1
|
Mambou HMAY, Pale S, Bopda OSM, Jugha VT, Musa NSO, Ojongnkpot TA, Wanyu BY, Bila RB, Herqash RN, Shahat AA, Taiwe GS. Mimosa pudica L. aqueous extract protects mice against pilocarpine-picrotoxin kindling-induced temporal lobe epilepsy, oxidative stress, and alteration in GABAergic/cholinergic pathways and BDNF expression. Front Pharmacol 2025; 15:1301002. [PMID: 39996118 PMCID: PMC11848678 DOI: 10.3389/fphar.2024.1301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2024] [Indexed: 02/26/2025] Open
Abstract
Ethnopharmacological studies revealed that the leaves and stems of Mimosa pudica L. (Fabaceae) are widely used for the treatment of epilepsy. This study sought to investigate the effects of the aqueous extract of Mimosa pudica leaves and stems against pilocarpine-picrotoxin kindling-induced temporal lobe epilepsy in mice and its implication on oxidative/nitrosative stress, GABAergic/cholinergic signalling, and brain-derived neurotrophic factor (BDNF) expression. The animals were treated for seven consecutive days as follows: one normal group and one negative control group that received orally distilled water; four test groups that received orally four doses of Mimosa pudica (20, 40, 80, and 160 mg/kg), respectively; and one positive control group that received 300 mg/kg sodium valproate intraperitoneally. One hour after the first treatment (first day), status epilepticus was induced by intraperitoneal injection of a single dose of pilocarpine (360 mg/kg). Then, 23 hours after the injection of pilocarpine to the mice, once again, they received their different treatments. Sixty minutes later, they were injected with a sub-convulsive dose of picrotoxin (1 mg/kg), and the anticonvulsant property of the extract was determined. On day 7, open-field, rotarod, and catalepsy tests were performed. Finally, the mice were sacrificed, and the hippocampi were isolated to quantify some biochemical markers of oxidative/nitrosative stress, GABAergic/cholinergic signalling, and BDNF levels in the hippocampus. Mimosa pudica extracts (160 mg/kg) significantly increased the latency time to status epilepticus by 70.91%. It significantly decreased the number of clonic and tonic seizures to 9.33 ± 1.03 and 5.00 ± 0.89, and their duration to 11.50 ± 2.07 and 6.83 ± 0.75 s, respectively. Exploratory behaviour, motor coordination, and catalepsy were significantly ameliorated, respectively, in the open-field, rotarod, and catalepsy tests. Pilocarpine-picrotoxin-induced alteration of oxidant-antioxidant balance, GABA-transaminase stability, acetylcholinesterase/butyrylcholinesterase activity, and neurogenesis were attenuated by the extract (80-160 mg/kg). This study showed that the aqueous extract of Mimosa pudica leaves and stems ameliorated epileptogenesis of temporal lobe epilepsy and could be used for the treatment of temporal lobe epilepsy.
Collapse
Affiliation(s)
| | - Simon Pale
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Vanessa Tita Jugha
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | - Nji Seraphin Ombel Musa
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | - Tambong Ako Ojongnkpot
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | - Bertrand Yuwong Wanyu
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | - Raymond Bess Bila
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea, Cameroon
| |
Collapse
|
2
|
Paiva MJM, Nascimento GNL, Damasceno IAM, Santos TT, Silveira D. Pharmacological and toxicological effects of Amaryllidaceae. BRAZ J BIOL 2023; 83:e277092. [PMID: 38126586 DOI: 10.1590/1519-6984.277092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023] Open
Abstract
The Amaryllidaceae family is widely distributed in the tropics, presenting biological activity attributed mostly to alkaloids, such as an important inhibitory activity of acetylcholinesterase (AChE), antifungal, antibacterial, and cytotoxic activities. The present study aims to review the spectrum of action of the main biological activities and toxicity of secondary metabolites found in Amaryllidaceae through a literature review, using Prisma and the descriptors "Pharmacological effects of Amaryllidaceae" and "Amaryllidaceae family" and "Pharmacological actions of Amaryllidaceae", used in English and Portuguese. The literature search was done in March and May 2023. Original works published from 2012 to 2023, available in full, and presenting experimental and clinical studies were included. After the selection considering the inclusion and exclusion criteria, 60 articles fulfilled the defined criteria. From a pharmacological point of view, the highlight is due to the alkaloid galantamine, which has the potential- and is already used - for treating Alzheimer's. The toxicological aspect must be considered and evaluated carefully, as alkaloids have been associated with adverse effects such as nausea, vomiting, diarrhea, abdominal pain, and cardiovascular, neurological, and respiratory changes. Furthermore, some studies indicate that consuming these plants in significant quantities can lead to hepatic and renal toxicity. Therefore, the therapeutical use of this family's plant drugs and derivatives requires further studies to elucidate its effects and point out metabolites with therapeutic potential.
Collapse
Affiliation(s)
- M J M Paiva
- Universidade de Brasília - UnB, Faculdade de Ciências da Saúde, Laboratório de Produtos Naturais, Brasília, DF, Brasil
| | - G N L Nascimento
- Universidade Federal do Tocantins - UFT, Laboratório de Ciências Básicas e da Saúde, Palmas, TO, Brasil
| | - I A M Damasceno
- Universidade de Brasília - UnB, Faculdade de Ciências da Saúde, Laboratório de Produtos Naturais, Brasília, DF, Brasil
| | - T T Santos
- Universidade Federal do Oeste da Bahia - UFOB, Centro Multidisciplinar de Luís Eduardo Magalhães, Curso de Bacharelado em Engenharia de Biotecnologia, Luís Eduardo Magalhães, BA, Brasil
| | - D Silveira
- Universidade de Brasília - UnB, Faculdade de Ciências da Saúde, Laboratório de Produtos Naturais, Brasília, DF, Brasil
| |
Collapse
|
3
|
Knap B, Nieoczym D, Kundap U, Kusio-Targonska K, Kukula-Koch W, Turski WA, Gawel K. Zebrafish as a robust preclinical platform for screening plant-derived drugs with anticonvulsant properties-a review. Front Mol Neurosci 2023; 16:1221665. [PMID: 37701853 PMCID: PMC10493295 DOI: 10.3389/fnmol.2023.1221665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish ("from tank to bedside and back again").
Collapse
Affiliation(s)
- Bartosz Knap
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Uday Kundap
- Canada East Spine Center, Saint John Regional Hospital, Horizon Health Center, Saint John, NB, Canada
| | - Kamila Kusio-Targonska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Samia P, Hassell J, Hudson J, Ahmed A, Shah J, Hammond C, Kija E, Auvin S, Wilmshurst J. Epilepsy research in Africa: A scoping review by the ILAE Pediatric Commission Research Advocacy Task Force. Epilepsia 2022; 63:2225-2241. [PMID: 35729725 DOI: 10.1111/epi.17321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Despite the high prevalence of epilepsy in Africa, evaluation of epilepsy research trends on the continent is lacking. Without establishing effective research, improvement in care for people with epilepsy cannot be effectively strategized or targeted. METHODS A scoping review of the peer-reviewed literature on epilepsy from Africa (1989-2019) was conducted. The aim was to understand from this what areas are well researched versus underresearched based on published epilepsy topics. RESULTS A total of 1227 publications were identified and assessed. A significant increase in publications occurred over the 30 years assessed. African author leadership was evident in most reports. Nine countries had >50 publications identified; the remaining 45 countries had <50 or no publications. Research studies were typically of lower quality (case series and observational studies). Research themes were more focused on clinical epilepsy (descriptive observational studies) and social aspects (qualitative surveys). However, there were a number of unique and strong themes, specifically for neurocysticercosis and nodding syndrome, where strong research collaborations were evident, basic science understandings were explored, and interventional models were established. SIGNIFICANCE Despite Africa being the continent with the most countries, it is lacking in the quantity, quality, and for some areas, relevance of research on epilepsy. Targeted approaches are needed to upskill the strength of research undertaken with more basic science, interventional, and randomized controlled studies. Themes of research need to promote those with unique African content but also to align with current international research areas that have impact on care delivery, such as epilepsy surgery and epilepsy genetics. For this to be possible, it is important to strengthen research hubs with collaborations that empower Africa to own its epilepsy research journey.
Collapse
Affiliation(s)
- Pauline Samia
- Department of Paediatrics and Child Health, Medical College, Aga Khan University, Nairobi, Kenya
- Brain and Mind institute, Aga Khan University, Nairobi, Kenya
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Jane Hassell
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
- Gertrude's Garden Children's Hospital, Nairobi, Kenya
| | - Jessica Hudson
- Department of Paediatrics, Oxford University Hospitals, Oxford, UK
| | - Azim Ahmed
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jasmit Shah
- Brain and Mind institute, Aga Khan University, Nairobi, Kenya
- Department of Internal Medicine, Aga Khan University, Nairobi, Kenya
| | - Charles Hammond
- Department of Child Health, Komfo Anokye Teaching Hospital, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edward Kija
- Department of Paediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Stéphane Auvin
- Department of Pediatric Neurology, Public Hospital Network of Paris, Robert Debré Hospital, Neuro Diderot, National Institute of Health and Medical Research, University of Paris, Paris, France
- University Institute of France, Paris, France
| | - Jo Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Vicente-Silva W, Silva-Freitas FR, Beserra-Filho JIA, Cardoso GN, Silva-Martins S, Sarno TA, Silva SP, Soares-Silva B, Dos Santos JR, da Silva RH, Prado CM, Ueno AK, Lago JHG, Ribeiro AM. Sakuranetin exerts anticonvulsant effect in bicuculline-induced seizures. Fundam Clin Pharmacol 2022; 36:663-673. [PMID: 35156229 DOI: 10.1111/fcp.12768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by an abnormal, spontaneous, and synchronized neuronal hyperactivity. Therapeutic approaches for controlling epileptic seizures are associated with pharmacoresistance and side effects burden. Previous studies reported that different natural products may have neuroprotector effects. Sakuranetin (SAK) is a flavanone with antiparasitic, anti-inflammatory, antimutagenic, antiallergic, and antioxidant activity. In the present work, the effect of SAK on seizures in a model of status epilepticus induced by bicuculline (BIC) in mice was evaluated. Male Swiss mice received an intracerebroventricular injection (i.c.v.) of SAK (1, 10, or 20 mg/kg-SAK1, SAK10, or SAK20). Firstly, animals were evaluated in the open field (OF; 20 min), afterwards in the elevated plus maze (EPM) test (5 min). Next, 30 min prior the administration of BIC (1 mg/kg), mice received an injection of SAK (1 or 10 mg/kg, i.c.v.) and were observed in the OF (20 min) for seizures assessment. After behavioral procedures, immunohistochemical analysis of c-Fos was performed. Our main results showed that the lowest doses of SAK (1 and 10 mg/kg) increased the total distance traveled in the OF, moreover protected against seizures and death on the BIC-induced seizures model. Furthermore, SAK treatment reduced neuronal activity on the dentate gyrus of the BIC-treated animals. Taken together, our results suggest an anticonvulsant effect of SAK, which could be used for the development of anticonvulsants based on natural products from herbal source.
Collapse
Affiliation(s)
- Wilson Vicente-Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | | | | | - Suellen Silva-Martins
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Tamires Alves Sarno
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Sara Pereira Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Beatriz Soares-Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | - Regina Helena da Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Anderson Keity Ueno
- Department of Biosciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | | |
Collapse
|
6
|
The Phytochemistry and Pharmacology of Tulbaghia, Allium, Crinum and Cyrtanthus: ‘Talented’ Taxa from the Amaryllidaceae. Molecules 2022; 27:molecules27144475. [PMID: 35889346 PMCID: PMC9316996 DOI: 10.3390/molecules27144475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amaryllidaceae is a significant source of bioactive phytochemicals with a strong propensity to develop new drugs. The genera Allium, Tulbaghia, Cyrtanthus and Crinum biosynthesize novel alkaloids and other phytochemicals with traditional and pharmacological uses. Amaryllidaceae biomolecules exhibit multiple pharmacological activities such as antioxidant, antimicrobial, and immunomodulatory effects. Traditionally, natural products from Amaryllidaceae are utilized to treat non-communicable and infectious human diseases. Galanthamine, a drug from this family, is clinically relevant in treating the neurocognitive disorder, Alzheimer’s disease, which underscores the importance of the Amaryllidaceae alkaloids. Although Amaryllidaceae provide a plethora of biologically active compounds, there is tardiness in their development into clinically pliable medicines. Other genera, including Cyrtanthus and Tulbaghia, have received little attention as potential sources of promising drug candidates. Given the reciprocal relationship of the increasing burden of human diseases and limited availability of medicinal therapies, more rapid drug discovery and development are desirable. To expedite clinically relevant drug development, we present here evidence on bioactive compounds from the genera Allium, Tulgbaghia, Cyrtanthus and Crinum and describe their traditional and pharmacological applications.
Collapse
|
7
|
de Oliveira FR, da Silva NM, Hamoy M, Crespo-López ME, Ferreira IM, da Silva EO, de Matos Macchi B, do Nascimento JLM. The GABAergic System and Endocannabinoids in Epilepsy and Seizures: What Can We Expect from Plant Oils? Molecules 2022; 27:3595. [PMID: 35684543 PMCID: PMC9182121 DOI: 10.3390/molecules27113595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Seizures and epilepsy are some of the most common serious neurological disorders, with approximately 80% of patients living in developing/underdeveloped countries. However, about one in three patients do not respond to currently available pharmacological treatments, indicating the need for research into new anticonvulsant drugs (ACDs). The GABAergic system is the main inhibitory system of the brain and has a central role in seizures and the screening of new ACD candidates. It has been demonstrated that the action of agents on endocannabinoid receptors modulates the balance between excitatory and inhibitory neurotransmitters; however, studies on the anticonvulsant properties of endocannabinoids from plant oils are relatively scarce. The Amazon region is an important source of plant oils that can be used for the synthesis of new fatty acid amides, which are compounds analogous to endocannabinoids. The synthesis of such compounds represents an important approach for the development of new anticonvulsant therapies.
Collapse
Affiliation(s)
- Fábio Rodrigues de Oliveira
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Controle de Qualidade e Bromatologia, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Nágila Monteiro da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Moisés Hamoy
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Maria Elena Crespo-López
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Irlon Maciel Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Edilene Oliveira da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratorio de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INCT-INBEB), Rio de Janeiro 21941-590, Brazil
| | - Barbarella de Matos Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - José Luiz Martins do Nascimento
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
8
|
Salihu M, Batiha GES, Kasozi KI, Zouganelis GD, Sharkawi SM, Ahmed EI, Usman IM, Nalugo H, Ochieng JJ, Ssengendo I, Okeniran OS, Pius T, Kimanje KR, Kegoye ES, Kenganzi R, Ssempijja F. Crinum jagus (J. Thomps. Dandy): Antioxidant and protective properties as a medicinal plant on toluene-induced oxidative stress damages in liver and kidney of rats. Toxicol Rep 2022; 9:699-712. [PMID: 35433275 PMCID: PMC9011043 DOI: 10.1016/j.toxrep.2022.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Crinum jagus (C. jagus; J. Thomps.) Dandy (Liliaceae) is a pantropical plant known for its medicinal values and pharmacological properties. The study assessed the protective effects and changes in oxidative stress indices due to C. jagus leaf extracts on the toluene-induced liver and kidney injuries in rats. The study was conducted on 8-week-old male Wistar rats (n = 80), weighing 243.3 ± 1.42 g. Group I, 1 ml/kg distilled water for 7 days; Group II, 4.5 ml/kg toluene once, 1 ml/kg distilled water for 7 days; Group III, 4.5 ml/kg toluene once, 500 mg/kg methanolic extract for 7 days; Group IV, 4.5 ml/kg toluene once, 500 mg/kg aqueous extract for 7 days; Group V, 500 mg/kg methanolic extract for 7 days; Group VI, 500 mg/kg aqueous extract for 7 days; Group VII, 500 mg/kg of vitamin C for 7 days; Group, VIII, 4.5 ml/kg toluene once, 500 mg/kg vitamin C for 7 days, all administrations were given by oral gavage. The phytochemical contents, absolute and relative organ weights of liver and kidneys, liver and kidney function tests, antioxidant status, as well as histological tests were analyzed using standard protocols. The tannins, flavonoids, and polyphenols were in highest concentration in both extracts, content in methanol extract (57.04 ± 1.51 mgg-1, 35.43 ± 1.03 mgg-1, 28.2 ± 0.34 mgg-1 respectively) > aqueous extract (18.74 ± 1.01 mgg-1, 13.43 ± 0.47 mgg-1, 19.65 ± 0.21 mgg-1 respectively). In the negative control group (II), bodyweights significantly (P < 0.05) reduced by 22%, liver weight and kidney weight significantly (P < 0.05) increased by 42% and 83% respectively, liver-to-bodyweight and kidney-to-bodyweight ratios increased significantly (P < 0.05); serum liver function tests (LFTs) i.e., bilirubin, alkaline phosphatase (ALP), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Gamma-glutamyl transferase (GGT), and serum kidney function tests (creatinine and urea) were significantly (P < 0.05) elevated; oxidant status (tissue malondialdehyde; MDA) was significantly (P < 0.05) elevated, antioxidant status i.e., tissue superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels was significantly (P < 0.05) reduced; with markedly visible renal and hepatic histopathological findings, compared to the normal control group. In C. jagus extract test groups (III and IV), the parameters were significantly (P < 0.05) alleviated and reversed to normal/near normal compared to the negative control. The LFTs, kidney function tests, and antioxidant status were significantly (P < 0.05) more improved with the methanol extract test and standard control groups compared to the aqueous extract test group; Also, the methanol extract test group showed better histological features than the aqueous extract test and standard control groups. The methanolic extract shows better antioxidant potential due to the availability of more nonenzymatic antioxidants (tannins, flavonoids, and polyphenols). The findings showed that toluene is a very aggressive xenobiotic due to the promotion of oxidative stress and peroxidation of cellular lipids, but C. jagus leaves provide significant protection through the reducing power of nonenzymatic antioxidants and their ability to induce endogenous antioxidant enzymes (SOD, CAT, and glutathione reductase or GR) causing reduced cellular lipid peroxidation and tissue damages, quickened tissue repair, and improved cell biology of liver and kidneys during toluene toxicity. The methanol leaf extract provides better protection and should be advanced for more experimental and clinical studies to confirm its efficacy in alleviating oxidative stress tissue injuries, specifically due to toluene.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Aspartate Aminotransferase
- Anti-lipid peroxidation
- Antioxidants
- Catalase Crinum jagus
- GGT, Gamma-glutamyl transferase
- GR, glutathione reductase
- GSH, Glutathione
- Glutathione superoxide dismutase
- Histoprotective
- LFTs, Liver function tests
- MDA, malondialdehyde
- Malondialdehyde
- SOD, Superoxide dismutase
- TOL, Toluene
- Toluene toxicity
- VC, Vitamin C
Collapse
Affiliation(s)
- Mariama Salihu
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | | | - George D. Zouganelis
- Human Science Research Centre, University of Derby, Kedleston Road, DE22 1GB, Derby, United Kingdom
| | - Souty M.Z. Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Eman Ibrahim Ahmed
- Pharmacology and Therapeutics Department, College of Medicine, Jouf University, Sakaka 72346, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Ibe Michael Usman
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Halima Nalugo
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Juma J. Ochieng
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Ibrahim Ssengendo
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Olatayo Segun Okeniran
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Theophilus Pius
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Kyobe Ronald Kimanje
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Eric Simidi Kegoye
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Fred Ssempijja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| |
Collapse
|
9
|
Tallini LR, Carrasco A, Acosta León K, Vinueza D, Bastida J, Oleas NH. Alkaloid Profiling and Cholinesterase Inhibitory Potential of Crinum × amabile Donn. (Amaryllidaceae) Collected in Ecuador. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122686. [PMID: 34961157 PMCID: PMC8707120 DOI: 10.3390/plants10122686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 05/27/2023]
Abstract
Natural products are one of the main sources for developing new drugs. The alkaloids obtained from the plant family Amaryllidaceae have interesting structures and biological activities, such as acetylcholinesterase inhibition potential, which is one of the mechanisms used for the palliative treatment of Alzheimer's disease symptoms. Herein we report the alkaloidal profile of bulbs and leaves extracts of Crinum × amabile collected in Ecuador and their in vitro inhibitory activity on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. Using Gas Chromatography coupled to Mass Spectrometry (GC-MS), we identified 12 Amaryllidaceae alkaloids out of 19 compounds detected in this species. The extracts from bulbs and leaves showed great inhibitory activity against AChE and BuChE, highlighting the potential of Amaryllidaceae family in the search of bioactive molecules.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre 90610-000, Brazil;
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, #27-31, 08028 Barcelona, Spain;
| | - Angelo Carrasco
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (A.C.); (K.A.L.); (D.V.)
| | - Karen Acosta León
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (A.C.); (K.A.L.); (D.V.)
| | - Diego Vinueza
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (A.C.); (K.A.L.); (D.V.)
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, #27-31, 08028 Barcelona, Spain;
| | - Nora H. Oleas
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador
| |
Collapse
|
10
|
Taiwe GS, Ndieudieu Kouamou AL, Dabole B, Ambassa ARM, Mambou HMAY, Bila RB, Tchoya TB, Menanga JR, Djomeni Dzeufiet PD, Ngo Bum E. Protective Effects of Anthocleista djalonensis Extracts against Pentylenetetrazole-Induced Epileptic Seizures and Neuronal Cell Loss: Role of Antioxidant Defense System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5523705. [PMID: 34504535 PMCID: PMC8423543 DOI: 10.1155/2021/5523705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
Oxidative stress and neurodegeneration are involved in the initiation of epileptogenesis and progression of epileptic seizures. This study was aimed at investigating the anticonvulsant, antioxidant, and neuroprotective properties of active fractions isolated from Anthocleista djalonensis root barks in pentylenetetrazole mouse models of epileptic seizures. Bioactive-guided fractionation of Anthocleista djalonensis (AFAD) extracts using acute pentylenetetrazole (90 mg/kg) induced generalised tonic-clonic seizures, which afforded a potent anticonvulsant fraction (FPool 5). Further fractionation of AFAD was performed by high-performance liquid chromatography, which yielded fifteen subfractions, which were chemically characterised. In addition, AFAD was tested against convulsions or spontaneous kindled seizures induced, respectively, by acute (50 mg/kg) or subchronic (30 mg/kg) injection of pentylenetetrazole. Finally, oxidative stress markers, brain GABA content, and neuronal cell loss were evaluated in AFAD-treated pentylenetetrazole-kindled mice. Administration of AFAD significantly protected mice against acute pentylenetetrazole (90 mg/kg)-induced convulsions. In acute pentylenetetrazole (50 mg/kg)-induced hippocampal and cortical paroxysmal discharges, AFAD significantly decreased the number of crisis, the cumulative duration of crisis, and the mean duration of crisis. Additionally, AFAD significantly decreased the number of myoclonic jerks and improved the seizure score in subchronic pentylenetetrazole-induced kindled seizures. The pentylenetetrazole-induced alteration of oxidant-antioxidant balance, GABA concentration, and neuronal cells in the brain were attenuated by AFAD treatment. This study showed that AFAD protected mice against pentylenetetrazole-induced epileptic seizures possibly through the enhancement of antioxidant defence and GABAergic signalling. These events might be correlated with the amelioration of neuronal cell loss; hence, AFAD could be a potential candidate for the treatment of epilepsy.
Collapse
Affiliation(s)
- Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Bernard Dabole
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | | | | | - Raymond Bess Bila
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Thierry Bang Tchoya
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Joseph Renaud Menanga
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| |
Collapse
|
11
|
HMGB1-RAGE Pathway Contributes to the Abnormal Migration of Endogenous Subventricular Zone Neural Progenitors in an Experimental Model of Focal Microgyria. J Mol Neurosci 2021; 72:56-68. [PMID: 34373986 DOI: 10.1007/s12031-021-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/13/2021] [Indexed: 12/09/2022]
Abstract
Abnormal migration of subventricular zone (SVZ)-derived neural progenitor cells (SDNPs) is involved in the pathological and epileptic processes of focal cortical dysplasias (FCDs), but the underlying mechanisms are not clear. Recent studies indicated that high mobility group box 1 (HMGB1)/receptor for advanced glycation end products (RAGE) are widely expressed in epileptic specimens of FCDs, which suggests that the HMGB1-RAGE pathway is involved in the pathological and/or epileptic processes of FCDs. The present study used Nestin-GFPtg/+ transgenic mice, and we established a model of freezing lesion (FL), as described in our previous report. A "migrating stream" composed of GFP-Nestin+ SDNPs was derived from the SVZ region and migrated to the cortical FL area. We found that translocated HMGB1 and RAGE were expressed in cortical lesion in a clustered distribution pattern, which was especially obvious in the early stage of FL compared to the sham group. Notably, the number of GFP-Nestin+ SDNPs within the "migrating stream" was significantly decreased when the HMGB1-RAGE pathway was blocked by a RAGE antagonist or deletion of the RAGE gene. The absence of RAGE also decreased the activity of pentylenetetrazol-induced cortical epileptiform discharge. In summary, this study provided experimental evidence that the levels of extranuclear HMGB1 and its receptor RAGE were increased in cortical lesion in the early stage of the FL model. Activation of the HMGB1-RAGE pathway may contribute to the abnormal migration of SDNPs and the hyperexcitability of cortical lesion in the FL model.
Collapse
|
12
|
Wang K, Liu Y, Shi Y, Yan M, Rengarajan T, Feng X. Amomum tsaoko fruit extract exerts anticonvulsant effects through suppression of oxidative stress and neuroinflammation in a pentylenetetrazol kindling model of epilepsy in mice. Saudi J Biol Sci 2021; 28:4247-4254. [PMID: 34354406 PMCID: PMC8325006 DOI: 10.1016/j.sjbs.2021.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic epilepsy is a multifaceted common brain disorder with manifold underlying factors. Epilepsy affects around 70 million peoples worldwide. Amomum tsaoko is a perennial herbaceous plant that is extensively cultivated in many provinces of China reported to exert immense biological activities. OBJECTIVE This research work was aimed to reveal the therapeutic actions of ethanolic extract of A.tsaoko fruits (EE-ATF) against the pentylenetetrazol (PTZ)-provoked convulsive seizures in the mice. METHODOLOGY The convulsive seizures were provoked to the animals via administering 70 mg/kg of PTZ through intraperitoneally to trigger the convulsive seizures then treated with the EE-ATF at 50, 75, and 100 mg/kg orally 30 min prior to PTZ challenge. After the 30 min of PTZ challenge, animals closely monitored for signs of convulsion, generalized clonic and tonic convulsion durations, and mortality. A sub-convulsive dose 35 mg/kg of PTZ was used to provoke the kindling and seizure stages were examined using standard method. The levels of dopamine, GABA, glutamate, and Na + K + ATPase and Ca + ATPase activities in the brain tissues were studied using marker specific assay kits. The oxidative stress and antioxidant markers studied using standard methods. The mRNA expressions of COX-2, TNF-α, NF-κB, TLR-4, and IL-1β in the brain tissues were studied using RT-PCR analysis. The brain tissues were examined histologically. RESULTS EE-ATF treatment remarkably decreased the onset and duration of convulsion and suppressed the seizure severity and mortality in the PTZ animals. EE-ATF treatment appreciably ameliorated the PTZ triggered modifications in the GABA, glutamate, dopamine levels and Ca + 2ATPase and Na + K + ATPase activities in the brain tissues. EE-ATF suppressed the mRNA expressions of NF-κB, IL-1β, TLR-4, TNF-α, and COX-2. The status of antioxidants were elevated by the EE-ATF. Histological findings also demonstrated the curative actions of EE-ATF. CONCLUSION Our findings evidenced that the EE-ATF substantially ameliorated the PTZ-provoked convulsive seizures in the mice.
Collapse
Affiliation(s)
- Kaina Wang
- Department of Neurology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Yani Liu
- Department of Neurology, Xi'an Yanliang District People's Hospital, Xi'an 710089, China
| | - Yan Shi
- Department of Neurology, Xijing Hospital, Air Force Medical University,Xi’an, Shaanxi 710032, China
| | - Mingzhu Yan
- Department of Neurology, Xijing Hospital, Air Force Medical University,Xi’an, Shaanxi 710032, China
| | - Thamaraiselvan Rengarajan
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Thanjavur, Tamil Nadu, India
| | - Xin Feng
- Department of Neurology, Xi'an Yanliang District People's Hospital, Xi'an 710089, China
| |
Collapse
|
13
|
Kediso TE, Tolessa T, Getachew F, Makonnen E, Seifu D. Effect of 70% Ethanol Extract and its Solvent Fractions of Artemisia afra (Jacq. Ex Willd.) against Pentylenetetrazole-Induced Seizure in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6690965. [PMID: 34239592 PMCID: PMC8233086 DOI: 10.1155/2021/6690965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Artemisia afra (Jacq. ex Willd.), commonly called African wormwood, is a highly aromatic perennial herb and a well-known medicinal plant, claimed to be effective and safe in the treatment of epilepsy. The whole-plant extract is traditionally used as an antiepileptic agent in Ethiopia. Aim of the Study. The aim of this study was, therefore, to evaluate the anticonvulsant effect of the hydroethanolic extract and solvent fractions of A. afra whole part in mice. MATERIALS AND METHODS The effects of A. afra hydroethanolic extract and its solvent fractions were evaluated against pentylenetetrazole- (PTZ-) induced convulsions in mice. The onset and duration of PTZ-induced convulsions were determined with hydroethanolic A. afra extract and its solvent fractions. Data were analyzed using a one-way analysis of variance (ANOVA) followed by post hoc Tukey's multiple comparisons test. p < 0.05 was considered statistically significant. RESULTS The hydroethanolic extract of A. afra, with all the three doses of 250, 500, and 1000 mg/kg, showed a significant delay (504.833 ± 62.835 ∗ s; p < 0.05 ∗ ; 551.833 ± 47.69 ∗∗ s; p < 0.01 ∗∗ ; and 808.333 ± 64.8 ∗∗∗ s; p < 0.001 ∗∗∗ , respectively) in the mean onset of convulsion and a decrease (17.000 ± 1.88 ∗∗∗ s, p < 0.05 ∗ ; 13.000 ± 1.8 ∗∗ s, p < 0.01 ∗∗ ; and 7.833 ± 1.07 ∗∗∗ s, p < 0.001, respectively) in the mean duration of convulsion against PTZ-induced convulsion in a dose-dependent manner compared to the control (92.833 ± 13.006 s; 34.167 ± 3.683 s), and its anticonvulsant activity was significantly less compared to that of diazepam (1001.167 ± 68.430 s; 4.500 ± 0.619 s). The solvent fractions, however, did not show anticonvulsant activity against PTZ-induced convulsion. CONCLUSION Crude extract of A. afra has an anticonvulsant effect in mice. This might be attributed to the synergistic effects of two or more active ingredients present in the herb.
Collapse
Affiliation(s)
- Teketel Eristu Kediso
- Department of Biomedical Sciences, College of Health Sciences, Arbaminch University, Arbaminch, Ethiopia
- Department of Physiology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfaye Tolessa
- Department of Physiology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fikirte Getachew
- Department of Biomedical Sciences, College of Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Division of Biomedical Sciences, Department of Biochemistry, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
14
|
Mishra P, Mittal AK, Rajput SK, Sinha JK. Cognition and memory impairment attenuation via reduction of oxidative stress in acute and chronic mice models of epilepsy using antiepileptogenic Nux vomica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113509. [PMID: 33141053 DOI: 10.1016/j.jep.2020.113509] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Ethnopharmacological relevance Processed Nux vomica seed extracts and homeopathic medicinal preparations (HMPs) are widely used in traditional Indian and Chinese medicine for respiratory, digestive, neurological and behavioral disorders. Antioxidant property of Nux vomica is well known and recent investigation has highlighted the anticonvulsant potential of its homeopathic formulation. AIM OF THE STUDY To explore the anticonvulsant and antiepileptogenic potential of Nux vomica HMPs (6CH, 12CH and 30CH potency) in pentylenetetrazole (PTZ) induced acute and chronic experimental seizure models in mice and investigate their effects on cognition, memory, motor activity and oxidative stress markers in kindled animals. MATERIALS AND METHODS Acute seizures were induced in the animals through 70 mg/kg (i.p.) administration of PTZ followed by the evaluation of latency and duration of Generalized tonic-clonic seizures (GTCS). Subconvulsive PTZ doses (35 mg/kg, i.p.) induced kindling in 29 days, which was followed by assessment of cognition, memory and motor impairment through validated behavioral techniques. The status of oxidative stress was estimated through measurement of MDA, GSH and SOD. RESULTS HMPs delayed the latency and reduced the duration of GTCS in acute model signifying possible regulation of GABAergic neurotransmission. Kindling was significantly hindered by the HMPs that justified the ameliorated cognition, memory and motor activity impairment. The HMPs attenuated lipid peroxidation by reducing MDA level and strengthened the antioxidant mechanism by enhancing the GSH and SOD levels in the kindled animals. CONCLUSIONS Nux vomica HMPs showed anticonvulsant and antiepileptogenic potency in acute and chronic models of epilepsy. The test drugs attenuated behavioral impairment and reduced the oxidative stress against PTZ induced kindling owing to which they can be further explored for their cellular and molecular mechanism(s).
Collapse
Affiliation(s)
- Priya Mishra
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Amit Kumar Mittal
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India
| | - Satyendra Kumar Rajput
- Amity Institute of Indian System of Medicine (AIISM), Amity University, Noida, Uttar Pradesh, 201303, India; Department of Pharmaceutical Sciences, Gurukul Kangri (deemed to be University), Haridwar, Uttrakhand, 249404, India.
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
15
|
Mishra P, Sinha JK, Rajput SK. Efficacy of Cicuta virosa medicinal preparations against pentylenetetrazole-induced seizures. Epilepsy Behav 2021; 115:107653. [PMID: 33358679 DOI: 10.1016/j.yebeh.2020.107653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Epileptic seizures are characterized by imbalanced inhibition-excitation cycle that triggers biochemical alterations responsible for jeopardized neuronal integrity. Conventional antiepileptic drugs (AEDs) have been the mainstay option for treatment and control; however, symptomatic control and potential to exacerbate the seizure condition calls for viable alternative to these chemical agents. In this context, natural product-based therapies have accrued great interest in recent years due to competent disease management potential and lower associated adversities. Cicuta virosa (CV) is one such herbal remedy that is used in traditional system of medicine against myriad of disorders including epilepsy. Homeopathic medicinal preparations (HMPs) of CV were assessed for their efficacy in pentylenetetrazole (PTZ)-induced acute and kindling models of epilepsy. CV HMPs increased the latency and reduced the duration of tonic-clonic phase in acute model while lowering the kindling score in the kindling model that signified their role in modulating GABAergic neurotransmission and potassium conductance. Kindling-induced impairment of cognition, memory, and motor coordination was ameliorated by the CV HMPs that substantiated their efficacy in imparting sustained neuronal fortification. Furthermore, biochemical evaluation showed attenuated oxidative stress load through reduced lipid peroxidation and strengthened free radical scavenging mechanism. Taken together, CV HMPs exhibited promising results in acute and kindling models and must be further assessed through molecular and epigenomic studies.
Collapse
Affiliation(s)
- Priya Mishra
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Uttar Pradesh, Noida 201303, India.
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University, Uttar Pradesh, Noida 201303, India.
| | - Satyendra Kumar Rajput
- Department of Pharmaceutical Sciences, Gurukul Kangri (deemed to be University), Haridwar, Uttrakhand, 249404, India.
| |
Collapse
|
16
|
Sharma P, Kumar A, Singh D. Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2020; 17:1158-1175. [PMID: 31400269 PMCID: PMC7057203 DOI: 10.2174/1570159x17666190809165549] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
cAMP response element binding protein (CREB) is a key transcriptional regulator that regulates the transcription of genes related with neuronal differentiation, synaptic plasticity, learning and memory. Brain derived neurotrophic factor (BDNF), is a CREB dependent gene which plays a pivotal role in the pathogenesis of epilepsy and central comorbid conditions associated with epilepsy. However, the beneficial or detrimental consequences of CREB-BDNF activation on the induction and/or progression of seizures depend specifically on the region of brain involved and the time of activation. The bioactive molecules that alter the activity of CREB in a way to have specialized effects in different brain regions and neural circuits involved could potentially be utilized for therapeutic purposes. Flavonoids are the polyphenolic compounds which lead to phosphorylation of CREB in the hippocampus, followed by increase in extracellular signal regulated kinase (ERK) and BDNF. Several members of flavonoid family have also showed suppression of epileptic seizures via interaction with CREB/BDNF pathway. Moreover, epilepsy is often accompanied by a number of behavioural and psychological comorbid conditions that further gets aggravated by the use of conventional antiepileptic drug therapy. Multiple studies have also supported the beneficial effects of flavonoids in cognitive and memory impairments by upregulation of CREB-BDNF pathway. The current review is an attempt to collate the available preclinical and clinical studies to establish the therapeutic potential of various dietary flavonoids in comprehensive management of epilepsy with relation to CREB-BDNF pathway.
Collapse
Affiliation(s)
- Pallavi Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Amit Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| |
Collapse
|
17
|
de Zorzi VN, Haupenthal F, Cardoso AS, Cassol G, Facundo VA, Bálico LJ, Lima DKS, Santos ARS, Furian AF, Oliveira MS, Royes LFF, Fighera MR. Galangin Prevents Increased Susceptibility to Pentylenetetrazol-Stimulated Seizures by Prostaglandin E2. Neuroscience 2019; 413:154-168. [PMID: 31200106 DOI: 10.1016/j.neuroscience.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Epilepsy is one of the most common chronic neurological diseases. It is characterized by recurrent epileptic seizures, where one-third of patients are refractory to existing treatments. Evidence revealed the association between neuroinflammation and increased susceptibility to seizures since there is a pronounced increase in the expression of key inflammatory mediators, such as prostaglandin E2 (PGE2), during seizures. The purpose of this study was to investigate whether PGE2 increases susceptibility to pentylenetetrazol-induced (PTZ) seizures. Subsequently, we evaluated if the flavonoid isolated from the plant Piper aleyreanum (galangin) presented any anticonvulsive effects. Our results demonstrated that the group treated with PGE2 increased susceptibility to PTZ and caused myoclonic and generalized seizures, which increased seizure duration and electroencephalographic wave amplitudes. Furthermore, treatment with PGE2 and PTZ increased IBA-1 (microglial marker), GFAP (astrocytic marker), 4-HNE (lipid peroxidation marker), VCAM-1 (vascular cell adhesion molecule 1), and p-PKAIIα (phosphorylated cAMP-dependent protein kinase) immunocontent. Indeed, galangin prevented behavioral and electroencephalographic seizures, reactive species production, decreased microglial and astrocytic immunocontent, as well as decreased VCAM-1 immunocontent and p-PKA/PKA ratio induced by PGE2/PTZ. Therefore, this study suggests galangin may have an antagonizing role on PGE2-induced effects, reducing cerebral inflammation and protecting from excitatory effects evidenced by administrating PGE2 and PTZ. However, further studies are needed to investigate the clinical implications of the findings and their underlying mechanisms.
Collapse
Affiliation(s)
- Viviane Nogueira de Zorzi
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Haupenthal
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexandra Seide Cardoso
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gustavo Cassol
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Valdir A Facundo
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Laudir J Bálico
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Daniella K S Lima
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adair Roberto Soares Santos
- Laboratório de Neurobiologia da Dor e Inflamação, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Flavia Furian
- Laboratório de Neurotoxicidade e Psicofarmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Laboratório de Neurotoxicidade e Psicofarmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
18
|
Gao W, Wang W, Peng Y, Deng Z. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metab Brain Dis 2019; 34:485-494. [PMID: 30762138 DOI: 10.1007/s11011-019-0389-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Kaempferol (KFL), the major constituent of various fruits and vegetables, could attenuate oxidaitve stress and inflammation. The aims of the present study were to explore the ameliorative abilities of KFL on the depressive-like behaviors in a chronic social defeat stress (CSDS) mouse model, and to determine the potential mechanisms on oxidative stress, neuroinflammation, and AKT/β-catenin signaling pathway. Three behavioral tests, sucrose preference test (SPT), social interaction test (SIT), and tail suspension test (TST), were used to evaluate the antidepressive effects of KFL in CSDS mice. Activity levels of antioxidant enzyme, superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione s-transferase (GST), and concentrations of malonaldehyde (MDA) and protein carbonylation in the prefrontal cortex were assessed by commercial kits, respectively. Elisa was used to detect the levels of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α). Q-PCR was used to determine the mRNA level of CD-11b. Furthermore, activity level of AKT/β-catenin signaling in the prefrontal cortex of CSDS mice was investigated by western blot. In addition, LY294002, a PI3-K inhibitor, was used to investigate the role of AKT/β-catenin signaling in the antidepressant effects of KFL. Social defeat stress reduced the bodyweights, sucrose consumptions, social interaction times, and the tail suspension mobility times in mice. CSDS mice were also exhibited remarkablely increased levels in oxidative stress markers, inflammatory mediators, and decreased activity of AKT/β-catenin cascade in the prefrontal cortex, which were reversed by treatment with KFL. Interestingly, LY294002 appeared to partly inhibit the overall KFL-mediated protective effects in the CSDS mice. These results confirmed that KFL exerted antidepressive effects, which might be mediated, at least in part, by enhanced antioxidant abilities and anti-inflammation effects via up-regulation AKT/β-catenin cascade activity in the prefrontal cortex of CSDS mice. Thus, KFL might be a promising, effective, and safe food medicine for depression treatment.
Collapse
Affiliation(s)
- Wenqi Gao
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Wei Wang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Yan Peng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
| | - Zhifang Deng
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
19
|
de Souza AG, Chaves Filho AJM, Souza Oliveira JV, de Souza DAA, Lopes IS, de Carvalho MAJ, de Lima KA, Florenço Sousa FC, Mendes Vasconcelos SM, Macedo D, de França Fonteles MM. Prevention of pentylenetetrazole-induced kindling and behavioral comorbidities in mice by levetiracetam combined with the GLP-1 agonist liraglutide: Involvement of brain antioxidant and BDNF upregulating properties. Biomed Pharmacother 2019; 109:429-439. [DOI: 10.1016/j.biopha.2018.10.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
|
20
|
Cortes N, Castañeda C, Osorio EH, Cardona-Gomez GP, Osorio E. Amaryllidaceae alkaloids as agents with protective effects against oxidative neural cell injury. Life Sci 2018; 203:54-65. [DOI: 10.1016/j.lfs.2018.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023]
|
21
|
Taiwe GS, Kouamou ALN, Ambassa ARM, Menanga JR, Tchoya TB, Dzeufiet PDD. Evidence for the involvement of the GABA-ergic pathway in the anticonvulsant activity of the roots bark aqueous extract of Anthocleista djalonensis A. Chev. (Loganiaceae). J Basic Clin Physiol Pharmacol 2018; 28:425-435. [PMID: 28777735 DOI: 10.1515/jbcpp-2017-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/06/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The root bark of Anthocleista djalonensis A. Chev. (Loganiaceae) is widely used in traditional medicine in Northern Cameroon to treat epilepsy and related conditions, such as migraine, insomnia, dementia, anxiety, and mood disorders. METHODS To investigate the anticonvulsant effects and the possible mechanisms of this plant, an aqueous extract of Anthocleista djalonensis (AEAD) was evaluated by using animal models of bicuculline-, picrotoxin-, pilocarpine-, and pentylenetetrazole-induced convulsions. Their effects on brain γ-aminobutyric acid (GABA) concentration and GABA-T activity were also determined. RESULTS This extract significantly protected mice against bicuculline-induced motor seizures. It provided 80% protection against picrotoxin-induced tonic-clonic seizures, and strongly antagonized convulsions induced by pilocarpine. AEAD also protected 100% of mice against pentylenetetrazole-induced seizures. Flumazenil, a central benzodiazepine receptor antagonist and FG7142, a partial inverse agonist in the benzodiazepine site of the GABAA receptor complex, were found to have an inhibitory effect on the anticonvulsant action of AEAD in pentylenetetrazole test. Finally, the brain GABA concentration was significantly increased and GABA-T activity was inhibited by AEAD. CONCLUSIONS The effects of Anthocleista djalonensis suggested the presence of anticonvulsant properties that might involve an action on benzodiazepine and/or GABA sites in the GABAA receptor complex or by modulating GABA concentration in the central nervous system (CNS).
Collapse
|
22
|
Copmans D, Orellana-Paucar AM, Steurs G, Zhang Y, Ny A, Foubert K, Exarchou V, Siekierska A, Kim Y, De Borggraeve W, Dehaen W, Pieters L, de Witte PAM. Methylated flavonoids as anti-seizure agents: Naringenin 4',7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem Int 2017; 112:124-133. [PMID: 29174382 DOI: 10.1016/j.neuint.2017.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023]
Abstract
Epilepsy is a neurological disease that affects more than 70 million people worldwide and is characterized by the presence of spontaneous unprovoked recurrent seizures. Existing anti-seizure drugs (ASDs) have side effects and fail to control seizures in 30% of patients due to drug resistance. Hence, safer and more efficacious drugs are sorely needed. Flavonoids are polyphenolic structures naturally present in most plants and consumed daily with no adverse effects reported. These structures have shown activity in several seizure and epilepsy animal models through allosteric modulation of GABAA receptors, but also via potent anti-inflammatory action in the brain. As such, dietary flavonoids offer an interesting source for ASD and anti-epileptogenic drug (AED) discovery, but their pharmaceutical potential is often hampered by metabolic instability and low oral bioavailability. It has been argued that their drug-likeness can be improved via methylation of the free hydroxyl groups, thereby dramatically enhancing metabolic stability and membrane transport, facilitating absorption and highly increasing bioavailability. Since no scientific data is available regarding the use of methylated flavonoids in the fight against epilepsy, we studied naringenin (NRG), kaempferol (KFL), and three methylated derivatives, i.e., naringenin 7-O-methyl ether (NRG-M), naringenin 4',7-dimethyl ether (NRG-DM), and kaempferide (4'-O-methyl kaempferol) (KFD) in the zebrafish pentylenetetrazole (PTZ) seizure model. We demonstrate that the methylated flavanones NRG-DM and NRG-M are highly effective against PTZ-induced seizures in larval zebrafish, whereas NRG and the flavonols KFL and KFD possess only a limited activity. Moreover, we show that NRG-DM is active in two standard acute mouse seizure models, i.e., the timed i.v. PTZ seizure model and the 6-Hz psychomotor seizure model. Based on these results, NRG-DM is proposed as a lead compound that is worth further investigation for the treatment of generalized seizures and drug-resistant focal seizures. Our data therefore highlights the potential of methylated flavonoids in the search for new and improved ASDs.
Collapse
Affiliation(s)
- Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adriana M Orellana-Paucar
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium; Carrera de Bioquímica y Farmacia, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador
| | - Gert Steurs
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Yifan Zhang
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Annelii Ny
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vasiliki Exarchou
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Youngju Kim
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wim De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter A M de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Ferreira A, Santos AO, Falcão A, Alves G. In vitro screening of dual flavonoid combinations for reversing P-glycoprotein-mediated multidrug resistance: Focus on antiepileptic drugs. Food Chem Toxicol 2017; 111:84-93. [PMID: 29122665 DOI: 10.1016/j.fct.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
The combined use of different P-glycoprotein (P-gp) inhibitors may be a relevant approach to the synergistic and safer inhibition of the P-gp-mediated drug efflux. Herein, we aimed to explore dual combinations of the flavonoids baicalein, (-)-epigallocatechin gallate, kaempferol, quercetin and silymarin to reverse the interference of P-gp on the intracellular accumulation of antiepileptic drugs (AEDs). The intracellular accumulation of rhodamine 123 (a classic P-gp substrate) and of several commonly used AEDs (carbamazepine, phenytoin, oxcarbazepine) or their metabolites (carbamazepine-10,11-epoxide and licarbazepine) was evaluated in MDCK-MDR1 cells in the presence and absence of individual flavonoids and their combinations. A selected flavonoid combination [(-)-epigallocatechin gallate/silymarin] was also evaluated in transepithelial transport experiments using licarbazepine (active metabolite of oxcarbazepine) as a model compound. Most flavonoid combinations increased rhodamine 123 intracellular uptake in a greater extent than their additive individual effects at similar concentrations. Moreover, selected (-)-epigallocatechin gallate/silymarin and kaempferol/baicalein combinations also enhanced the intracellular accumulation of all AEDs and metabolites. Overall, the combination of (-)-epigallocatechin gallate/silymarin was the most promising one. Thus, dual flavonoid combinations may be useful to overcome the P-gp-mediated efflux of AEDs and their metabolites, making their association to AED therapy a potentially valuable approach to circumvent pharmacoresistance in epilepsy.
Collapse
Affiliation(s)
- Ana Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Adriana O Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Amílcar Falcão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|