1
|
Zhang Z, Zong M, Liu J, Ren J, Liu X, Zhang R, Cui J, Sun L, Song H, Zhang Y, Li B, Wu X. Biosafety evaluation of BaSi 2O 2N 2:Eu 2+/PDMS composite elastomers. Front Bioeng Biotechnol 2023; 11:1226065. [PMID: 37485317 PMCID: PMC10360121 DOI: 10.3389/fbioe.2023.1226065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, mechanoluminescent (ML) materials have shown great potential in stress sensing, mechanical energy collection and conversion, so they have attracted wide attention in the field of stomatology. In the early stage of this study, BaSi2O2N2:Eu2+ ML phosphors were synthesized by two-step high temperature solid state method, and then mixed with Polydimethylsiloxane (PDMS) in different proportions to obtain BaSi2O2N2:Eu2+/PDMS ML composites with different mass fractions (10%,20%,30%,40%,50%). Then its biosafety was evaluated by Cell Counting Kit-8 (CCK-8), Calcein-AM/PI fluorescence staining, hemolysis, oral mucosal irritation, acute and subacute systemic toxicity tests. The experimental results show that the biosafety of BaSi2O2N2:Eu2+/PDMS ML composite elastomers with different mass fraction is in line with the existing standards, and other related properties can be further studied.
Collapse
Affiliation(s)
- Zheyuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Mingrui Zong
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Jinrong Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Jianing Ren
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Xiaoming Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Ran Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Jiayu Cui
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Lingxiang Sun
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Hao Song
- Research Institute of Photonics, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yanjie Zhang
- Research Institute of Photonics, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Qu B, Liu X, Liang Y, Zheng K, Zhang C, Lu L. Salidroside in the Treatment of NAFLD/NASH. Chem Biodivers 2022; 19:e202200401. [PMID: 36210339 DOI: 10.1002/cbdv.202200401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Xuemao Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Yanjiao Liang
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Keke Zheng
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chunling Zhang
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| |
Collapse
|
3
|
Zhao CC, Wu XY, Yi H, Chen R, Fan G. The Therapeutic Effects and Mechanisms of Salidroside on Cardiovascular and Metabolic Diseases: An Updated Review. Chem Biodivers 2021; 18:e2100033. [PMID: 33991395 DOI: 10.1002/cbdv.202100033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
The increasing incidence of metabolic and cardiovascular diseases has severely affected global human health and life safety. In recent years, some effective drugs with remarkable curative effects and few side effects found in natural compounds have attracted attention. Salidroside (SAL), a phenylpropane glycoside, is the main active ingredient of the plateau plant Rhodiola. So far, many animal experiments proved that SAL has good biological activity against some metabolic and cardiovascular diseases. However, most of these reports are scattered. This review systematically summarizes the pharmacological progress of SAL in the treatment of several metabolic (e. g., diabetes and non-alcoholic fatty liver disease) and cardiovascular (e. g., atherosclerosis) diseases in a timely manner to promote the clinical application and basic research of SAL. Accumulating evidence proves that SAL has beneficial effects on these diseases. It can improve glucose tolerance, insulin sensitivity, and β-cell and liver functions, and inhibit adipogenesis, inflammation and oxidative stress. Overall, SAL may be a valuable and potential drug candidate for the treatment of metabolic and cardiovascular diseases. However, more studies especially clinical trials are needed to further confirm its therapeutic effects and molecular mechanisms.
Collapse
Affiliation(s)
- Cheng-Cheng Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xin-Yue Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Rong Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| |
Collapse
|
4
|
Kumar V, Bharate SS, Bhurta D, Gupta M, Gandhi SG, Singh D, Jaglan S, Kumar A, Vishwakarma RA, Bharate SB. Evaluation of rohitukine-enriched fraction of Dysoxylum binectariferum Hook.f. (leaves) as anti-arthritic phytopharmaceutical candidate: Chemical standardization, in-vivo validation, formulation development and oral pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112758. [PMID: 32165175 DOI: 10.1016/j.jep.2020.112758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/02/2019] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis is a chronic inflammatory disease of joints. Dysoxylum binectariferum Hook.f (Family: Meliaceae) is a Indian medicinal plant which is traditionally being used to heal inflammation of joints. AIM OF THE STUDY This work was aimed to carry out chemical standardization, in-vitro/in-vivo validation, oral pharmacokinetics and formulation development of anti-arthritic botanical lead, the rohitukine-enriched fraction of D. binectariferum. MATERIALS AND METHODS The rohitukine-enriched fraction of D. binectariferum was standardized using four chemical markers and was checked for microbial load, heavy metal content, aflatoxins and pesticides. Its in-vitro inhibitory effect on the lipopolysaccharide (LPS) induced production of pro-inflammatory cytokines TNF-α and IL-6 was studied in THP-1 cells. The in-vivo anti-arthritic activity was investigated in collagen-induced arthritis model in DBA/1J mice. The sustained release capsule formulation was developed and characterized for physicochemical and pharmacokinetic properties. RESULTS Rohitukine and schumaniofioside A were found to be major chemical constituents of the botanical lead. The rohitukine-enriched fraction of D. binectariferum significantly reduced the production of both pro-inflammatory cytokines TNF-α and IL-6 (>50% inhibition at 3.12 μg/mL) in THP-1 cells. In LPS-treated wild-type mice model, the rohitukine-enriched fraction at 200 mg/kg (PO, QD) completely reduced serum TNF-α levels. In transgenic mice model (collagen-induced arthritis in DBA/1J mice), rohitukine-enriched fraction at 100 mg/kg (PO, QD) dose has resulted in >75% reduction of TNF-α/IL-6 serum levels, 68% reduction in anti-mouse type II collagen IgG1 antibody levels, decreased joint proteoglycan loss and reduced paw edema in DBA/1J mice. The sustained release capsule formulation of rohitukine-enriched fraction showed sustained-release of rohitukine over the period of 24 h, and resulted in an improved plasma-exposure of rohitukine in SD rats. CONCLUSIONS The data presented herein demonstrated anti-arthritic potential of rohitukine-enriched fraction of D. binectariferum and this study will serve as the benchmark for further research on this botanical lead and developed sustained release capsule formulation.
Collapse
Affiliation(s)
- Vikas Kumar
- Preformulation Laboratory, PK-PD Toxicology & Formulation Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| | - Sonali S Bharate
- Preformulation Laboratory, PK-PD Toxicology & Formulation Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| | - Deendyal Bhurta
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| | - Mehak Gupta
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; PK-PD Toxicology and Formulation Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| | - Sumit G Gandhi
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| | - Deepika Singh
- Quality Control and Quality Assurance Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| | - Sundeep Jaglan
- Quality Control and Quality Assurance Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India; Microbial Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| | - Ajay Kumar
- PK-PD Toxicology and Formulation Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| | - Ram A Vishwakarma
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| | - Sandip B Bharate
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001, India.
| |
Collapse
|
5
|
Khursheed R, Singh SK, Wadhwa S, Kapoor B, Gulati M, Kumar R, Ramanunny AK, Awasthi A, Dua K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 2019; 862:172625. [DOI: 10.1016/j.ejphar.2019.172625] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
6
|
Kotha RR, Luthria DL. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019; 24:molecules24162930. [PMID: 31412624 PMCID: PMC6720683 DOI: 10.3390/molecules24162930] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Turmeric is a curry spice that originated from India, which has attracted great interest in recent decades because it contains bioactive curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione), a lipophilic polyphenol may work as an anticancer, antibiotic, anti-inflammatory, and anti-aging agent as suggested by several in vitro, in vivo studies and clinical trials. However, poor aqueous solubility, bioavailability, and pharmacokinetic profiles limit curcumin’s therapeutic usage. To address these issues, several curcumin formulations have been developed. However, suboptimal sample preparation and analysis methodologies often hamper the accurate evaluation of bioactivities and their clinical efficacy. This review summarizes recent research on biological, pharmaceutical, and analytical aspects of the curcumin. Various formulation techniques and corresponding clinical trials and in vivo outcomes are discussed. A detailed comparison of different sample preparation (ultrasonic, pressurized liquid extraction, microwave, reflux) and analytical (FT-IR, FT-NIR, FT-Raman, UV, NMR, HPTLC, HPLC, and LC-MS/MS) methodologies used for the extraction and quantification of curcuminoids in different matrices, is presented. Application of optimal sample preparation, chromatographic separation, and detection methodologies will significantly improve the assessment of different formulations and biological activities of curcuminoids.
Collapse
Affiliation(s)
| | - Devanand L Luthria
- USDA-ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
7
|
Bharate SB, Kumar V, Bharate SS, Singh B, Singh G, Singh A, Gupta M, Singh D, Kumar A, Singh S, Vishwakarma RA. Discovery and preclinical development of IIIM-160, a Bergenia ciliata-based anti-inflammatory and anti-arthritic botanical drug candidate. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:192-204. [DOI: 10.1016/j.joim.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/02/2018] [Indexed: 01/17/2023]
|
8
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
9
|
D'Aronco S, Crotti S, Agostini M, Traldi P, Chilelli NC, Lapolla A. The role of mass spectrometry in studies of glycation processes and diabetes management. MASS SPECTROMETRY REVIEWS 2019; 38:112-146. [PMID: 30423209 DOI: 10.1002/mas.21576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
In the last decade, mass spectrometry has been widely employed in the study of diabetes. This was mainly due to the development of new, highly sensitive, and specific methods representing powerful tools to go deep into the biochemical and pathogenetic processes typical of the disease. The aim of this review is to give a panorama of the scientifically valid results obtained in this contest. The recent studies on glycation processes, in particular those devoted to the mechanism of production and to the reactivity of advanced glycation end products (AGEs, AGE peptides, glyoxal, methylglyoxal, dicarbonyl compounds) allowed to obtain a different view on short and long term complications of diabetes. These results have been employed in the research of effective markers and mass spectrometry represented a precious tool allowing the monitoring of diabetic nephropathy, cardiovascular complications, and gestational diabetes. The same approaches have been employed to monitor the non-insulinic diabetes pharmacological treatments, as well as in the discovery and characterization of antidiabetic agents from natural products. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 38:112-146, 2019.
Collapse
Affiliation(s)
- Sara D'Aronco
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sara Crotti
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Pietro Traldi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | | | | |
Collapse
|
10
|
Bharate S, Kumar V, Singh G, Singh A, Gupta M, Singh D, Kumar A, Vishwakarma RA, Bharate SB. Preclinical Development of Crocus sativus-Based Botanical Lead IIIM-141 for Alzheimer's Disease: Chemical Standardization, Efficacy, Formulation Development, Pharmacokinetics, and Safety Pharmacology. ACS OMEGA 2018; 3:9572-9585. [PMID: 31459089 PMCID: PMC6644748 DOI: 10.1021/acsomega.8b00841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/03/2018] [Indexed: 05/03/2023]
Abstract
Crocus sativus L. (family: Iridaceae) has been documented in traditional medicine with numerous medicinal properties. Recently, we have shown that C. sativus extract (IIIM-141) displays promising efficacy in a genetic mice (5XFAD) model of Alzheimer's disease (AD) (ACS Chem. Neurosci. 2017, 16, 1756). To translate the available traditional knowledge and the scientifically validated results into modern medicine, herein we aimed to carry out its preclinical development. IIIM-141 is primarily a mixture of crocins containing trans-4-GG-crocin (36 % w/w) as the principal component. The in vitro studies show that IIIM-141 has protective as well as therapeutic properties in assays related to AD. It induces the expression of P-gp, thereby enhancing the amyloid-β clearance from an AD brain. It also inhibits NLRP3 inflammasome and protects SH-SY5Y cells against amyloid-β- and glutamate-induced neurotoxicities. In behavioral models, it decreased the streptozotocin-induced memory impairment in rats and recovered the scopolamine-induced memory deficit in Swiss albino mice at 100 mg/kg dose. The acute oral toxicity study shows that IIIM-141 is safe up to the dose of 2000 mg/kg, with no effect on the body weight and on the biochemical/hematological parameters of the rats. The repeated oral administration of IIIM-141 for 28 days at 100 mg/kg dose did not cause any preterminal deaths and abnormalities in Wistar rats. The pharmacokinetic analysis indicated that after oral administration of IIIM-141, the majority of crocin gets hydrolyzed to its aglycone crocetin. The sustained release (SR) capsule formulation was developed, which showed an improved in vitro dissolution profile and a significantly enhanced plasma exposure in the pharmacokinetic study. The SR formulation resulted in 3.3-fold enhancement in the area under the curve of crocetin and doubling of the crocetin/crocin ratio in plasma compared with the extract. The data presented herein will serve as the benchmark for further research on this botanical candidate.
Collapse
Affiliation(s)
- Sonali
S. Bharate
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Vikas Kumar
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Gurdarshan Singh
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Amarinder Singh
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Mehak Gupta
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Deepika Singh
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ram A. Vishwakarma
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
- E-mail: . Phone: +91 191 2569111. Fax: +91 191 2569333 (R.A.V.)
| | - Sandip B. Bharate
- Preformulaion
Laboratory, PK-PD Toxicology and Formulation Division, Academy of Scientific
& Innovative Research, PK-PD Toxicology and Formulation Division, QC-QA Division, and Medicinal Chemistry
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
- E-mail: . Phone: +91 191 2569006. Fax: +91 191 2569333 (S.B.B.)
| |
Collapse
|