoul South Korea
| |
Collapse
|
5
|
Crescenzi MA, D’Urso G, Piacente S, Montoro P. LC-ESI/LTQOrbitrap/MS Metabolomic Analysis of Fennel Waste ( Foeniculum vulgare Mill.) as a Byproduct Rich in Bioactive Compounds. Foods 2021; 10:foods10081893. [PMID: 34441670 PMCID: PMC8392248 DOI: 10.3390/foods10081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Food industries produce a high amount of waste every year. These wastes represent a source of bioactive compounds to be used to produce cosmetic and nutraceutical products. In this study, the possibility to retrain food waste as a potential source of bioactive metabolites is evaluated. In particular, metabolite profiles of different parts (bulb, leaves, stems and little stems) of fennel waste were investigated by liquid chromatography coupled with mass spectrometry (LC-ESI/LTQ Orbitrap MS). To discriminate the different plant parts, a Multivariate Data Analysis approach was developed. Metabolomic analysis allowed the identification of different metabolites mainly belonging to hydroxycinnamic acid derivatives, flavonoid glycosides, flavonoid aglycons, phenolic acids, iridoid derivatives and lignans. The identification of compounds was based on retention times, accurate mass measurements, MS/MS data, exploration on specific metabolites database and comparison with data reported in the literature for F. vulgare. Moreover, the presence of different oxylipins was relieved; these metabolites for the first time were identified in fennel. Most of the metabolites identified in F. vulgare possess anti-inflammatory, antioxidant and/or immunomodulatory properties. Considering that polyphenols are described to possess antioxidant activity, spectrophotometric tests were performed to evaluate the antioxidant activity of each part of the fennel.
Collapse
|
6
|
Liu Y, Li Y, Zhu Y, Zhang L, Ji J, Gui M, Li C, Song Y. Study of Anti-Inflammatory and Analgesic Activity of Scorpion Toxins DKK-SP1/2 from Scorpion Buthus martensii Karsch ( BmK). Toxins (Basel) 2021; 13:toxins13070498. [PMID: 34357970 PMCID: PMC8310270 DOI: 10.3390/toxins13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
Buthus martensii Karsch (BmK), is a kind of traditional Chinese medicine, which has been used for a long history for the treatment of many diseases, such as inflammation, pain and cancer. In this study, DKK-SP1/2/3 genes were screened and extracted from the cDNA library of BmK. The DKK-SP1/2/3 were expressed by using plasmid pSYPU-1b in E. coli BL21, and recombinant proteins were obtained by column chromatography. In the xylene-induced mouse ear swelling and carrageenan-induced rat paw swelling model, DKK-SP1 exerted a significant anti-inflammatory effect by inhibiting the expression of Nav1.8 channel. Meanwhile, the release of pro-inflammatory cytokines (COX-2, IL-6) was decreased significantly and the release of anti-inflammatory cytokines (IL-10) were elevated significantly. Moreover, DKK-SP1 could significantly decrease the Nav1.8 current in acutely isolated rat DRG neurons. In the acetic acid-writhing and ION-CCI model, DKK-SP2 displayed significant analgesic activity by inhibiting the expression of the Nav1.7 channel. Moreover, DKK-SP2 could significantly inhibit the Nav1.7 current in the hNav1.7-CHO cells.
Collapse
Affiliation(s)
- Yunxia Liu
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (M.G.)
| | - Yan Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Yuchen Zhu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Liping Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Junyu Ji
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Mingze Gui
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (M.G.)
| | - Chunli Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
- Correspondence: (C.L.); (Y.S.)
| | - Yongbo Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
- Correspondence: (C.L.); (Y.S.)
| |
Collapse
|
7
|
Luetragoon T, Sranujit RP, Noysang C, Thongsri Y, Potup P, Somboonjun J, Maichandi N, Suphrom N, Sangouam S, Usuwanthim K. Evaluation of Anti-Inflammatory Effect of Moringa oleifera Lam. and Cyanthillium cinereum (Less) H. Rob. Lozenges in Volunteer Smokers. PLANTS 2021; 10:plants10071336. [PMID: 34208842 PMCID: PMC8309071 DOI: 10.3390/plants10071336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Smokers have high plaque accumulation that initiates gingival inflammation and progresses to periodontitis. Thus, oral hygiene to control microbial plaque formation is an effective method of preventing gingivitis. Medicinal plants such as Moringa oleifera Lam. (MO) and Cyanthillium cinereum (Less.) H. Rob. (CC) have an anti-inflammatory effect that might improve oral health in smokers. This study evaluated the effect of MO leaf and CC extracts using MO lozenges and a combination of MO + CC lozenges on oral inflammation and gingivitis in volunteer smokers. Lozenges consisting of MO and CC extracts were developed and studied in vivo. The results showed that lozenges significantly reduced oral inflammation and gingivitis in volunteers. The gingival index (GI) of group III (MO + CC lozenges) significantly decreased, while the percentage decrease of oral inflammation in group II (MO lozenges) was significantly higher than the other groups. The percentage decrease of GI values in group II (MO lozenges) and group III (MO + CC lozenges) were significantly higher than the placebo group I. Our findings indicated that MO and MO + CC lozenges reduced oral inflammation and gingivitis and showed potential to improve oral health in smokers.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Rungnapa Pankla Sranujit
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Chanai Noysang
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | | | | | - Nungruthai Suphrom
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Supaporn Sangouam
- Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Correspondence: ; Tel.: +66-55-966-411; Fax: +66-55-966-234
| |
Collapse
|
8
|
Mickely W Engelbrecht L, Vicente Ribeiro R, Cristiane Yoshida N, Dos Santos Gonçalves V, Pavan E, Tabajara de Oliveira Martins D, Luiz Dos Santos É. Chemical Characterization, Antioxidant and Cytotoxic Activities of the Edible Fruits of Brosimun gaudichaudii Trécul, a Native Plant of the Cerrado Biome. Chem Biodivers 2021; 18:e2001068. [PMID: 33998146 DOI: 10.1002/cbdv.202001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/11/2021] [Indexed: 11/10/2022]
Abstract
In Brazil, there is a large diversity of species of small edible fruits that are considered sources of nutrients and functional properties. They present a high innovation domain for the pharmaceutical, cosmetic and food industries due to their health-promoting properties. Edible fruits from Brosimum gaudichaudii (Moraceae) are widely consumed and used in folk medicine and in feed by the population of the Brazilian Cerrado. Nevertheless, detailed information on the chemical fingerprint, antiradical activity and safety aspects of these fruits is still unknown. Thus, the aim of this work was to investigate the bioactive compounds of hydroethanolic extracts of fruits from Brosimum gaudichaudii using high-performance liquid chromatography combined with mass spectrometry using electrospray ionization (HPLC ESI-MS). Eighteen different compounds, including flavonoids, coumarins, arylbenzofurans, terpenoids, stilbenes, xanthones and esters, were detected. Moreover, the study indicated that the hydroethanolic extract of fruits from B. gaudichaudii presented low scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radicals (IC50 >800 μg mL-1 ) and was cytotoxic (IC50 <30 μg mL-1 ) in Chinese hamster ovary cells (CHO-K1) by an in vitro assay. This is the first report of the chemical profile, antioxidant activity and cytotoxic properties of the hydroethanolic extract of fruits from B. gaudichaudii.
Collapse
Affiliation(s)
- Luma Mickely W Engelbrecht
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Lucas do Rio Verde, MT 78455-000, Brazil
| | - Reginaldo Vicente Ribeiro
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Lucas do Rio Verde, MT 78455-000, Brazil
| | - Nídia Cristiane Yoshida
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79074-460, Brazil
| | | | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT 78060-900, Brazil
| | - Érica Luiz Dos Santos
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Lucas do Rio Verde, MT 78455-000, Brazil
| |
Collapse
|
9
|
Oliveira RGD, Damazo AS, Antonielli LF, Miyajima F, Pavan E, Duckworth CA, Lima JCDS, Arunachalam K, Martins DTDO. Dilodendron bipinnatum Radlk. extract alleviates ulcerative colitis induced by TNBS in rats by reducing inflammatory cell infiltration, TNF-α and IL-1β concentrations, IL-17 and COX-2 expressions, supporting mucus production and promotes an antioxidant effect. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113735. [PMID: 33359865 DOI: 10.1016/j.jep.2020.113735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dilodendron bipinnatum (Sapindaceae) stem bark decoction and macerate were used to treat uterine inflammation, pain in general, dermatitis and bone fractures. These homemade preparations also have diuretic, stimulant, expectorants and sedative effects and are effective in treating worm infections in the Brazilian Pantanal population. Our previous research confirmed the anti-inflammatory activity of the hydroethanolic extract of inner stem bark of D. bipinnatum (HEDb). AIM This work aimed to investigate the efficacy of HEDb in ameliorating experimental colitis in rats and to elucidate the possible mechanisms involved in the anti-ulcerative colitis properties of HEDb in rats and Caco-2 cell line. MATERIALS AND METHODS The effects on cell viability, IL-8 and TNF-α in human colon adenocarcinoma (Caco-2) were determined by flow cytometer and ELISA. Wistar rats (n = 6-7) were orally gavaged with, vehicle (0.9% saline), HEDb at doses of 20, 100 or 500 mg/kg, or mesalazine at a dose of 500 mg/kg, at 48, 24 and 1 h prior to the administration of trinitrobenzene sulfonic acid via rectal administration to induce colitis. The anti-inflammatory effects of HEDb were assessed macroscopically, by myeloperoxidase (MPO) activity and for glutathione (GSH) concentration in the colon. Additionally, colonic histopathological analyses of UC severity were conducted by different staining methods (H&E, PAS and toluidine blue). Pro-inflammatory cytokines TNF-α and IL-1β were quantified in colonic tissue by ELISA and colonic expressions of COX-2 and IL-17 were analyzed by western blotting. RESULTS HEDb was shown to be non-cytotoxic with mean viability of 80% in Caco-2 cells. HEDb pre-treatments of 1, 5 or 20 μg/mL significantly reduced TNF-α production in Caco-2 cells by 21.8% (p < 0.05), 60.5 and 82.1% (p < 0.001) respectively following LPS treatment compared to LPS alone. However, no change in IL-8 production was observed. HEDb pre-treatment of rats subjected to TNBS significantly (p < 0.001) reduced colonic lesion score. Higher doses (100 and 500 mg/kg) caused a sharp downregulation of haemorrhagic damage, leukocyte infiltration, edema and restoration of mucus production. Moreover, mast cell degranulation was inhibited. Colonic MPO activity was reduced following all doses of HEDb, reaching 51.1% ± 1.51 (p < 0.05) with the highest dose. GSH concentration was restored by 58% and 70% following 100 and 500 mg/kg of HEDb, respectively. The oral treatment of HEDb at doses 20, 100 and 500 mg/kg decreased the concentrations of TNF-α and IL-1β at all doses in comparison to vehicle treated control. In addition, HEDb inhibited the COX-2 and IL-17 expressions with maximal effect at 500 mg/kg (60.3% and 65% respectively; p < 0.001). In all trials, the effect of HEDb at all doses being 20, 100 and 500 mg/kg was statistically comparable to mesalazine (500 mg/kg). CONCLUSIONS HEDb reduces colonic damage in the TNBS colitis model and relieves oxidative and inflammatory events, at least in part, by increasing mucus production, reducing leukocyte migration and reducing TNF-α (in vivo and in vitro), IL-1β, IL-17 and COX-2 expression. Therefore, HEDb requires further investigation as a candidate for treating IBD.
Collapse
Affiliation(s)
- Ruberlei Godinho de Oliveira
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil; Faculdade de Farmácia, Universidade de Cuiabá (UNIC), Cuiabá, MT, Brazil; Programa de Pós-Graduação Em Ciências Aplicadas à Atenção Hospitalar, Hospital Universitário Júlio Muller (HUJM), Cuiabá, MT, Brazil.
| | - Amílcar Sabino Damazo
- Área de Histologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), MT, Cuiabá, MT, Brazil.
| | | | - Fábio Miyajima
- Oswaldo Cruz Foundation (Fiocruz), Brench Ceará, Eusébio, Brazil.
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Carrie A Duckworth
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | - Joaquim Corsino da Silva Lima
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil; Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
10
|
Yuan HL, Zhao YL, Ding CF, Zhu PF, Jin Q, Liu YP, Ding ZT, Luo XD. Anti-inflammatory and antinociceptive effects of Curcuma kwangsiensis and its bioactive terpenoids in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112935. [PMID: 32387235 DOI: 10.1016/j.jep.2020.112935] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Curcumae Radix", the dried rhizomes of Curcuma kwangsiensis documented in Chinese pharmacopoeia, has been traditionally used for the treatment of inflammatory and pain diseases, such as jaundice and red urine, cleaning the heart-fire and depression, arthralgia, and dysmenorrhea. However, according to literature surveys, anti-inflammatory and antinociceptive studies of C. kwangsiensis have been seldom reported so far. AIM OF THE STUDY The current study focuses on the anti-inflammatory and antinociceptive effects of C. kwangsiensis and discovering the bioactive compounds for its traditional usages both in vivo and in vitro, which could provide scientific justification about its traditional use. MATERIAL AND METHODS The anti-inflammatory and antinociceptive assays of various layers (ME, EA, AQS) from C. kwangsiensis were achieved by carrageenan-induced paw edema and acetic acid-induced writhing animal models, respectively. The most bioactive part, EA layer was further phytochemically investigated by multiple step chromatography techniques. The structures of these isolates were unambiguously elucidated by means of extensive spectroscopic and chemical methods, and comparison with corresponding data of the reported literature. Four major sesquiterpenoids (4, 6, 14, and 15) were achieved for their anti-inflammatory and antinociceptive assays by the two aforementioned animal models in vivo. All the isolated compounds were evaluated for their anti-inflammatory effects via detecting inflammatory mediator releases (COX-2, IL-1β, and TNF-α) in RAW 264.7 macrophage cells induced by LPS. RESULTS The ME and EA layers significantly alleviated the paw edema caused by carrageenan and decreased the number of writhes induced by acetic acid at the dose of 200 and/or 100 mg/kg in comparison to the control group (p < 0.01/0.05), and the EA layer exhibited better activity than that of ME layer. Subsequent phytochemical investigation on EA layer of C. kwangsiensis exhibited that three new terpenoid compounds (1-3), identified as (12Z,14R)-7β-hydroxylabda-8(17),12-diene-14,15,16-triol (1), (12Z,14S)- 7β-hydroxlabda-8(17),12-diene-14,15,16-triol (2), and (4S)-hydroxy-(8)-methoxy-(5S)-(H)-guaia1(10),7(11)-dien-12,8-olide (3), together with twenty-two known analogs were isolated. Furthermore, four major sesquiterpenoids (4, 6, 14, and 15) significantly relieved the paw edema and number of writhes at 100 and/or 50 mg/kg (p < 0.05/0.01). Likewise, the majority of sesqui- and diterpenoids isolated could remarkably inhibited the secretion of inflammatory mediators (COX-2, IL-1β, and TNF-α) in LPS-stimulated RAW 264.7 macrophages cells at the concentration of 20 μg/mL, comparable to DXM used as the positive control. All the results suggested that EA layer from C. kwangsiensis possessed the anti-inflammatory and antinociceptive activities, and these sesqui- and diterpenoids could be the effective constituents responsible for relieving inflammation. CONCLUSION The present studies undoubtedly determined the anti-inflammatory and antinociceptive material basis of C. kwangsiensis, including the EA layer and its precise components, which presented equivalent or better anti-inflammatory effects than that of positive control (ASP/DXM) in vivo and in vitro. These results not only would account for scientific knowledge for traditional use of C. kwangsiensis, but also provide credible theoretical foundation for the further development of anti-inflammatory and antinociceptive agents.
Collapse
Affiliation(s)
- Hai-Lian Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; State Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; State Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Cai-Feng Ding
- State Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Pei-Feng Zhu
- State Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qiong Jin
- State Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ya-Ping Liu
- State Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; State Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
11
|
Lim JS, Lee SH, Lee SR, Lim HJ, Roh YS, Won EJ, Cho N, Chun C, Cho YC. Inhibitory Effects of Aucklandia lappa Decne. Extract on Inflammatory and Oxidative Responses in LPS-Treated Macrophages. Molecules 2020; 25:molecules25061336. [PMID: 32183436 PMCID: PMC7144571 DOI: 10.3390/molecules25061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023] Open
Abstract
Aucklandia lappa Decne., known as “Mok-hyang” in Korea, has been used for the alleviation of abdominal pain, vomiting, diarrhea, and stress gastric ulcers in traditional oriental medicine. We investigated the anti-inflammatory and antioxidative effects of the ethanol extract of Aucklandia lappa Decne. (ALDE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ALDE significantly inhibited the LPS-induced nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. The production of other proinflammatory mediators, including COX-2, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, was reduced by ALDE in LPS-stimulated RAW 264.7 cells. The mechanism underlying the anti-inflammatory effects of ALDE was elucidated to be the suppression of LPS-induced nuclear translocation of p65, followed by the degradation of IκB and the inhibition of the phosphorylation of mitogen-activated protein kinases (MAPK). In addition, ALDE showed enhanced radical scavenging activity. The antioxidant effect of ALDE was caused by the enhanced expression of heme oxygenase (HO-1) via stabilization of the expression of the nuclear transcription factor E2-related factor 2 (Nrf2) pathway. Collectively, these results indicated that ALDE not only exerts anti-inflammatory effects via the suppression of the NF-κB and MAPK pathways but also has an antioxidative effect through the activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jae Sung Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea;
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea;
| | - Sung Ho Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sang Rok Lee
- ROK-Biotech, Jeollanamdo Biopharmaceutical Research Center, Hwasun, Jeollanam-do 58141, Korea;
| | - Hyung-Ju Lim
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea;
- Department of Microbiology, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea;
| | - Eun Jeong Won
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea;
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
| | - Changju Chun
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (C.C.); (Y.-C.C.); Tel.: +82-62-530-2944 (C.C.); +82-62-530-2925 (Y.-C.C.)
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (C.C.); (Y.-C.C.); Tel.: +82-62-530-2944 (C.C.); +82-62-530-2925 (Y.-C.C.)
| |
Collapse
|
12
|
Bioactive Compounds in Moringa oleifera Lam. Leaves Inhibit the Pro-Inflammatory Mediators in Lipopolysaccharide-Induced Human Monocyte-Derived Macrophages. Molecules 2020; 25:molecules25010191. [PMID: 31906558 PMCID: PMC6982846 DOI: 10.3390/molecules25010191] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023] Open
Abstract
Moringa oleifera (MO) is an important plant for traditional medicine. The present study aimed to identify the MO active phytochemical compounds for their ability against inflamed macrophages. An ethyl acetate extract fraction of MO was fractionation by flash column chromatography. Human macrophages were stimulated by Lipopolysaccharide and then treated with fractions of MO to examine their anti-inflammatory activity and cellular mechanism. The active fractions were analyzed by liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometer (LC-ESI-QTOF-MS). MO treated cells showed a decreased production of pro-inflammatory mediator in response to lipopolysaccharide. This was evident at both mRNA and protein levels. The study revealed that MO suppressed mRNA expression of IL-1, IL-6, TNF-α, PTGS2, NF-κB (P50), and RelA. Furthermore, the extract effectively inhibited the expression of inflammatory mediators, including IL-6, TNF-α, and cyclooxygenase-2. Interestingly, the effect of MO inhibited phosphorylation of IκB-α and the ability to reduce expression of the nuclear factor (NF)-κB p65, suppressing its nuclear translocation. Moreover, LC-ESI-QTOF-MS analysis of the MO active fraction revealed seven compounds, namely 3,4-Methyleneazelaic acid, (2S)-2-phenylmethoxybutane-1,4-diol, (2R)-2-phenylmethoxybutane-1, 4-diol, γ-Diosphenol, 2,2,4,4-Tetramethyl-6-(1-oxobutyl)-1,3,5-cyclohexanetrione, 3-Hydroxy-β-ionone, and Tuberonic acid. Our findings highlight the ability of MO compounds to inhibit inflammation through regulation of the NF-κB pathway.
Collapse
|
13
|
Liu G, Magnuson AD, Sun T, Tolba SA, Starkey C, Whelan R, Lei XG. Supplemental methionine exerted chemical form-dependent effects on antioxidant status, inflammation-related gene expression, and fatty acid profiles of broiler chicks raised at high ambient temperature1. J Anim Sci 2019; 97:4883-4894. [PMID: 31710661 PMCID: PMC6915222 DOI: 10.1093/jas/skz348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/06/2019] [Indexed: 01/12/2023] Open
Abstract
This study was to explore metabolic effects of two forms and concentrations of supplemental methionine in grower and finisher diets for broiler chickens raised at high temperature. Male Cornish cockerel chicks (total = 360, day-old) were divided into four groups (10 pens/treatment, 9 chicks/pen) and fed with 100% or 130% required methionine in the diets as DL-methionine (DL-MET) or 2-hydroxy-4-(methylthio)butanoate (HMTBA). The room was maintained at 4 to 13 °C above the suggested thermoneutral temperature. The higher concentration of both DL-MET and HMTBA enhanced (P < 0.05) hepatic GSH concentrations of the growers and plasma ferric reducing ability of the finishers. The DL-MET-fed growers had greater (P < 0.05%) muscle GSH and hepatic unsaturated fatty acid concentrations than those fed HMTBA. Expression of inflammation-related genes in the liver of finishers was affected (P < 0.05) by interaction effects of the methionine form and concentration. In conclusion, effects of the extra methionine supplementation on the high ambient temperature-related metabolic responses of broilers varied with their age and(or) tissue and the methionine form.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Animal Science, Cornell University, Ithaca, NY
| | | | - Tao Sun
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Samar A Tolba
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Charles Starkey
- Department of Poultry Science, Auburn University, Auburn, AL
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY
| |
Collapse
|
14
|
Amparo TR, Seibert JB, Mathias FAS, Vieira JFP, Soares RDDOA, Freitas KM, Cabral VAR, Brandão GC, Santos ODHD, de Souza GHB, Vieira PMDA. Anti-inflammatory activity of Protium spruceanum (Benth.) Engler is associated to immunomodulation and enzymes inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112024. [PMID: 31181316 DOI: 10.1016/j.jep.2019.112024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Protium spruceanum (Burseraceae) is used in Brazilian traditional medicine as anti-inflammatory, but the factors involved in this activity were not yet characterized. AIMS OF THE STUDY analyze the aspects involved in the anti-inflammatory activity of polar fractions obtained from extracts of leaves and branches. MATERIALS AND METHODS Hydromethanolic fraction was obtained by liquid-liquid partition from crude ethanolic extract and its compounds were identified by LC-DAD-MS. Activity tests were performed using LPS + IFN-γ stimulated J774A.1 macrophages. Cytokines were evaluated by CBA kit, NO by Griess method, ROS by DCFH-DA, N-acetylglucosaminidase (NAG) activity by spectrophotometric method, matrix-metalloproteinase (MMP-9) activity by zymography, inducible nitric oxide synthase (iNOS) expression by immunofluorescence and cyclooxygenase (COX-2) expression by Western blot. RESULTS Fractions induced an increase of IL-6 and IL-10 which leads to the control of pro-inflammatory cytokines levels. The treatment with the fractions also reduced NO production at all concentrations tested in all evaluated periods. ROS production by the macrophages was inhibited by the treatment and the leaves fraction showed the best results with a lower concentration than that observed for the branches. The enzymes assays showed that leaves fraction inhibited NAG and MMP-9 activities, as well as, iNOS and COX-2 expression. These activities can be associated with the presence of procyanidin, catechin, rutin, quercitrin, isoquercitrin and kaempferol-3-O-rhamnoside, major compounds that were identified in the fraction. CONCLUSIONS Anti-inflammatory activity of P. spruceanum is associated to an immunomodulatory effect that leads to inhibition of ROS, NO, NAG, MMP-9, COX-2 and iNOS.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Programa de Pós Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Janaína Brandão Seibert
- Programa de Pós Graduação em Biotecnologia, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Fernando Augusto Siqueira Mathias
- Programa de Pós Graduação em Ciências Biológicas, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - João Filipe Pereira Vieira
- Programa de Pós Graduação em Ciências Biológicas, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Rodrigo Dian de Oliveira Aguiar Soares
- Programa de Pós Graduação em Biotecnologia, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Kátia Michelle Freitas
- Programa de Pós Graduação em Biotecnologia, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | | | - Geraldo Célio Brandão
- Programa de Pós Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Orlando David Henrique Dos Santos
- Programa de Pós Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil; Programa de Pós Graduação em Biotecnologia, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Gustavo Henrique Bianco de Souza
- Programa de Pós Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil; Programa de Pós Graduação em Biotecnologia, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Programa de Pós Graduação em Ciências Biológicas, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int J Mol Sci 2019; 20:E4367. [PMID: 31491986 PMCID: PMC6770891 DOI: 10.3390/ijms20184367] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is one of the common events in the majority of acute as well as chronic debilitating diseases and represent a chief cause of morbidity in today's era of modern lifestyle. If unchecked, inflammation leads to development of rheumatoid arthritis, diabetes, cancer, Alzheimer's disease, and atherosclerosis along with pulmonary, autoimmune and cardiovascular diseases. Inflammation involves a complex network of many mediators, a variety of cells, and execution of multiple pathways. Current therapy for inflammatory diseases is limited to the steroidal and non-steroidal anti-inflammatory agents. The chronic use of these drugs is reported to cause severe adverse effects like gastrointestinal, cardiovascular, and renal abnormalities. There is a massive need to explore new anti-inflammatory agents with selective action and lesser toxicity. Plants and isolated phytoconstituents are promising and interesting sources of new anti-inflammatories. However, drug development from natural sources has been linked with hurdles like the complex nature of extracts, difficulties in isolation of pure phytoconstituents, and the yield of isolated compounds in minute quantities that is insufficient for subsequent lead development. Although various in-vivo and in-vitro models for anti-inflammatory drug development are available, judicious selection of appropriate animal models is a vital step in the early phase of drug development. Systematic evaluation of phytoconstituents can facilitate the identification and development of potential anti-inflammatory leads from natural sources. The present review describes various techniques of anti-inflammatory drug screening with its advantages and limitations, elaboration on biological targets of phytoconstituents in inflammation and biomarkers for the prediction of adverse effects of anti-inflammatory drugs. The systematic approach proposed through present article for anti-inflammatory drug screening can rationalize the identification of novel phytoconstituents at the initial stage of drug screening programs.
Collapse
Affiliation(s)
- Kalpesh R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Banappa S Unger
- Pharmacology & Toxicology Division, ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sameer N Goyal
- SVKM's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sateesh Belemkar
- School of Pharmacy and Technology Management, SVKM's NMIMS, MPTP, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Sanjay J Surana
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, PO Box 17666, United Arab Emirates.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| |
Collapse
|
16
|
Abekura F, Park J, Kwak CH, Ha SH, Cho SH, Chang YC, Ha KT, Chang HW, Lee YC, Chung TW, Kim CH. Esculentoside B inhibits inflammatory response through JNK and downstream NF-κB signaling pathway in LPS-triggered murine macrophage RAW 264.7 cells. Int Immunopharmacol 2019; 68:156-163. [PMID: 30639961 DOI: 10.1016/j.intimp.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023]
Abstract
Natural compound esculentoside B (EsB), (2S,4aR,6aR,6aS,6bR,8aR,9R,10R,11S,12aR,14bS)-11-hydroxy-9-(hydroxymethyl)-2 methoxycarbonyl-2,6a,6b,9,12a-pentamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid with molecular weight of 664.833, isolated from roots of Phytolacca acinosa Roxb has been widely used as a constituent of traditional Chinese medicine (TCM). However, the anti-inflammatory capacity of EsB has not been reported yet. Therefore, the objective of this study was to investigate anti-inflammatory activities of EsB in LPS-treated macrophage RAW 264.7 cells. EsB could inhibit nitric oxide (NO) production. EsB also suppressed gene and protein expression levels of inducible isoform of NO synthase (NOS) and cyclooxygenase-2 in a dose-dependent manner. In addition, EsB decreased gene expression and protein secretion levels of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6. EsB remarkably suppressed nuclear translocation of nuclear factor kappa-B (NF-κB) from cytosolic space. Phosphorylation of IκB was also inhibited by EsB. Moreover, EsB specifically down-regulated phospho-c-Jun N-terminal kinase (p-JNK), but not p-p38 or phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2). Taken together, these results suggest that EsB has inhibitory effect on inflammatory response by inactivating NF-κB and p-JNK. It could be used as a new modulatory drug for effective treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea
| | - Junyoung Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea; Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju 363-951, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea.
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea.
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 701-947, Republic of Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Saha-Gu, Busan, Republic of Korea.
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do 16419, Republic of Korea.
| |
Collapse
|
17
|
Lima KC, de Oliveira Martins DT, Macho A, de Oliveira RG, Pavan E, Martelli LSR, Pacheco LBS, da Silva VC, Ribeiro TAN, de Carvalho MG, de Sousa PT. Chemical Characterization of the Hydroethanolic Extract of the Inner Stem Bark of Dilodendron bipinnatum. Comparative Cytotoxic Evaluation and Anti-inflammatory Potential of a Simple Mixture of its Isolates 3- O-β-Glucopyranosyl-β-sitosterol and 3- O-β-Glucopyranosyl-stigmasterol. Nat Prod Commun 2019; 14. [DOI: 10.1177/1934578x1901400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Phytochemical investigation of the hydroethanolic extract of the inner stem bark of Dilodendron bipinnatum (HEDb) by column chromatography led to the separation of three major fractions: a) a mixture of phytosterols (ST mixture), including β-sitosterol (1), stigmasterol (2) and campesterol (3); b) a mixture of 3- O-β-glucopyranosyl-β-sitosterol (4) and 3- O-β-glucopyranosyl-stigmasterol (5) (SGP mixture); and c) epicatechin (6), as a single isolate. Their structures were determined by spectrometric analysis using 1H- and 13C-NMR spectroscopy, and GC-MS. The safety profile of the SGP mixture, when evaluated on RAW 264.7 cells, using the alamar blue® assay, exhibited no cytotoxic effects. The anti-inflammatory activity was comparatively analyzed in vivo using the lipopolysaccharide (LPS)-induced peritonitis model in mice, showing a strong reduction of leukocyte migration to the peritoneal cavity using both the SGP mixture and the HEDb. In vitro assessment of nitric oxide (NO) in the macrophagic RAW 264.7 cell line showed an inhibition of NO by the SGP mixture when cells were stimulated with LPS. Taken together, the results show an important contribution of the sterol glucoside mixture on the anti-inflammatory activity of HEDb. Also, one of the mechanisms for such inhibition seems to be a direct inhibition of NO production in stimulated macrophages.
Collapse
Affiliation(s)
- Karoline Costa Lima
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Antonio Macho
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Ruberlei Godinho de Oliveira
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Lorena Suelen Ribeiro Martelli
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Leila Beatriz Silva Pacheco
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Virgínia Claudia da Silva
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Tereza Auxiliadora Nascimento Ribeiro
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| | - Mário Geraldo de Carvalho
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rodovia 465, km 07, Seropédica, Rio de Janeiro, Brazil
| | - Paulo Teixeira de Sousa
- Departamento de Química, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
18
|
de Oliveira RG, Miyajima F, Castilho GRDC, Damazo AS, Macho A, Martins DTDO. Dilodendron bipinnatum Radlk. ameliorates airway inflammation through multiple targets in a murine model of ovalbumin-induced allergic airway disease. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:17-25. [PMID: 30053531 DOI: 10.1016/j.jep.2018.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dilodendron bipinnatum Radlk., Sapindaceae, a tree of the Mato Grosso Pantanal, is popularly known as "mulher-pobre". The decoction or infusion of its inner stem bark is used for treating inflammatory conditions. AIM OF THE STUDY To determine if a 70% hydroethanolic extract of Dilodendron bipinnatum stem bark (HEDb) is able to reduce allergic airway inflammation in a murine model of ovalbumin (OVA)-induced allergic asthma. MATERIAL AND METHODS The inner stem bark powder was macerated in a 70% hydroethanolic solution (1:3 w/v) to obtain HEDb. The induction of experimental asthma was accomplished as follows: on days 1 and 10, Swiss mice were sensitized by an intraperitoneal injection of OVA (100 µg/mL) and aluminum hydroxide (10 µg/mL). From day 19 to 24, animals (n = 6/per group) were treated (p.o.) twice a day with either vehicle (distilled water), HEDb (20, 100 and 500 mg/kg) or dexamethasone (0.5 mg/kg). Sham group animals were intraperitoneally injected and challenged with saline solution (0.9%) instead of OVA and received distilled water orally instead of HEDb, whereas the other groups were challenged with OVA (3% in saline) by aerosolization. On day 25, bronchoalveolar lavage fluid (BALF) was collected for the quantification of total leukocytes, neutrophils, eosinophils, mononuclear cells and Th2 cytokines (IL-4, IL-5, and IL-13). The lungs were collected for histopathological analysis and blood was assayed to determine serum IgE levels. The anti-inflammatory activity of HEDb was additionally confirmed by a lipoxygenase (LO) inhibitory assay in vitro. RESULTS Compared to the sham group, the OVA group showed significantly greater numbers of total leukocytes, neutrophils, eosinophils, and mononuclear cells, as well as inflammatory cytokines in BALF, and also IgE in the serum. HEDb treated mice showed a significant decrease in inflammatory cell accumulation in BALF, with the maximum response observed at 500 mg/kg. Furthermore, the levels of IL-4, IL-5 and IL-13 in BALF, and of IgE in serum, were also considerably reduced as compared to the OVA group. The histopathological examination of the lungs of mice in the vehicle group showed a significant increase in hemorrhagic damage, mucus, perivascular and peribronchial inflammatory cell infiltrates, as well as mast cell degranulation compared to sham. HEDb (100 and 500 mg/kg) remarkably decreased all these parameters, presenting at the highest dose an anti-inflammatory effect comparable to that of dexamethasone (0.5 mg/kg). HEDb also had notable direct anti-inflammatory properties demonstrated by the inhibition of 15-LO activity in vitro (IC50 = 1.0-5.0 µg/mL). CONCLUSIONS These results somewhat agree on the popular use of the inner stem bark of D. bipinnatum as a treatment for allergic asthma. The HEDb exhibits significant anti-inflammatory activity in the OVA-induced mouse model of allergic asthma, possibly due to the down-regulation of the Th2 responses and LO inhibition, resulting in improvements in all analyzed inflammatory parameters.
Collapse
Affiliation(s)
- Ruberlei Godinho de Oliveira
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Fábio Miyajima
- Grupo de Neurofarmacologia, Centro de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Geovane Roberto de Campos Castilho
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Amílcar Sabino Damazo
- Área de Histologia e Biologia Celular, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Antonio Macho
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
19
|
Sreeja PS, Arunachalam K, Martins DTDO, Lima JCDS, Balogun SO, Pavan E, Saikumar S, Dhivya S, Kasipandi M, Parimelazhagan T. Sphenodesme involucrata var. paniculata (C.B. Clarke) Munir.: Chemical characterization, anti-nociceptive and anti-inflammatory activities of methanol extract of leaves. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:71-80. [PMID: 29960023 DOI: 10.1016/j.jep.2018.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphenodesme involucrata var. paniculata (C. B. Clarke) Munir is native as well as endemic to South India. Its leaves are used in folklore medicine to treat pain and rheumatism. OBJECTIVE This study was aimed to investigate the chemical characterization, anti-nociceptive and mode of action underlying the anti-inflammatory effects of methanol extract of S. involucrata leaves (MESi). METHODS Phytoconstituents of MESi was analyzed using colorimetric and liquid chromatography-mass spectrometry (LC-MS) methods, and the oral acute toxicity was evaluated in mice up to 2000 mg/kg. The anti-nociceptive effect was evaluated in hot plate and writhing tests; whereas the anti-inflammatory effect was investigated using carrageenan, cotton pellet and lipopolysaccharide (LPS)-induced peritonitis models at doses of 100, 200 and 400 mg/kg. Additionally nitric oxide (NO) and inflammatory cytokines levels were also evaluated. RESULTS MESi exhibited the high content of phenolics and flavonoids as well as compounds like austricine, benzylglucosinolate, gossypin, justicidin B and cirsimarin were detected in LC-MS. In the acute toxicity study, oral administration of MESi did not cause any toxic effect and mortality up to 2000 mg/kg body weight in mice. In the anti-nociceptive tests, MESi augmented the latency period at higher dose (400 mg/kg), on the other hand attenuated writhings at the dose of 400 mg/kg by 87.87% (p < 0.001). In the carrageenan induced paw oedema MESi significantly inhibited the oedema formation at dose 400 mg/kg by 32.1%; besides, anti-inflammatory effect was registered in the cotton pellets-induced inflammation model at doses 200 and 400 mg/kg by 27.09% (p < 0.001) and 35.47% (p < 0.001) respectively. On the other hand, MESi appreciably reduced leukocyte, neutrophils infiltration, nitric oxide, TNF-α and IL-1β levels and increased the IL-10 level in the (LPS)-induced peritonitis model. CONCLUSION The results conclude that MESi has no acute toxic effect and it demonstrated potent anti-nociceptive and anti-inflammatory activities. Its anti-nociceptive activities are probably mediated through peripheral and central mechanisms. The anti-inflammatory effect of MESi involved the inhibition of neutrophils migration and the modulation of Th1 and Th2 cytokines, besides the attenuation of production of PGE2 and NO. LC-MS analysis revealed the predominant presence of the austricine, benzylglucosinolate, gossypin, justicidin B and cirsimarin compounds, which are possibly involved in the anti-nociceptive and anti-inflammatory effects of MESi. The current study provided supportive evidence for the folklore use of S. involucrata in the treatment of pain and inflammatory conditions.
Collapse
Affiliation(s)
| | - Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | | | - Joaquim Corsino da Silva Lima
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Sikiru Olaitan Balogun
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Faculdade Noroeste do Mato Grosso, Acadêmia Juinense de Ensino Superior LTDA-ME (AJES), Juína, Mato Grosso, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Sathyanarayanan Saikumar
- Bioprospecting Lab, Department of Botany, Bharathiar University (BU), Coimbatore, Tamil Nadu, India
| | - Sivaraj Dhivya
- Bioprospecting Lab, Department of Botany, Bharathiar University (BU), Coimbatore, Tamil Nadu, India
| | - Muniyandi Kasipandi
- Bioprospecting Lab, Department of Botany, Bharathiar University (BU), Coimbatore, Tamil Nadu, India
| | - Thangaraj Parimelazhagan
- Bioprospecting Lab, Department of Botany, Bharathiar University (BU), Coimbatore, Tamil Nadu, India.
| |
Collapse
|
20
|
Kudumela RG, McGaw LJ, Masoko P. Antibacterial interactions, anti-inflammatory and cytotoxic effects of four medicinal plant species. Altern Ther Health Med 2018; 18:199. [PMID: 29970064 PMCID: PMC6029408 DOI: 10.1186/s12906-018-2264-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Background The constant emergence of antibiotic resistant species and the adverse side effects of synthetic drugs are threatening the efficacy of the drugs that are currently in use. This study was aimed at investigating the possible antibacterial interactions, anti-inflammatory and cytotoxic effects of selected medicinal plants based on their traditional usage. Methods The acetone extracts of four plant species were assessed independently and in combination for antibacterial activity using microdilution assay and the sum of the fractional inhibitory concentration (FIC) was calculated. The ability of Dombeya rotundifolia and Schkuhria pinnata extracts to inhibit the production of reactive oxygen species (ROS) in LPS induced RAW 264.7 macrophage cells was evaluated using Dichloro-dihydro-fluorescein diacetate (H2DCF-DA) assay to determine anti-inflammatory potential and the toxicity on African green monkey kidney (Vero) cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Results The antibacterial efficacies of the different combinations of Schkuhria pinnata (A), Commelina africana (B), Dombeya rotundifolia (C) and Elephantorrhiza elephantina (D) plants varied from combination to combination. Synergistic effects were only exhibited against P. aeruginosa, while the antagonistic effects were only observed against E. coli. Both S. pinnata and D. rotundifolia demonstrated anti-inflammatory potential by inhibiting the production of ROS in a dose dependant manner. The cytotoxicity of the plants (LC50 values) ranged from < 25.0 to 466.1 μg/mL. S pinnata extract was the most toxic with the lowest LC50 value of < 25.0 μg/mL. Conclusions The synergistic interaction observed indicates that combinational therapy may improve biological activity. This report highlights the anti-inflammatory potential of S. pinnata and D. rotundifolia; which could be exploited in the search for anti-inflammatory agents. However, the cytotoxicity of S. pinnata highlights the importance of using this plant with caution.
Collapse
|
21
|
Huang S, Meng N, Chang B, Quan X, Yuan R, Li B. Anti-Inflammatory Activity of Epimedium brevicornu Maxim Ethanol Extract. J Med Food 2018; 21:726-733. [DOI: 10.1089/jmf.2017.4088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shan Huang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Ning Meng
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Bingquan Chang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Xianghua Quan
- Department of Medicament, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - RuiYing Yuan
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Bin Li
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| |
Collapse
|
22
|
Almeida CMD, Lima RDF, Costa TKVLD, Sousa IMDO, Cabral EC, Basting RT, Torre AD, Cavalcanti YW, Rosalen PL, Duarte MCT, Ruiz ALTG, Foglio MA, Godoy GP, Costa EMMDB. Antifungal, antibiofilm, and antiproliferative activities of Guapira graciliflora Mart. Braz Oral Res 2018; 32:e41. [DOI: 10.1590/1807-3107bor-2018.vol32.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/05/2018] [Indexed: 11/21/2022] Open
|
23
|
de Oliveira RG, de Campos Castilho GR, da Cunha AL, Miyajima F, de Oliveira Martins DT. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-κB pathways and COX-2 in LPS-activated RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:127-137. [PMID: 28238828 DOI: 10.1016/j.jep.2017.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The stem bark of Dilodendron bipinnatum Radlk. (Sapindaceae), a tree native to Pantanal of Mato Grosso, Brazil, popularly known as "mulher-pobre" (poor woman), has been historically used by the locals, after decoction and maceration, for the treatment of inflammatory conditions. We have recently shown that these preparations indeed possess anti-inflammatory properties, which are mediated by the inhibition of cell migration and the modulation of Th1 and Th2 cytokines. The NO pathway was not affected. AIM OF THE PRESENT STUDY The aim of the present study was to further investigate the mechanisms responsible for the anti-inflammatory properties of the hydroethanolic extract of the stem bark of Dilodendron bipinnatum (HEDb). MATERIALS AND METHODS HEDb was obtained by maceration of the stem bark of D. bipinnatum as previously described. The corresponding effects on a macrophage-like cell line, RAW 264.7, were investigated. The apoptosis of RAW 264.7 upon treatment with LPS, HEDb and N-acetyl-L-cysteine (NAC) was assessed by flow cytometry, using an Annexin V-PE kit. The production of inflammatory cytokines (TNF-α, IL-1β and IL-10) and PGE2 were evaluated by ELISA, after cell challenge with LPS. The intracellular redox state and changes in mitochondrial membrane potential were also assessed by flow cytometry, using DCFH-DA and JC-1 as probes. The protein expression levels of MAPK p-p38, p-ERK, p-JNK, MKP-1 and COX-2 were analysed by western blotting. Nuclear translocation of NF-қB was assessed by immunofluorescence microscopy. The quantified results are presented as a nuclear:cytoplasmic ratio. RESULTS LPS, HEDb and NAC did not appear to decrease the number of viable cells in comparison to control treatment. HEDb attenuated the production of pro-inflammatory cytokines (IL-1β and TNF-α) and PGE2 induced by LPS but did not affect IL-10. The production of ROS was also inhibited by HEDb (1, 5 or 20µg/mL), even at the lowest concentration; at 20µg/mL, HEDb was more effective than NAC, which was used as a positive control (74.1% and 66.2% inhibition of LPS's effect, respectively). LPS induced an increase in ΔΨm (19.2%, p<0.001), while HEDb inhibited the change in ΔΨm (7.7% at 20µg/mL, p<0.001). The results of western blotting showed that HEDb inhibited the expression of MAPK p-p38, p-JNK and COX-2, while the expression of MKP-1 was increased. p-ERK was not affected. LPS promoted the nuclear translocation of NF-қB p65 (67%, p<0.01) in RAW 264.7 cells, in comparison to baseline (33%). Pre-treatment with HEDb inhibited this translocation of NF-κB p65 (58% at 20µg/mL, p<0.001). CONCLUSION HEDb has a potent anti-inflammatory activity and acts on multiple targets and biological pathways of potential therapeutic relevance.
Collapse
Affiliation(s)
- Ruberlei Godinho de Oliveira
- Department of Basic Health Sciences, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Coxipó, Cuiabá, Mato Grosso 78060-900, Brazil; Faculdade de Farmácia, Universidade de Cuiabá, Avenida Beira Rio, no. 3100, CEP: 78025-190, Cuiabá, MT, Brazil
| | - Geovane Roberto de Campos Castilho
- Department of Basic Health Sciences, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Coxipó, Cuiabá, Mato Grosso 78060-900, Brazil
| | - André Luiz da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Unifesp, São Paulo, SP 04044-020, Brazil
| | - Fábio Miyajima
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GL, UK; Group of Neuropharmacology, Drug Research and Development Center, Federal University of Ceara (NPDM-UFC), Fortaleza, CE, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Department of Basic Health Sciences, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Av. Fernando Correa da Costa, no. 2367, Coxipó, Cuiabá, Mato Grosso 78060-900, Brazil.
| |
Collapse
|
24
|
Yang H, Cheng X, Yang YL, Wang YH, Du GH. Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural Regen Res 2017; 12:1860-1864. [PMID: 29239332 PMCID: PMC5745840 DOI: 10.4103/1673-5374.219048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neuroinflammation in BV2 microglial cells and the underlying mechanisms involved. BV2 cells were incubated with normal medium (control group), LPS, LPS plus 30 μg/mL RC extract, or LPS plus 100 μg/mL RC extract. The BV2 cell morphology was observed under an optical microscope and cell viability was detected by MTT assay. Nitric oxide level in BV2 cells was detected using Griess regents, and the levels of interleukin-6, interleukin-1β, and tumor necrosis factor α in BV2 cells were determined by ELISA. The expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 proteins were detected by western blot assay. Compared with the LPS group, both 30 and 100 μg/mL RC extract had no significant effect on the viability of BV2 cells. The levels of nitric oxide, interleukin-6, interleukin-1β and tumor necrosis factor α in BV2 cells were all significantly increased after LPS induction, and the levels were significantly reversed after treatment with 30 and 100 μg/mL RC extract. Furthermore, RC extract significantly inhibited the protein expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 in LPS-induced BV2 cells. Our findings suggest that RC extract alleviates neuroinflammation by downregulating the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Huan Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Cheng
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying-Lin Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Role of Antioxidants and Natural Products in Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5276130. [PMID: 27803762 PMCID: PMC5075620 DOI: 10.1155/2016/5276130] [Citation(s) in RCA: 561] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
Abstract
Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
Collapse
|
26
|
Anti-inflammatory activity of bartogenic acid containing fraction of fruits of Barringtonia racemosa Roxb. in acute and chronic animal models of inflammation. J Tradit Complement Med 2016; 7:86-93. [PMID: 28053892 PMCID: PMC5198830 DOI: 10.1016/j.jtcme.2016.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/04/2016] [Accepted: 02/02/2016] [Indexed: 12/17/2022] Open
Abstract
The fruits of Barringtonia racemosa are traditionally used in Indian medicine for the treatment of pain and inflammatory conditions. In this study, a fraction of ethyl acetate extract of fruits of B. racemosa (BREAF) was investigated for anti-inflammatory activity in experimental models of acute and chronic inflammation. Activity against acute inflammation was evaluated in inflammogens induced rat paw edema models. Whereas, effect in chronic inflammation was evaluated in cotton pellet granuloma and oxazolone induced delayed type hypersensitivity (DTH) model in mice. The BREAF exhibited dose dependent anti-inflammatory activity in both acute and chronic models at oral doses of 5, 10 and 20 mg/kg. BREAF inhibited both phases of carrageenan induced rat paw inflammation. The reduction in paw inflammation by BREAF was also evident in histamine and serotonin induced inflammation in rats. Effect of BREAF on DTH indicates inhibition of immune mediated inflammation. The reduction in cotton pellet granuloma by BREAF treatment shows inhibition of proliferative changes associated with chronic inflammation. Analysis of BREAF after chromatographic separations showed presence of bartogenic acid as a major constituent. Hence, it is proposed that anti-inflammatory effects of BREAF can be partially attributed to its bartogenic acid content. The minute doses at which this fraction shows anti-inflammatory effects emphasizes the need for further investigations on its efficacy in the immuno-inflammatory conditions.
Collapse
|
27
|
Shen AZ, Li X, Hu W, Chen FH. Total flavonoids of Bidens bipinnata L. ameliorate experimental adjuvant-induced arthritis through induction of synovial apoptosis. Altern Ther Health Med 2015; 15:437. [PMID: 26669668 PMCID: PMC4681046 DOI: 10.1186/s12906-015-0962-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Bidens bipinnata are widely distributed in China, which have been widely used as a traditional Chinese medicine. The aim of this study was to examine the effect of total flavonoids of Bidens pilosa L. (TFB) on adjuvant arthritis (AA) and its possible mechanisms. METHODS The macroscopic scoring of paw edema, secondary paw swelling, and polyarthritis index were measured. Histological examination of the joints and the serum concentrations of IL-6, IL-1beta, and TNF-alpha were examined. Apoptosis in synovial tissue was detected. The expression of Caspase 3 cleavage, serves as a marker undergoing apoptosis, was confirmed by Western blot. RESULTS TFB attenuated the severity of arthritis on paw edema, hind paw volume, and polyarthritis index of AA rats, improved the histological status in AA rats as well. TFB can inhibit the production of IL-6, IL-1beta, and TNF-alpha from serum. Clear DNA ladder formation was observed in DNA extraction of synovium from TFB treated AA rats. The number of apoptosis was increased with TFB treatment in TUNEL assay. TFB treatment on AA rats significantly increased the expression of Caspase 3 in synovium. CONCLUSIONS Our data suggest that TFB has a significant anti-arthritic effect in AA through the induction of apoptosis in synovial.
Collapse
|
28
|
Etanercept administration prevents the inflammatory response induced by carrageenan in the murine air pouch model. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1247-57. [DOI: 10.1007/s00210-015-1162-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
|