1
|
Zhang H, Chu S, Jiang L, Chan Q, Zhang Z, Cheng M. Alkaloid profiling of the new species Corydalis huangshanensis and other 13 medicinal plants in genus Corydalis. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:68-79. [PMID: 39016051 DOI: 10.1002/pca.3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Corydalis DC., the largest genus of Papaveraceae, comprises numerous species known for their abundant alkaloid content and historical use in clinical medicine. Recently, a new species of genus Corydalis named Corydalis huangshanensis Lu Q. Huang & H. S. Peng was discovered in the Huangshan Mountains of Anhui Province, China. OBJECTIVE To compare the chemical characteristics of C. huangshanensis and other 13 Corydalis species, aiming to elucidate the potential medicinal value of this new species. MATERIALS AND METHODS The chemical constituents of C. huangshanensis and other 13 medicinal plants of genus Corydalis were analyzed using ultra-high-performance liquid chromatography Q-Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer (Q-Orbitrap) mass technology. The differences in the alkaloids in the 14 species were distinguished by chemometrics. RESULTS The mass spectrometry fragmentation information and relative content of 72 alkaloids were obtained. Orthogonal partial least squares discriminant analysis (OPLS-DA) and cluster heat mapping analysis showed that these 14 species were divided into two groups. The clustering relationship between C. huangshanensis and C. decumbens (Thunb.) Pers. was similar, exhibiting similar chemical compositions and characteristics. These results indicate the potential pharmacological effects of C. huangshanensis. CONCLUSION This study enhances our understanding of the chemical classification of Corydalis and provides a basis for speculations on the medicinal value of C. huangshanensis.
Collapse
Affiliation(s)
- Haiwen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Lu Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Qingyun Chan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhenyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming'en Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Gu X, Cai Y, Zheng C, Xie L, Zhang L, Lu B, Zhu S, Cui Y, Ai X, Yang C. PK-PD relationship of poorly absorbable active ingredients from traditional Chinese medicines explaining by metabolic enzyme of gut microbiota: A case study of Dehydrocorydaline. J Pharm Biomed Anal 2025; 252:116478. [PMID: 39306946 DOI: 10.1016/j.jpba.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
Many active ingredients in traditional Chinese medicines generally have the characteristic of poor oral absorption but definite efficacy. It is necessary to establish a comprehensive technical system to explain the "PK-PD relationship" of them. Dehydrocorydaline (DHC), the quality control component in the Chinese patent drug "Kedaling Tablets", has poor oral absorption but clear efficacy for coronary heart disease. Using DHC as a model drug, the changes in absorption and pharmacological effects of DHC in rats before and after inhibiting nitroreductase (NR) from gut microbiota were studied. The results showed that after inhibiting of NR activity, the plasma concentration of DHC in rats was decreased, the serum level of total cholesterol, triglyceride and low-density lipoprotein cholesterol were significantly increased. The levels of tumor necrosis factor-α, interleukin-1β, hypersensitive C-reactive protein, intercellular cell adhesion molecule-1 and Monocyte chemoattractant protein-1 were significantly increased, and pathological sections also showed that the efficacy of DHC decreased after inhibiting the activity of NR. We further investigated the drug metabolism of DHC under NR and found that DHC was metabolized into a hydrogenated metabolite, which may have stronger membrane permeability. In summary, NR may mediate the absorption degree and efficacy of DHC in vivo by metabolizing DHC into absorbable metabolite.
Collapse
Affiliation(s)
- Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yutian Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chaoyue Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Liuyao Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Linyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Bingjie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Shuwen Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Xiaoyu Ai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Zhao X, Pan Y, Tan J, Lv H, Wang Y, Chen DX. Metabolomics and transcriptomics reveal the mechanism of alkaloid synthesis in Corydalis yanhusuo bulbs. PLoS One 2024; 19:e0304258. [PMID: 38781178 PMCID: PMC11115222 DOI: 10.1371/journal.pone.0304258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Corydalis yanhusuo W.T. Wang is a traditional herb. Benzylisoquinoline alkaloids (BIAs) are the main pharmacological active ingredients that play an important role in sedation, relieving pain, promoting blood circulation, and inhibiting cancer cells. However, there are few studies on the biosynthetic pathway of benzylisoquinoline alkaloids in Corydalis yanhusuo, especially on some specific components, such as tetrahydropalmatine. We carried out widely targeted metabolome and transcriptomic analyses to construct the biosynthetic pathway of benzylisoquinoline alkaloids and identified candidate genes. In this study, 702 metabolites were detected, including 216 alkaloids. Protoberberine-type and aporphine-type alkaloids are the main chemical components in C. yanhusuo bulbs. Key genes for benzylisoquinoline alkaloids biosynthesis, including 6-OMT, CNMT, NMCH, BBE, SOMT1, CFS, SPS, STOX, MSH, TNMT and P6H, were successfully identified. There was no significant difference in the content of benzylisoquinoline alkaloids and the expression level of genes between the two suborgans (mother-bulb and son-bulb). The expression levels of BIA genes in the expansion stage (MB-A and SB-A) were significantly higher than those in the maturity stage (MB-C and SB-C), and the content of benzylisoquinoline alkaloids was consistent with the pattern of gene regulation. Five complete single genes were likely to encode the functional enzyme of CoOMT, which participated in tetrahydropalmatine biosynthesis in C. yanhusuo bulbs. These studies provide a strong theoretical basis for the subsequent development of metabolic engineering of benzylisoquinoline alkaloids (especially tetrahydropalmatine) of C. yanhusuo.
Collapse
Affiliation(s)
- Xiao Zhao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Hui Lv
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Da-xia Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
4
|
Li S, Sun Y, Gao Y, Yu X, Zhao C, Song X, Han F, Yu J. Spectrum-effect relationship analysis based on HPLC-FT-ICR-MS and multivariate statistical analysis to reveal the pharmacodynamic substances of Ling-Gui-Zhu-Gan decoction on Alzheimer's disease. J Pharm Biomed Anal 2024; 237:115765. [PMID: 37844366 DOI: 10.1016/j.jpba.2023.115765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Alzheimer's disease (AD) threatens elderly human health and still lacks effective treatment. Our previous work showed that LGZGD possessed a neuroprotective effect on the Aβ25-35-induced neurotoxicity in differentiated PC12 cells, indicating that LGZGD may be a potential drug for treatment of AD. However, its pharmacodynamic substances which show anti-inflammatory and anti-oxidant stress activities are still unrevealed. This research aims to reveal the pharmacodynamic substances of LGZGD on Aβ25-35-induced PC12 cell model of AD based on a spectrum-effect relationship study by using HPLC-FT-ICR-MS method and multivariate statistical analysis. Firstly, the chemical composition spectra of different combinations of LGZGD were recorded by HPLC-FT-ICR MS. Subsequently, Aβ25-35-induced PC12 cell model of AD was established and pharmacodynamic experiments were conducted to evaluate their anti-inflammatory and anti-oxidant activities, respectively. Finally, the potential pharmacodynamic substances were screened out through spectrum-effect relationship study accompanied by multivariate statistical analysis including bivariate correlation analysis (BCA), grey relational analysis (GRA), principal component analysis (PCA), partial least squares regression analysis (PLSR). As a result, a total of 96 chemical consistents in different combinations of LGZGD were discovered. Among them, 7 components such as isoglabrolide, licorice saponin E2, licorice saponin N2 and licoisoflavanone were directly linked with the anti-inflammatory effects, and 14 constituents such as tumulosic acid, polyporenic acid C, dehydrotumulosic acid, dehydropachymic acid, and pachymic acid were directly correlated with the anti-oxidative stress activities. In conclusion, we combined the HPLC-FT-ICR-MS spectra with pharmacodynamic indicators to develop the spectrum-effect relationships of LGZGD for the first time, and successfully revealed its potential pharmacodynamic substances in the treatment of AD from the anti-inflammatory and antioxidant pathways in the cell model.
Collapse
Affiliation(s)
- Siyue Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuanfang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yutong Gao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinying Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiuping Song
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
5
|
Jin P, Zhu F, Zhou W, Liu C, Li N, Liu H. Developing magnetic functionalized dendritic fibrous mesoporous silica as advanced adsorbent for quaternary ammonium alkaloids. Mikrochim Acta 2023; 190:481. [PMID: 37999777 DOI: 10.1007/s00604-023-06053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
A novel π-conjugated polymer-modified magnetic dendritic fibrous mesoporous silica adsorbent (MB@KCC-1@π-CP) is reported for the accurate determination of quaternary ammonium alkaloids (QAAs) in complex body fluid matrices. It is demonstrated that the magnetic dendritic fibrous mesoporous silica (MB@KCC-1) is an excellent carrier combining magnetism, high specific surface area, unique hierarchical pore structure, and fast mass transfer rate. The π-conjugated polymer (π-CP) can efficiently retain QAAs (berberine, coptisine, palmatine, jatrorrhizine) by multiple interactions. In addition, the adsorption kinetics and adsorption mechanism were also studied and discussed. Under optimized extraction conditions, MB@KCC-1@π-CP-based magnetic solid-phase extraction (MSPE) and high-performance liquid chromatography (HPLC) method affords a wide linear range (0.5-20000 ng mL-1), low limits of detection (0.2-2 ng mL-1), and satisfactory relative standard deviations (RSD) of inter-day (< 2.4%) and intra-day (< 3.1%) for QAAs. Trace QAAs in complex human blood plasma samples were successfully detected by the established method.
Collapse
Affiliation(s)
- Pian Jin
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fucheng Zhu
- The Third Affiliated Hospital of Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chen Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Na Li
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan, Shandong, 250014, China
| | - Houmei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Zhao X, Wang L, Zhou Y, Wang Q, Wang F, Li Y. Integrating Full-Length and Second-Generation Transcriptomics to Reveal Differentially Expressed Genes Associated with the Development of Corydalis yanhusuo Tuber. Life (Basel) 2023; 13:2207. [PMID: 38004347 PMCID: PMC10672666 DOI: 10.3390/life13112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Corydalis yanhusuo is a medicinal herb in China that has been widely used to treat various kinds of pain. The tuber is the main organ of C. yanhusuo used for medicinal purposes, but changes in related genes during the development of the tuber have rarely been reported. To identify the differentially expressed genes during tuber development, C. yanhusuo full-length transcriptomic sequencing was performed using single-molecule real-time technology, and tubers at three development stages were selected for comparative transcriptome analysis. A total of 90,496 full-length non-chimeric transcripts were obtained, and 19,341 transcripts were annotated in at least one public database. A total of 9221 differentially expressed genes were identified during the swelling process of C. yanhusuo tuber. A Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that differentially expressed genes associated with a "starch and sucrose metabolism pathway", "phenylpropanoid biosynthesis pathway", "isoquinoline alkaloid biosynthesis pathway", "zeatin biosynthesis pathway", and "brassinosteroid biosynthesis pathway" were predominantly enriched. In addition, the genes involved in cell wall metabolism were potentially associated with tuber swelling. These processes regulated and were involved in C. yanhusuo tuber development. The results provide a foundation for further research on tuber formation in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China (L.W.); (Y.Z.); (Q.W.); (F.W.)
| |
Collapse
|
7
|
Zhang H, Wei Z, Tong Y, Song X, Li S, Sun Y, Liu C, Han F, Yu J. Spectrum-effect relationship study to reveal the pharmacodynamic substances in Flos Puerariae-Semen Hoveniae medicine pair for the treatment of alcohol-induced liver damage. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116628. [PMID: 37196817 DOI: 10.1016/j.jep.2023.116628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alcoholic liver disease (ALD) is the most serious and irreversible liver damage associated with alcohol consumption. Flos Puerariae and Semen Hoveniae are traditional Chinese medicines (TCM) for dispelling the effects of alcohol. Many studies have shown that the combination of two medicinal materials has the enhanced effect of treating ALD. AIM OF THE STUDY The aim of this study is to assess the pharmacological effects of Flos Puerariae-Semen Hoveniae medicine pair, to elucidate its action mechanism in the treatment of alcohol-induced BRL-3A cells, and to reveal the active ingredients in the medicine pair that exerted pharmacological effects by spectrum-effect relationship study. MATERIALS AND METHODS Firstly, MTT assays, ELISA, fluorescence probe analysis, and Western blot were employed to study the underlying mechanisms of the medicine pair in alcohol-induced BRL-3A cells by examining pharmacodynamic indexes and related protein expression. Secondly, HPLC method was established for chemical chromatograms of the medicine pair with different ratios and the sample extracted by different solvents. Then, principal component analysis, pearson bivariate correlation analysis and grey relational analysis were applied for development of the spectrum-effect correlation between pharmacodynamic indexes and HPLC chromatograms. Moreover, prototype components and their metabolites in vivo were identified by the HPLC-MS method. RESULTS Flos Puerariae-Semen Hoveniae medicine pair remarkably increased cell viability, decreased the activity of ALT, AST, TC and TG, reduced the generation of TNF-α, IL-1β, IL-6, MDA and ROS, increased the activity of SOD and GSH-Px, reduced protein expression of CYP2E1, compared with alcohol-induced BRL-3A cells. The medicine pair modulated the PI3K/AKT/mTOR signaling pathways by up-regulating the levels of phospho-PI3K, phospho-AKT and phospho-mTOR. Also, the results of the spectrum-effect relationship study showed that P1 (chlorogenic acid), P3 (daidzin), P4 (6″-O-xylosyl-glycitin), P5 (glycitin), P6 (unknown), P7 (unknown), P9 (unknown), P10 (6″-O-xylosyl-tectoridin), P12 (tectoridin) and P23 (unknown) can be considered as the main components of the medicine pair in the treatment of ALD. Furthermore, 6″-O-xylosyl-tectoridin, tectoridin, daidzin, 6″-O-xylosyl-glycitin and glycitin can be absorbed into the blood and showed clear metabolic and excretion behaviors in rats. CONCLUSION In this study, the hepatoprotective effects and the pharmacology mechanism of Flos Puerariae-Semen Hoveniae medicine pair in alcohol-induced BRL-3A cells were initially investigated and revealed. Through the spectrum-effect relationship study, the potential pharmacodynamic constituents such as daidzin, 6″-O-xylosyl-glycitin, 6″-O-xylosyl-tectoridin, glycitin, and tectoridin exert pharmacological effects on alcohol-induced oxidative stress and inflammation by modulating the PI3K/AKT/mTOR signaling pathways. This study provided experimental basis and data support for revealing the pharmacodynamic substance basis and pharmacology mechanism in the treatment of ALD. Moreover, it provides a robust mean of exploring the primary effective components responsible for the bioactivity of complicated TCM.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ziyun Wei
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yichen Tong
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiuping Song
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Siyue Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yuanfang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou, 570311, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
8
|
Calderon-Rivera A, Loya-Lopez S, Gomez K, Khanna R. Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels (Austin) 2022; 16:198-215. [PMID: 36017978 PMCID: PMC9423853 DOI: 10.1080/19336950.2022.2103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Voltage-gated sodium and calcium channels (VGSCs and VGCCs) play an important role in the modulation of physiologically relevant processes in excitable cells that range from action potential generation to neurotransmission. Once their expression and/or function is altered in disease, specific pharmacological approaches become necessary to mitigate the negative consequences of such dysregulation. Several classes of small molecules have been developed with demonstrated effectiveness on VGSCs and VGCCs; however, off-target effects have also been described, limiting their use and spurring efforts to find more specific and safer molecules to target these channels. There are a great number of plants and herbal preparations that have been empirically used for the treatment of diseases in which VGSCs and VGCCs are involved. Some of these natural products have progressed to clinical trials, while others are under investigation for their action mechanisms on signaling pathways, including channels. In this review, we synthesize information from ~30 compounds derived from natural sources like plants and fungi and delineate their effects on VGSCs and VGCCs in human disease, particularly pain. [Figure: see text].
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA,CONTACT Rajesh Khanna
| |
Collapse
|
9
|
Sun J, Liu X, Zhao S, Zhang S, Yang L, Zhang J, Zhao M, Xu Y. Prediction and verification of potential lead analgesic and antiarrhythmic components in Corydalis yanhusuo W. T. Wang based on voltage-gated sodium channel proteins. Int J Biol Macromol 2022; 216:537-546. [PMID: 35809671 DOI: 10.1016/j.ijbiomac.2022.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
Corydalis yanhusuo W. T. Wang, a traditional Chinese herbal medicine, has been used as an analgesic for thousands of years and it also promotes blood circulation. In this study, 33 Corydalis yanhusuo alkaloid active components were acquired from Traditional Chinese Medicine Database and Analysis Platform (TCMSP). A total of 543 pain-related targets, 1774 arrhythmia targets, and 642 potential targets of these active components were obtained using Swiss Target Prediction, GeneCards, Open Target Platform, and Therapeutic Target Database. Fifty intersecting targets were visualized through a Venn diagram, KEGG and GO pathway enrichment analysis. The analysis proposed that sodium ion channels are likely potential targets of Corydalis yanhusuo active components as analgesia and anti-arrhythmia agents. Molecular docking showed that the 33 components could bind to Nav1.7 and Nav1.5 (two subtypes of ion channel proteins) with different binding energies. In a patch clamp study, dihydrosanguinarine and dihydrochelerythrine, two monomers with the strongest binding effects, could inhibit the peak currents and promote both activation and inactivation phases of Nav1.5. Meanwhile, dihydrosanguinarine and dihydrochelerythrine could also inhibit peak currents and promote the activation phase of Nav1.7. Therefore, the findings from this study provide valuable information for future uses of traditional Chinese medicines to treat pain and cardiovascular disease.
Collapse
Affiliation(s)
- Jianfang Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shangfeng Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Suli Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liying Yang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
10
|
A green ultrasonic-assisted micellar extraction coupled with ultra-high performance liquid chromatography with photodiode array method for quantitative analysis of active ingredients in Yangxinshi Tablet. J Pharm Biomed Anal 2022; 219:114920. [DOI: 10.1016/j.jpba.2022.114920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022]
|
11
|
Ma J, Li K, Shi S, Li J, Tang S, Liu L. The Application of UHPLC-HRMS for Quality Control of Traditional Chinese Medicine. Front Pharmacol 2022; 13:922488. [PMID: 35721122 PMCID: PMC9201421 DOI: 10.3389/fphar.2022.922488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
UHPLC-HRMS (ultra-high-performance liquid chromatography-high resolution mass spectrometry) is a new technique that unifies the application of UHPLC with HRMS. Because of the high sensitivity and good separation ability of UHPLC and the sensitivity of HRMS, this technique has been widely used for structure identification, quantitative determination, fingerprint analysis, and elucidation of the mechanisms of action of traditional Chinese medicines (TCMs) in recent years. This review mainly outlines the advantages of using UHPLC-HRMS and provides a survey of the research advances on UHPLC-HRMS for the quality control of TCMs.
Collapse
Affiliation(s)
- Jieyao Ma
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Silin Shi
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Jian Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - LiangHong Liu
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
12
|
Chang XY, Wu JS, Zhang FQ, Li ZZ, Jin WY, Wang JX, Wang WH, Shi Y. A Strategy for Screening the Lipid-Lowering Components in Alismatis Rhizoma Decoction Based on Spectrum-Effect Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2363242. [PMID: 35028165 PMCID: PMC8752264 DOI: 10.1155/2022/2363242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 05/15/2023]
Abstract
Alismatis Rhizoma decoction (ARD), comprised of Alisma plantago-aquatica subsp. orientale (Sam.) Sam and Atractylodes macrocephala Koidz. at a ratio of 5 : 2, is a classic traditional Chinese medicine (TCM) formula with successful clinical hypolipidemic effect. This paper aimed to explore the major bioactive compounds and potential mechanism of ARD in the treatment of hyperlipidemia on the basis of spectrum-effect analysis and molecular docking. Nine ARD samples with varying ratios of the constituent herbs were prepared and analyzed by UPLC-Q-TOF/MS to obtain the chemical spectra. Then, the lipid-lowering ability of the nine samples was tested in an oleic acid-induced lipid accumulation model in human hepatoma cells (HepG2). Grey relational analysis and partial least squares regression analysis were then performed to determine the correlation between the chemical spectrums and lipid-lowering efficacies of ARD. The potential mechanisms of the effective compounds were investigated by docking with the farnesoid X receptor (FXR) protein. The results indicated that alisol B 23-acetate, alisol C 23-acetate, and alisol B appeared to be the core effective components on hyperlipidemia in ARD. Molecular docking further demonstrated that all three compounds could bind to FXR and were potential FXR agonists for the treatment of hyperlipidemia. This study elucidated the effective components and potential molecular mechanism of action of ARD for treating hyperlipidemia from a perspective of different compatibility, providing a new and feasible reference for the research of TCM formulas such as ARD.
Collapse
Affiliation(s)
- Xiao-Yan Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jia-Shuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Fang-Qing Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhuang-Zhuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wei-Yi Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Hebei Medical University, Shijiazhuang 050017, China
| | - Jing-Xun Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | | | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
13
|
Xu Y, Sun J, Li W, Zhang S, Yang L, Teng Y, Lv K, Liu Y, Su Y, Zhang J, Zhao M. Analgesic effect of the main components of Corydalis yanhusuo (yanhusuo in Chinese) is caused by inhibition of voltage gated sodium channels. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114457. [PMID: 34329712 DOI: 10.1016/j.jep.2021.114457] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/11/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Pain often causes a series of abnormal changes in physiology and psychology, which can lead to disease and even death. Drug therapy is the most basic and commonly used method for pain relief and management. Interestingly, at present, hundreds of traditional Chinese medicines have been reported to be used for pain relief, most of which are monomer preparations, which have been developed into new painkillers. Corydalis yanhusuo is a representative of one of these medicines and is available for pain relief. AIM OF THE STUDY This study aims to determine the analgesic effect and the potential targets of the monomers derived from Corydalis yanhusuo, and to explore any possible associated cardiac risk factors. MATERIALS AND METHODS In this study, four monomers derived from Corydalis yanhusuo (tetrahydropalmatine, corydaline, protopine, dehydrocorydaline) were tested in vivo, using the formalin-induced pain model to determine their analgesic properties. Their potential targets were also determined using whole cell patch clamp recordings and myocardial enzyme assays. RESULTS The results showed that all monomers showed analgesic activity and inhibited the peak currents, promoted the activation and inactivation phases of Nav1.7, which indicating that Nav1.7 might be involved in the analgesic mechanism of Corydalis yanhusuo. Protopine increased the level of creatine kinase-MB (CK-MB) and inhibited the peak currents, promoted the activation and inactivation phases of Nav1.5, indicating that Nav1.5 might be involved in the cardiac risk associated with protopine treatment. CONCLUSION These data showed that tetrahydropalmatine produced the best analgesic effect and the lowest cardiac risk. Thus, voltage gated sodium channels (VGSCs) might be the main targets associated with Corydalis yanhusuo. This study, therefore, provides valuable information for future studies and use of traditional Chines medicines for the alleviation of pain.
Collapse
Affiliation(s)
- Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jianfang Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Wenwen Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Suli Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Liying Yang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ying Teng
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Kaikai Lv
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yanfeng Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
14
|
Chemical Fingerprint Profiles and Pharmacodynamic Investigation for Quality Evaluation of Moxa Smoke by UHPLC in a Rat Model of Superficial Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9929596. [PMID: 34381522 PMCID: PMC8352697 DOI: 10.1155/2021/9929596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/23/2021] [Indexed: 02/02/2023]
Abstract
Introduction Moxibustion, a traditional Chinese medicine technique, involves the use of moxa smoke from Folium Artemisia argyi to treat various disorders, especially superficial infections. However, there is a higher health risk for people exposed to high levels of moxa smoke for extended durations. Here, we report the first ultra-high-performance liquid chromatography (UHPLC) fingerprint profiles and pharmacodynamic evaluation of moxa smoke, as well as evaluation of its aqueous solution on a rat model of superficial infection. Methods A novel method for moxa smoke fingerprint profiling was developed using UHPLC under characteristic wavelength. Chromatographic peaks were further analyzed by ultra-high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF/MS). 12 sample batches obtained from various Chinese provinces were then analyzed using similarity evaluation, clustering analysis, and principal component analysis. The pharmacodynamics of moxa smoke and moxa aqueous solution were investigated on a rat model of acute skin wound infection. Results UHPLC fingerprint profiles of 12 batches of moxa smoke were generated at 270 nm wavelength and 21 chromatographic peaks extracted as common peaks. Similarity between the 12 batches ranged from 0.341 to 0.982. Based on cluster analysis, the 12 batches of moxa smoke samples were clustered into five groups. Principal component analysis showed that the cumulative contribution of the three principal components reached 90.17%. Eigenvalues of the first, second, and third principal components were 10.794, 6.504, and 1.638, respectively. The corresponding variance contribution rates were 51.40%, 30.97%, and 7.80%, respectively. Pharmacological analysis found that wound healing was slow in the model group relative to the mupirocin ointment, moxa smoke, and aqueous moxa smoke solution groups. Histological analysis revealed markedly reduced tissue inflammation in rats treated with moxa smoke or its aqueous solution. Conclusions Moxa smoke and its aqueous solution significantly promote wound healing upon superficial infection. A novel quality control method for moxa smoke was established and evaluated for the first time. As its main effects are unchanged, the transformation of moxa smoke into aqueous moxa smoke improves safety and is a simple and controllable process.
Collapse
|
15
|
Gaião Calixto M, Alves Ramos H, Veríssimo LS, Dantas Alves V, D Medeiros AC, Alencar Fernandes FH, Veras G. Trends and Application of Chemometric Pattern Recognition Techniques in Medicinal Plants Analysis. Crit Rev Anal Chem 2021; 53:326-338. [PMID: 34314279 DOI: 10.1080/10408347.2021.1953370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medicinal plants have been used and studied for ages, from very old registers to modern ethnopharmacology, which encompasses analytical chemistry, foods, and pharmacy. Based on international norms and governmental organizations of health, phytomedicine-for example, herbal drugs-needs to guarantee the quality control of products and identify contaminants, biomarkers, and chemical profiles, among other issues. In this sense, is necessary to develop advanced analytical methods that show interesting possibilities and obtain a great amount of data. In order to treat the data, a set of mathematical and statistical procedures named chemometrics is necessary. In terms of herbal drugs, chemometric tools may be used to identify the following in plants: parts, development stages, processing, geographic origin, authentication, and chemical markers. This review describes applications of chemometric pattern recognition tools to analyze herbal drugs in different conditions associated with analytical methods in the last six years (2015-2020).
Collapse
Affiliation(s)
- Mariana Gaião Calixto
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Hilthon Alves Ramos
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Lucas Silva Veríssimo
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Vitor Dantas Alves
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Ana Cláudia D Medeiros
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Felipe Hugo Alencar Fernandes
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Universidade Estadual da Paraíba, Campina Grande, Brasil.,Centro Universitário UNIFACISA, Campina Grande, Brasil
| | - Germano Veras
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| |
Collapse
|
16
|
Zhu W, Hong H, Hong Z, Kang X, Du W, Ge W, Li C. Rapid Quality Identification of Decoction Pieces of Crude and Processed Corydalis Rhizoma by Near-Infrared Spectroscopy Coupled with Chemometrics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:1936057. [PMID: 34336355 PMCID: PMC8324354 DOI: 10.1155/2021/1936057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In order to identify the quality of crude and processed Corydalis Rhizoma decoction pieces, the research established a simple, fast, reliable, and validated near-infrared qualitative and quantitative model combined with chemometrics. 51 batches of crude and 40 batches of processed Corydalis Rhizoma from the Zhejiang and Jiangsu provinces of China were collected and analyzed. Crude and processed Corydalis Rhizoma samples were crushed to obtain NIR spectra. The content of seven alkaloids in crude and processed Corydalis Rhizoma was determined by high-performance liquid chromatography (HPLC). Pretreatment methods were screened such as normalization methods, offset filtering methods, and smoothing. Combined with partial least squares-discriminant analysis (PLS-DA) and partial least squares (PLS), the qualitative and quantitative models of crude and processed Corydalis Rhizoma were established, and the correlation coefficient (R 2), root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP) were used as evaluation indexes. Tetrahydropalmatine was used as an example for screening pretreatment methods; the results showed that MSC combined with the second derivative and no smoothing and the model with the wavelength range of 10000-5000 cm-1 had the best predictive ability and applied to all seven alkaloid components. Among them, the correlation coefficients were all higher than 0.99, and RMSEC and RMSEP were all less than 1%. The qualitative and quantitative model of the seven alkaloids in Corydalis Rhizoma can effectively identify the crude and processed Corydalis Rhizoma and determine the content of the seven alkaloids. By studying the NIR qualitative and quantitative models of crude and processed Corydalis Rhizoma, we can achieve rapid discrimination and quantitative prediction of crude and processed Corydalis Rhizoma. These methods can greatly improve the efficiency of traditional Chinese medicine analysis and provide a strong scientific basis for the quality identification and control of traditional Chinese medicine.
Collapse
Affiliation(s)
- Weihao Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Hao Hong
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Zhihui Hong
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xianjie Kang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, China
| | - Weifeng Du
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, China
| | - Weihong Ge
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 311401, China
| |
Collapse
|
17
|
Duan L, Cheng S, Li L, Liu Y, Wang D, Liu G. Natural Anti-Inflammatory Compounds as Drug Candidates for Inflammatory Bowel Disease. Front Pharmacol 2021; 12:684486. [PMID: 34335253 PMCID: PMC8316996 DOI: 10.3389/fphar.2021.684486] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents chronic recurrent intestinal inflammation resulting from various factors. Crohn’s disease (CD) and ulcerative colitis (UC) have been identified as the two major types of IBD. Currently, most of the drugs for IBD used commonly in the clinic have adverse reactions, and only a few drugs present long-lasting treatment effects. Moreover, issues of drug resistance and disease recurrence are frequent and difficult to resolve. Together, these issues cause difficulties in treating patients with IBD. Therefore, the development of novel therapeutic agents for the prevention and treatment of IBD is of significance. In this context, research on natural compounds exhibiting anti-inflammatory activity could be a novel approach to developing effective therapeutic strategies for IBD. Phytochemicals such as astragalus polysaccharide (APS), quercetin, limonin, ginsenoside Rd, luteolin, kaempferol, and icariin are reported to be effective in IBD treatment. In brief, natural compounds with anti-inflammatory activities are considered important candidate drugs for IBD treatment. The present review discusses the potential of certain natural compounds and their synthetic derivatives in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Linshan Duan
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Long Li
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Dan Wang
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Guoyan Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Huang W, Pan Y, Jiang H, Chen Y, Hu L, Zhang H, Yan J. A comprehensive quality evaluation method of Corydalis yanhusuo by HPLC fingerprints, chemometrics, and correlation analysis. J Sep Sci 2021; 44:2054-2064. [PMID: 33682338 DOI: 10.1002/jssc.202001250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/11/2021] [Accepted: 03/04/2021] [Indexed: 01/25/2023]
Abstract
A novel quality evaluation method of Corydalis yanhusuo was established by researching the high-performance liquid chromatography behavior of alkaloids under different buffer solutions and exploring the correlation between alkaloids in C. yanhusuo. The retention times of tetrahydropalmatine and corydaline were significantly influenced by pH, while the peak shape was affected by buffer types and ionic strength. The resolution of compounds in fingerprint was satisfactory under acetonitrile-0.2% phosphoric acid buffer (adjusted pH to 5.0 with triethylamine). Twelve common peaks were found by comparing 20 batches of C. yanhusuo fingerprints, and three tertiary alkaloids and four quaternary alkaloids were identified. The fingerprints were analyzed by similarity analysis, hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis. All samples were divided into three groups, and the contents of dehydrocorydaline and coptisine from Zhejiang province were relatively higher than other origins. There were six components performing more contributions to the quality of C. yanhusuo. The correlations between alkaloids were conducted by Pearson correlation analysis and mathematical model analysis. The content correlation between palmatine and berberine was y = 0.28x2 + 0.03x + 0.03, and the dehydrocorydaline and coptisine was y = -7.54/(1 + (x/0.14)0.5 ) + 2.61. The established mathematical model of alkaloids provided a guiding significance for the quality control of C. yanhusuo.
Collapse
Affiliation(s)
- Wei Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yan Pan
- Zhejiang Conba Pharmaceutical Co. Ltd., Jinhua, 310052, P. R. China
| | - Huijie Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yi Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Linshui Hu
- Zhejiang Conba Pharmaceutical Co. Ltd., Jinhua, 310052, P. R. China
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
19
|
Gu X, Wu C, Zhang M, Wang X, Liu Y, Di X. Rapid determination of seven bioactive components in rat plasma by UPLC-MS/MS and its application to pharmacokinetic compatibility study of Jinlingzi San. J Pharm Biomed Anal 2021; 198:114014. [PMID: 33765511 DOI: 10.1016/j.jpba.2021.114014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Jinlingzi San (JLZS), composed of Fructus Toosendan (FT) and Rhizoma Corydalis (RC), is a classical traditional Chinese medicine prescription for regulating Qi to relieve pain. The present study investigated the pharmacokinetic compatibility of FT and RC in JLZS. A fast, selective and sensitive UPLC-MS/MS method for simultaneous determination of one limonoid (toosendanin), four tertiary alkaloids (corydaline, tetrahydropalmatine, tetrahydrocoptisine, tetrahydroberberine) and two quaternary alkaloids (palmatine, dehydrocorydaline) in rat plasma was established and fully validated. The plasma samples were pretreated by a fast protein precipitation and chromatographed using a 1.7-μm C18 column and 0.1 % formic acid-water and acetonitrile via gradient elution with a run time of 3.7 min. Multiple reaction monitoring mode with positive electrospray ionization was adopted to detect the analytes and internal standard (diphenhydramine). The lower limits of quantification were 0.08-3.09 ng/mL using only 50 μL of plasma sample. Using the proposed method, the pharmacokinetic differences of seven bioactive components in rats after administration of JLZS and the single herb (FT or RC) were investigated. The results showed that the elimination of toosendanin and alkaloids decreased significantly in the JLZS group (p < 0.05) compared with the single herb group, and the exposure of the alkaloids increased in some degree. The study demonstrated the synergistic effect of combining FT with RC on the pharmacokinetics of seven bioactive components and provided new information for a better understanding of the compatibility mechanism of JLZS.
Collapse
Affiliation(s)
- Xiaoting Gu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Cuiting Wu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Mengmeng Zhang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xin Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Youping Liu
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xin Di
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
20
|
Xu D, Lin H, Tang Y, Huang L, Xu J, Nian S, Zhao Y. Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo. HORTICULTURE RESEARCH 2021; 8:16. [PMID: 33423040 PMCID: PMC7797006 DOI: 10.1038/s41438-020-00450-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Corydalis yanhusuo W.T. Wang is a classic herb that is frequently used in traditional Chinese medicine and is efficacious in promoting blood circulation, enhancing energy, and relieving pain. Benzylisoquinoline alkaloids (BIAs) are the main bioactive ingredients in Corydalis yanhusuo. However, few studies have investigated the BIA biosynthetic pathway in C. yanhusuo, and the biosynthetic pathway of species-specific chemicals such as tetrahydropalmatine remains unclear. We performed full-length transcriptomic and metabolomic analyses to identify candidate genes that might be involved in BIA biosynthesis and identified a total of 101 full-length transcripts and 19 metabolites involved in the BIA biosynthetic pathway. Moreover, the contents of 19 representative BIAs in C. yanhusuo were quantified by classical targeted metabolomic approaches. Their accumulation in the tuber was consistent with the expression patterns of identified BIA biosynthetic genes in tubers and leaves, which reinforces the validity and reliability of the analyses. Full-length genes with similar expression or enrichment patterns were identified, and a complete BIA biosynthesis pathway in C. yanhusuo was constructed according to these findings. Phylogenetic analysis revealed a total of ten enzymes that may possess columbamine-O-methyltransferase activity, which is the final step for tetrahydropalmatine synthesis. Our results span the whole BIA biosynthetic pathway in C. yanhusuo. Our full-length transcriptomic data will enable further molecular cloning of enzymes and activity validation studies.
Collapse
Affiliation(s)
- Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Hanfeng Lin
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Lu Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Jian Xu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Sihui Nian
- Institute of Modern Chinese Medicine, School of Pharmacy, Wannan Medical College, 241002, Wuhu, Anhui, China.
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Grouping, Spectrum-Effect Relationship and Antioxidant Compounds of Chinese Propolis from Different Regions Using Multivariate Analyses and Off-Line Anti-DPPH Assay. Molecules 2020; 25:molecules25143243. [PMID: 32708723 PMCID: PMC7397058 DOI: 10.3390/molecules25143243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
49 samples of propolis from different regions in China were collected and analyzed for their chemical compositions, contents of total flavonoids (TFC), total phenolic acid (TPC) and antioxidant activity. High-performance liquid chromatography (HPLC) analysis identified 15 common components, including key marker compounds pinocembrin, 3-O-acetylpinobanksin, galangin, chrysin, benzyl p-coumarate, pinobanksin and caffeic acid phenethyl ester (CAPE). Cluster analysis (CA) and correlation coefficients (CC) analysis showed that these propolis could be divided into three distinct groups. Principal component analysis (PCA) and multiple linear regression analysis (MLRA) revealed that the contents of isoferulic acid, caffeic acid, CAPE, 3,4-dimethoxycinnamic acid, chrysin and apigenin are closely related to the antioxidant properties of propolis. In addition, eight peak areas decreased after reacting with 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals, indicating that these compounds have antioxidant activity. The results indicate that the grouping and spectrum–effect relationship of Chinese propolis are related to their chemical compositions, and several compounds may serve as a better marker for the antioxidant activity of Chinese propolis than TFC and TPC. The findings may help to develop better methods to evaluate the quality of propolis from different geographic origins.
Collapse
|
22
|
Comprehensive quality evaluation strategy based on non-targeted, targeted and bioactive analyses for traditional Chinese medicine: Tianmeng oral liquid as a case study. J Chromatogr A 2020; 1620:460988. [DOI: 10.1016/j.chroma.2020.460988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
|
23
|
Quality Evaluation of Corydalis yanhusuo by High-Performance Liquid Chromatography Fingerprinting Coupled with Multicomponent Quantitative Analysis. Sci Rep 2020; 10:4996. [PMID: 32193434 PMCID: PMC7081204 DOI: 10.1038/s41598-020-61951-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
Corydalis Rhizoma is the tuber of Corydalis yanhusuo W. T. Wang, which has been long used in traditional Chinese medicine. Herein, the quality of C. yanhusuo samples collected from 23 regions of three provinces in China is evaluated through high-performance liquid chromatography fingerprinting coupled with similarity, hierarchical clustering, and principal component analyses. Sample similarities are evaluated according to the State Food and Drug Administration requirements by selection of 18 characteristic chromatographic fingerprint peaks and are found to vary between 0.455 and 0.999. Moreover, common patterns of a typical local variety of C. yanhusuo sourced in the Panan County are established. The obtained results show that the combination of quantitative analysis and chromatographic fingerprint analysis can be readily utilized for quality control purposes, offering a comprehensive strategy for quality evaluation of C. yanhusuo and related products.
Collapse
|
24
|
Recent advances and applications in LC-HRMS for food and plant natural products: a critical review. Anal Bioanal Chem 2020; 412:1973-1991. [DOI: 10.1007/s00216-019-02328-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
|
25
|
Wu X, Liu Q, Chen D, Qin W, Lu B, Bi Q, Wang Z, Jia Y, Tan N. Identification of quality control markers in Suhuang antitussive capsule based on HPLC-PDA fingerprint and anti-inflammatory screening. J Pharm Biomed Anal 2019; 180:113053. [PMID: 31901736 DOI: 10.1016/j.jpba.2019.113053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Suhuang antitussive capsule (SH), one of traditional Chinese patent medicines, has been widely used for treating cough variant asthma and postinfectious cough in clinic. The objective of this work is to identify the characteristic and active ingredients as the quality control markers for SH based on high performance liquid chromatography with photodiode array detector (HPLC-PDA) fingerprint and screening of anti-inflammatory components. Similarity analysis (SA), hierarchical clustering analysis (HCA) and principal component analysis (PCA) were used to evaluate 16 different batches of SH. 13 compounds accounting for 36% of the total components in the fingerprint were identified and semi-quantitatively analyzed, which anti-inflammatory activity was tested with the in vitro assay. The results showed that the established chemical fingerprint could clearly distinguish different batches of SH by SA, HCA, and PCA analysis. Furthermore, four known compounds (chlorogenic acid, schisandrin, angeloylgomisin H and praeruptorin A) were screened out to be the most discriminant variables, which could be applied to quality control of SH by quantitative analysis. The semi-quantitative results showed that six compounds were major components, i.e. arctiin (10.28 ± 3.18 mg/g), ephedrine (9.26 ± 1.58 mg/g), schisandrin (3.09 ± 0.83 mg/g), pseudoephedrine (2.34 ± 1.04 mg/g), schisandrin B (1.48 ± 0.16 mg/g), and 1-caffeoylquinic acid (1.36 ± 0.42 mg/g). The anti-inflammatory results showed that SH extract, praeruptorin A, schisandrin, arctigenin and pseudoephedrine could significantly inhibit inflammatory mediator NO production in LPS-stimulated RAW264.7 macrophages. These findings indicated that praeruptorin A, schisandrin, arctiin and pseudoephedrine could be proposed as the quality control markers for SH.
Collapse
Affiliation(s)
- Xingdong Wu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qinyan Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Dong Chen
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd., Beijing, 102206, PR China
| | - Weiwei Qin
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Bingyun Lu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qirui Bi
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhen Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yuning Jia
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd., Beijing, 102206, PR China; Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
26
|
Cao Y, Cui K, Pan H, Wu J, Wang L. The impact of multiple climatic and geographic factors on the chemical defences of Asian toads (Bufo gargarizans Cantor). Sci Rep 2019; 9:17236. [PMID: 31754241 PMCID: PMC6872595 DOI: 10.1038/s41598-019-52641-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/18/2019] [Indexed: 11/08/2022] Open
Abstract
Chemical defences are widespread in nature, yet we know little about whether and how climatic and geographic factors affect their evolution. In this study, we investigated the natural variation in the concentration and composition of the main bufogenin toxin in adult Asian toads (Bufo gargarizans Cantor) captured in twenty-two regions. Moreover, we explored the relative importance of eight climatic factors (average temperature, maximum temperature, minimum temperature, average relative humidity, 20-20 time precipitation, maximum continuous precipitation, maximum ground temperature, and minimum ground temperature) in regulating toxin production. We found that compared to toads captured from central and southwestern China, toads from eastern China secreted higher concentrations of cinobufagin (CBG) and resibufogenin (RBG) but lower concentrations of telocinobufagin (TBG) and cinobufotalin (CFL). All 8 climatic variables had significant effects on bufogenin production (ri>0.5), while the plastic response of bufogenin toxin to various climate factors was highly variable. The most important climatic driver of total bufogenin production was precipitation: the bufogenin concentration increased with increasing precipitation. This study indicated that the evolution of phenotypic plasticity in chemical defences may depend at least partly on the geographic variation of defensive toxins and their climatic context.
Collapse
Affiliation(s)
- Yueting Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Keke Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongye Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiheng Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Longhu Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Chemometrics: a complementary tool to guide the isolation of pharmacologically active natural products. Drug Discov Today 2019; 25:27-37. [PMID: 31600581 DOI: 10.1016/j.drudis.2019.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
Chemometrics offers an important complementary tool to enhance the searching and isolation of bioactive natural products from natural sources.
Collapse
|
28
|
Wang J, Jiang Y, Wang B, Zhang N. A review on analytical methods for natural berberine alkaloids. J Sep Sci 2019; 42:1794-1815. [DOI: 10.1002/jssc.201800952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/20/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jiahui Wang
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
| | - Yanyan Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of Education and PLADepartment of PharmaceuticsSchool of PharmacyFudan University Shanghai P. R. China
| | - Bing Wang
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
- Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai P. R. China
| | - Ning Zhang
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
| |
Collapse
|
29
|
Chen Z, Zhu Q, Qi J, Lu Y, Wu W. Sustained and controlled release of herbal medicines: The concept of synchronized release. Int J Pharm 2019; 560:116-125. [DOI: 10.1016/j.ijpharm.2019.01.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
|
30
|
Zhang C, Zheng X, Ni H, Li P, Li HJ. Discovery of quality control markers from traditional Chinese medicines by fingerprint-efficacy modeling: Current status and future perspectives. J Pharm Biomed Anal 2018; 159:296-304. [DOI: 10.1016/j.jpba.2018.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 01/11/2023]
|
31
|
Yu Y, Gong D, Zhu Y, Wei W, Sun G. Quality consistency evaluation of Isatidis Folium combined with equal weight quantified ratio fingerprint method and determination of antioxidant activity. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:149-156. [PMID: 30077095 DOI: 10.1016/j.jchromb.2018.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/30/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Isatidis Folium has been known as a valuable traditional Chinese medicine for thousands of years. Little attention, however, has been paid to its quality control. The aim of the present study was to establish a novel strategy to monitor and assess the quality consistency of Isatidis Folium. First, 20 samples were separated and identified simultaneously by high-performance liquid chromatography in an effective, quick and sensitive way. Then, Single-wavelength fingerprint was fused into multi-wavelength fingerprints to show fingerprints' information thoroughly. The similarity analyses of fingerprints were performed by equal weight quantified ration fingerprint method in terms of qualitative and quantitative aspects. The evaluation result showed that 20 batches of samples were classified into different grades. In addition, the relationship between fingerprints and antioxidant activity were investigated by partial least-squares model, which offered significant medicinal efficacy information for quality control. This comprehensive strategy provided a valuable reference for Isatidis Folium to ameliorate their quality control.
Collapse
Affiliation(s)
- Yaping Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Dandan Gong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Ye Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wei Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
| |
Collapse
|
32
|
Identification of Metabolites of the Cardioprotective Alkaloid Dehydrocorydaline in Rat Plasma and Bile by Liquid Chromatography Coupled with Triple Quadrupole Linear Ion Trap Mass Spectrometry. Molecules 2017; 22:molecules22101686. [PMID: 28994724 PMCID: PMC6151771 DOI: 10.3390/molecules22101686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
Abstract
Dehydrocorydaline (DHC), a quaternary alkaloid from Corydalis yanhusuo, has been demonstrated to be the active constituent in the treatment of coronary heart disease. In this study, a high-performance liquid chromatography–electrospray ionization–triple quadrupole linear ion trap mass spectrometry (HPLC–ESI–QTRAP MS) technique was used to identify DHC metabolites in plasma and bile after oral administration of DHC to rats. A total of 18 metabolites (M1 to M18) were identified and characterized by LC–MS/MS in the positive ion mode. These 18 metabolites were all present in rat bile, while only 9 were detected in plasma. O-demethylation, hydroxylation, di-hydroxylation, glucuronidation of O-demethyl DHC, sulfation of O-demethyl DHC and di-hydroxylation of dehydro-DHC were the major metabolic pathways of DHC. This is the first time that these metabolites of DHC have been identified in rat plasma and bile, which provides useful information for further analysis of the biotransformation of DHC and other quaternary protoberberine-type alkaloids.
Collapse
|