1
|
Zhang S, Li S, Li X, Wan C, Cui L, Wang Y. Anti-fibrosis effect of astragaloside IV in animal models of cardiovascular diseases and its mechanisms: a systematic review. PHARMACEUTICAL BIOLOGY 2025; 63:250-263. [PMID: 40260854 PMCID: PMC12016237 DOI: 10.1080/13880209.2025.2488994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
CONTEXT Myocardial fibrosis is a common manifestation of end-stage cardiovascular disease, but there is a lack of means to reverse fibrosis. Astragaloside IV (AS-IV), the major active component of Astragalus membranaceus Fisch. ex Bunge Fabaceae, possesses diverse biological activities that have beneficial effects against cardiovascular disease. OBJECTIVE This systematic review aims to summarize the anti-fibrosis effect of AS-IV in animal models (rats or mice only) and its underlying mechanisms, and provide potential directions for the clinical use of AS-IV. METHODS PubMed, EMBASE, Web of Science, CNKI, Wanfang database, and SinoMed were searched from inception to 31 December 2024. The following characteristics of the included studies were extracted and summarized: animal model, route of administration, dose/concentration, measurement indicators, and potential mechanisms. The quality of the included studies was assessed used a 10-item scale from SYRCLE. RESULTS AND CONCLUSION AS-IV represents a promising multi-target candidate for myocardial fibrosis treatment in the 24 eligible studies included in the analysis. This systematic review is the first to comprehensively evaluate the anti-fibrosis mechanisms of AS-IV across heterogeneous cardiovascular disease animal models, including myocardial infarction, hypertension, ischemia-reperfusion injury, and myocarditis. The underlying mechanisms of the anti-fibrosis effects of AS-IV may include collagen metabolism, anti-apoptosis, anti-inflammation and, pyroptosis, antioxidants, improving mitochondrial function, regulating senescence, etc. Current evidence remains preclinical, with critical gaps in toxicological profiles, human safety thresholds, and clinical adverse reaction data. Future research must integrate robust toxicological evaluations, optimized combination therapies, and adaptive clinical trials to validate translational potential.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xue Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chen Wan
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Zhang M, Sun X, Gao X, Shen Z, Mao C, Gong J, Wang X. Huangqi Guizhi Wuwu Decoction alleviates diabetic cardiovascular autonomic neuropathy via AMPK/TrkA/TRPM7 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119644. [PMID: 40107475 DOI: 10.1016/j.jep.2025.119644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic cardiac autonomic neuropathy (DCAN) is one of the serious complications of diabetes and greatly increased the risk of cardiovascular disease mortality. Huangqi Guizhi Wuwu Decoction (HGWD) has been proven effective for DCAN, while the underlying mechanism remains unclarified. AIM OF THE STUDY To observe the clinical efficacy of HGWD on DCAN and elucidate its potential mechanisms with the animal model. MATERIALS AND METHODS In this study, a total of 202 patients who met the inclusion criteria were recruited for the clinical trial and were randomly divided into two groups. Betaloc® Zok was used as the positive drug. The effect of HGWD on heart rate variability in DCAN patients was observed. To further clarify its underlying mechanism, the contents of the 7 major components of HGWD were determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The potential mechanism of HGWD in treating DCAN was predicted using network pharmacology combined with molecular docking and protein-protein docking. The diabetic rat model was induced using the high-fat diet (HFD) and streptozotocin (STZ) injection. After successful modeling, rats were pretreated with adeno-associated viral vectors containing transient receptor potential melastatin type 7 (TRPM7) recombinant plasmids (pAAV-TRPM7) for 4 weeks. RESULTS Clinical research showed that HGWD could reduce the number of ventricular premature beats, improve heart rate variability, and correct the imbalance of cardiac autonomic nerves in DCAN patients. In vivo experiments demonstrated that HGWD reduced susceptibility to arrhythmia, ameliorated diabetes-induced myocardial fibrosis, inhibited cardiac autonomic remodeling, and promoted repair of cardiac sympathetic nerves in diabetic rats. Mechanistically, HGWD had an ameliorative effect on DCAN by up-regulating the AMPK/TrkA (adenosine 5'-monophosphate-activated protein kinase/tyrosine kinase receptor A) pathway, thereby inhibiting the TRPM7 channel. CONCLUSIONS HGWD inhibited cardiac autonomic nervous system remodeling, reduced susceptibility to ventricular arrhythmias, and improved DCAN through the regulation of the AMPK/TrkA/TRPM7 pathway, which provided the strong support for its clinical application.
Collapse
Affiliation(s)
- Meng Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Sun
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213004, China
| | - Xin Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhuyang Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Juexiao Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Xindong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
3
|
Chen M, Fu B, Zhou H, Wu Q. Therapeutic potential and mechanistic insights of astragaloside IV in the treatment of arrhythmia: a comprehensive review. Front Pharmacol 2025; 16:1528208. [PMID: 40276608 PMCID: PMC12018449 DOI: 10.3389/fphar.2025.1528208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Arrhythmia, a common cardiovascular disorder, results from disturbances in cardiac impulse generation and conduction, leading to decreased cardiac output and myocardial oxygenation, with potentially life-threatening consequences. Despite advancements in therapeutic approaches, the incidence and mortality associated with arrhythmia remain high, and drug-related adverse effects continue to pose significant challenges. Traditional Chinese Medicine (TCM) has attracted considerable attention for its potential as a complementary and alternative approach in treating cardiovascular diseases, including arrhythmia. Astragalus, a prominent herb in TCM, is commonly used in clinical practice for its multi-faceted therapeutic properties, encompassing anti-arrhythmic, cardiotonic, anti-inflammatory, and immunomodulatory effects. Astragaloside IV, a primary active compound in Astragalus membranaceus, has demonstrated cardioprotective effects through mechanisms such as antioxidant, anti-inflammatory, and anti-apoptotic activities. Although evidence suggests that astragaloside IV holds promise in arrhythmia treatment, comprehensive reviews of its specific mechanisms and clinical applications in arrhythmia are scarce. This review systematically explores the pharmacological properties and underlying mechanisms of astragaloside IV in arrhythmia treatment. Utilizing a targeted search of databases including PubMed, Web of Science, Cochrane Library, Embase, CNKI, and Wanfang Data, we summarize recent findings and examine astragaloside IV's potential applications in arrhythmia prevention and treatment. Our analysis aims to provide a theoretical foundation for the development of novel arrhythmia treatment strategies, while offering insights into future research directions for clinical application.
Collapse
Affiliation(s)
- Meilian Chen
- Cardiac and Pulmonary Department, Quanzhou Hospital of Traditional Chinese Medicine, Fujian, China
| | - Binlan Fu
- Department of Internal Medicine, Chen Dai Central Health Center, Jinjiang, China
| | - Hao Zhou
- Department of Cardiology, The 966th Hospital of The PLA Joint Logistic Support Force, Dandong, China
| | - Qiaomin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Liu H, Wang K, Shang T, Cai Z, Lu C, Shen M, Yu S, Yao X, Shen Y, Chen X, Xu F, Sun H. Astragaloside IV Improves Muscle Atrophy by Modulating the Activity of UPS and ALP via Suppressing Oxidative Stress and Inflammation in Denervated Mice. Mol Neurobiol 2025; 62:4689-4704. [PMID: 39480556 DOI: 10.1007/s12035-024-04590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Peripheral nerve injury is common clinically and can lead to neuronal degeneration and atrophy and fibrosis of the target muscle. The molecular mechanisms of muscle atrophy induced by denervation are complex and not fully understood. Inflammation and oxidative stress play an important triggering role in denervated muscle atrophy. Astragaloside IV (ASIV), a monomeric compound purified from astragalus membranaceus, has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effect of ASIV on denervated muscle atrophy and its molecular mechanism, so as to provide a new potential therapeutic target for the prevention and treatment of denervated muscle atrophy. In this study, an ICR mouse model of muscle atrophy was generated through sciatic nerve dissection. We found that ASIV significantly inhibited the reduction of tibialis anterior muscle mass and muscle fiber cross-sectional area in denervated mice, reducing ROS and oxidative stress-related protein levels. Furthermore, ASIV inhibits the increase in inflammation-associated proteins and infiltration of inflammatory cells, protecting the denervated microvessels in skeletal muscle. We also found that ASIV reduced the expression levels of MAFbx, MuRF1 and FoxO3a, while decreasing the expression levels of autophagy-related proteins, it inhibited the activation of ubiquitin-proteasome and autophagy-lysosome hydrolysis systems and the slow-to-fast myofiber shift. Our results show that ASIV inhibits oxidative stress and inflammatory responses in skeletal muscle due to denervation, inhibits mitophagy and proteolysis, improves microvascular circulation and reverses the transition of muscle fiber types; Therefore, the process of skeletal muscle atrophy caused by denervation can be effectively delayed.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zhigang Cai
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaofang Chen
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China.
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
5
|
Zhang X, Zhao L, Hu S, Miao C, Dong J, Zhang J, Yao B, Lv Y, Peng R. Protective Effects and Mechanisms of Astragaloside on Microwave Radiation-induced Cardiac Injury. Radiat Res 2025; 203:142-154. [PMID: 39911027 DOI: 10.1667/rade-23-00103.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
This study explores the potential protective effects and mechanisms of astragaloside (AST) on microwave radiation-induced cardiac injury. Rats and H9c2 cells were irradiated with S-band microwave to induce in vivo and in vitro cardiac injury models. In irradiated rats, experiments such as electrophysiological examination, serum biochemical analysis, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), western blot, and immunohistochemical staining were performed after AST were administrated for 7 and/or 14 days. In irradiated H9c2 cells that were pretreated with 1-Azakenpaullone (glycogen synthase kinase-3β inhibitor) or AST, experiments such as TEM, cell counting kit-8 assay, western blot, tetramethylrhodamine methylester staining, and determination of reactive oxygen species (ROS), adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were performed. In vivo results showed that at 7 days after exposure, microwave radiation-induced severe cardiac injury (as evidenced by abnormal electrocardiograms and cardiac tissue structure, increased serum myocardial enzyme activities and Ca2+ concentration) and lower level of phosphorylation of glycogen synthase kinase-3β (p-GSK-3βSer9). All these changes were reversed after AST treatment. The results of in vitro experiments showed that microwave radiation induced a lower level of p-GSK-3βSer9, more mitochondrial permeability transition pore (mPTP) opening and more serious mitochondrial dysfunction (characterized by increased intracellular ROS production, decreased intracellular ATP synthesis and MMP decline) in H9c2 cells. All these changes were reversed by 1-Azakenpaullone and AST pretreatment. The findings suggest that AST could shield against microwave radiation-induced cardiac injury by promoting the phosphorylation of GSK-3βSer9, thereby inhibiting mPTP opening and restoring mitochondrial function. This study offers valuable insights into potential therapeutic strategies for mitigating the adverse effects of microwave radiation on cardiac health.
Collapse
Affiliation(s)
- Xueyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shaohua Hu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200062, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Lv
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
6
|
Xu Z, Yang J, Hu Y, Wan Q, Wang X, Lu C, Liu Y. Qifu yixin prescription ameliorates cardiac fibrosis by activating soluble guanylate cyclase (sGC) in heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119229. [PMID: 39653101 DOI: 10.1016/j.jep.2024.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qifu yixin prescription (QYP), an effective traditional Chinese medicine formula, has been utilized in the clinical treatment of cardiovascular diseases for over two decades and has been granted a national invention patent in China. It has demonstrated the ability to improve clinical symptoms in patients with heart failure. However, its precise effects and underlying molecular mechanisms remain unclear. AIM OF THE STUDY To evaluate the efficacy of QYP in treating HF and the underlying mechanisms. MATERIALS AND METHODS The heart failure (HF) model in mice was established using transverse aortic constriction (TAC), while neonatal rat cardiac fibroblasts (CFs) were utilized for in vitro experiments. The bioactive compounds in QYP were identified through high-performance liquid chromatography (HPLC). Cardiac hypertrophy, function, and fibrosis were assessed using morphological observations, echocardiography, and histomorphometric analyses. To investigate the underlying mechanisms by which QYP alleviates HF, transcriptomic analysis was conducted, and network pharmacology was employed to explore its potential mechanisms of action. Mechanistically, the expression levels of sGC, PKG, ERK, and p-ERK were analyzed using western blotting, immunohistochemistry, and immunofluorescence. Molecular docking was conducted to assess the binding affinity of the compounds of QYP to sGC. Additionally, the effects of QYP on CFs were investigated through cell-based assays. RESULTS We identified 33 bioactive compounds in QYP. Histomorphometric and transcriptomic analyses indicated that QYP alleviates cardiac fibrosis in HF. Network pharmacological analysis suggested that the sGC/cGMP/PKG and MAPK pathways are key mechanisms underlying the effects of QYP on cardiac fibrosis. The findings confirmed that QYP activates sGC, leading to the inhibition of ERK phosphorylation. Molecular docking revealed that the compounds of QYP exhibit strong binding affinity to sGC. Additionally, cell-based experiments demonstrated that QYP effectively suppresses CFs activation by stimulating sGC. CONCLUSIONS These results indicate QYP improves cardiac fibrosis in HF by activating sGC to inhibit ERK phosphorylation. We propose that QYP is a potential treatment for HF with anti-fibrotic properties.
Collapse
Affiliation(s)
- Zhaohui Xu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiahui Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yinqin Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qiqi Wan
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinting Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Yongming Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Cardiology, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei Anhui, 230011, China.
| |
Collapse
|
7
|
Bader Eddin L, Nagoor Meeran MF, Kumar Jha N, Goyal SN, Ojha S. Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals. Animal Model Exp Med 2025; 8:67-91. [PMID: 39690876 PMCID: PMC11798751 DOI: 10.1002/ame2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/14/2024] [Indexed: 12/19/2024] Open
Abstract
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fibrosis, which appears to be a leading cause of cardiovascular diseases. Cardiac fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly collagen in the cardiac interstitium. Many experimental studies have demonstrated that fibrotic injury in the heart is reversible; therefore, it is vital to understand different molecular mechanisms that are involved in the initiation, progression, and resolution of cardiac fibrosis to enable the development of antifibrotic agents. Of the many experimental models, one of the recent models that has gained renewed interest is isoproterenol (ISP)-induced cardiac fibrosis. ISP is a synthetic catecholamine, sympathomimetic, and nonselective β-adrenergic receptor agonist. The overstimulated and sustained activation of β-adrenergic receptors has been reported to induce biochemical and physiological alterations and ultimately result in cardiac remodeling. ISP has been used for decades to induce acute myocardial infarction. However, the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis; this practice has increased in recent years. Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy. The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is considered the initiating mechanism of myocardial fibrosis. ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals. In recent years, numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis. The present review exclusively provides a comprehensive summary of the pathological biochemical, histological, and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy. It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as synthetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha UniversityChennaiIndia
| | - Samer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of PharmacyDhuleMaharashtraIndia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
- Zayed Bin Sultan Center for Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| |
Collapse
|
8
|
Chen Y, Wang L, Ma D, Cui Z, Liu Y, Pang Q, Jiang Z, Gao Z. Research on rheumatic heart disease from 2013 to early 2024: a bibliometric analysis. J Cardiothorac Surg 2024; 19:659. [PMID: 39702478 DOI: 10.1186/s13019-024-03175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES The aim of this bibliometric analysis was to highlight potential future areas for the practical application of research on rheumatic heart disease (RHD), considering past and current research efforts. METHODS A systematic search was conducted in the WoSCC to find articles and reviews focused on RHD published between 2013 and 2024. Microsoft Excel 2019 was used to chart the annual productivity of research relevant to RHD, while ArcGIS (version 10.8) was employed to visualize the global distribution of publications. Analysis tools such as CiteSpace (version 6.1.R6) and VOSviewer (version 1.6.18) were utilized to identify the most prolific countries or regions, authors, journals, and resource-, intellectual-, and knowledge-sharing in RHD research, and to perform co-citation analysis of references and keywords. Additionally, the Bibliometrix R Package was used to analyze topic dynamics. RESULTS From the search, a total of 2,428 publications were retrieved. In terms of countries or regions, the United States was the most productive country (566, 23.31%). As for institutions, most publications have been contributed by the University of Cape Town (149, 6.14%). Regarding authors, Jonathan R. Carapetis produced the most published works, and he received the most co-citations. The most prolific journal was identified as the International Journal of Cardiology (70, 2.88%). The study published in Circulation received the most co-citations. Keywords with ongoing strong citation bursts included "surgical treatment" and "valvular heart disease". CONCLUSION Despite the rapid advancements in the field of RHD research, future efforts should prioritize strengthening collaboration among national institutions to facilitate information dissemination. Current research on RHD mainly focuses on prognosis of patients. While, the emerging research trends in RHD encompass treatment strategies for complications, including atrial fibrillation (AF), heart failure (HF), and infective endocarditis, as well as screening strategies for RHD and surgical interventions for patients with rheumatic mitral valve disease.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Liuding Wang
- Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Dan Ma
- Department of Cardiology, Suzhou Branch of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Suzhou, 215009, China
| | - Zhijie Cui
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanjiao Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qinghua Pang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhonghui Jiang
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Zhuye Gao
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
9
|
Xu Lou I, Yu X, Chen Q. Exploratory review on the effect of Astragalus mongholicus on signaling pathways. Front Pharmacol 2024; 15:1510307. [PMID: 39726784 PMCID: PMC11670317 DOI: 10.3389/fphar.2024.1510307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Astragalus mongholicus Bunge [Fabaceae; Astragali radix] (AM), a traditional Chinese medicinal (TCM) botanical drug, has been used for centuries and is gaining growing recognition in medical research for its therapeutic potential. The currently accepted scientific name is Astragalus mongholicus Bunge, with Astragalus membranaceus Fisch. ex Bunge recognized as a taxonomic synonym. This review explores the most relevant scientific studies on AM, focusing on its chemical composition, mechanisms of action, and associated health benefits. Main body AM is commonly used in clinical practice to treat diabetes mellitus, cardiovascular diseases, oncological processes, lipid metabolism disorders, and ulcerative colitis. Recent research has investigated its potential as a product for anti-aging purposes. These therapeutic effects are attributed to the interactions of bioactive metabolites such as Astragaloside IV, Formononetin, and polysaccharides, with various signaling pathways, leading to the activation or inhibition of gene expression. This review aims to map the signaling pathways affected by these metabolites and their effects on different pathologies. Studies suggest that these metabolites act on signaling pathways such as TLR4/MyD88/NF-κB, PI3K/AKT, RNA expression, and tumor receptors. However, further research is necessary to validate the findings in human trials with better methodological quality. Conclusion AM is rich in bioactive metabolites that interact with various signaling pathways, modulating diseases such as diabetes mellitus type 2, cardiovascular diseases, cancer, lipid metabolism disorders, and ulcerative colitis. Although promising, the majority of the studies are conducted in vitro and animal models, and more rigorous human trials are needed to determine the therapeutic potential of AM.
Collapse
Affiliation(s)
| | | | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Wang P, Huang B, Liu Y, Tan X, Liu L, Zhang B, Li Z, Kang L, Hu L. Corynoline protects chronic pancreatitis via binding to PSMA2 and alleviating pancreatic fibrosis. J Gastroenterol 2024; 59:1037-1051. [PMID: 39145797 DOI: 10.1007/s00535-024-02145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Pancreatic fibrosis is the main pathological feature of chronic pancreatitis. There is a lack of medications that effectively alleviate or reverse pancreatic fibrosis and thus cure chronic pancreatitis. METHODS We screened drugs that could alleviate pancreatic fibrosis from 80 traditional Chinese medicine monomers and verified their efficacy and mechanisms. RESULTS We preliminarily identified corynoline as an antifibrotic candidate by drug screening among 80 compounds. In vitro, corynoline dose-dependently reduces collagen I synthesis in pancreatic stellate cells induced by TGF-β1 and inhibits its activation. Furthermore, we found that corynoline could alleviate the morphological disruption, such as acinar cell atrophy, collagen deposition etc., as well as reduced pancreatic weight in mice with chronic pancreatitis. We further validated the antifibrotic effect of corynoline in mRNA and protein levels. We also found that corynoline could inhibit NF-κB signaling pathway in vitro and in vivo. Next, we identified PSMA2 as the binding protein of corynoline by Lip-SMap and validated it using DARTS. Moreover, the siRNA of PSMA2 disrupts the anti-fibrotic effect of corynoline. CONCLUSION In conclusion, corynoline is a promising agent for the treatment of pancreatic fibrosis and chronic pancreatitis.
Collapse
Affiliation(s)
- Pengyuan Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Bangwei Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Yu Liu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
- Department of Gastroenterology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xin Tan
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Libo Liu
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
| | - Baoru Zhang
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| |
Collapse
|
11
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
12
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
13
|
Shi L, Deng J, He J, Zhu F, Jin Y, Zhang X, Ren Y, Du X. Integrative transcriptomics and proteomics analysis reveal the protection of Astragaloside IV against myocardial fibrosis by regulating senescence. Eur J Pharmacol 2024; 975:176632. [PMID: 38718959 DOI: 10.1016/j.ejphar.2024.176632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Myocardial fibrosis (MF) is a pivotal pathological process implicated in various cardiovascular diseases, particularly heart failure. Astragaloside IV (AS-IV), a natural compound derived from Astragalus membranaceus, possesses potent cardioprotective properties. However, the precise molecular mechanisms underlying its anti-MF effects, particularly in relation to senescence, remain elusive. Thus, this study aimed to investigate the therapeutic potential and underlying molecular mechanisms of AS-IV in treating ISO-induced MF in mice, employing transcriptomics, proteomics, in vitro, and in vivo experiments. We assessed the positive effects of AS-IV on ISO-induced MF using HE staining, Masson staining, ELISA, immunohistochemical staining, transthoracic echocardiography, transmission electron microscopy, and DHE fluorescence staining. Additionally, we elucidated the regulatory role of AS-IV in MF through comprehensive transcriptomics and proteomics analyses, complemented by Western blotting and RT-qPCR validation of pertinent molecular pathways. Our findings demonstrated that AS-IV treatment markedly attenuated ISO-induced myocardial injury and oxidative stress, concomitantly inhibiting the release of SASPs. Furthermore, integrated transcriptomics and proteomics analyses revealed that the anti-MF mechanism of AS-IV was associated with regulating cellular senescence and the p53 signaling pathway. These results highlight AS-IV exerts its anti-MF effects not only by inhibiting oxidative stress but also by modulating senescence through the p53 signaling pathway.
Collapse
Affiliation(s)
- Lipeng Shi
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Jingwei Deng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun He
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Feng Zhu
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yuxia Jin
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Xi Zhang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yi Ren
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China.
| | - Xuqin Du
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
14
|
Gao J, Jiang Z, Adams E, Van Schepdael A. A fast and efficient method for screening and evaluation of hypoglycemic ingredients of Traditional Chinese Medicine acting on PTP1B by capillary electrophoresis. J Pharm Biomed Anal 2024; 244:116125. [PMID: 38554553 DOI: 10.1016/j.jpba.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
As a pivotal enzyme that regulates dephosphorylation in cell activities and participates in the insulin signaling pathway, protein tyrosine phosphatase 1B (PTP1B) is considered to be an important target for the therapy of diabetes. In this work, a rapid and efficient inhibitor screening method of PTP1B was established based on capillary electrophoresis (CE), and used for screening and evaluating the inhibition effect of Traditional Chinese Medicine on PTP1B. Response Surface Methodology was used for optimizing the conditions of analysis. After method validation, the enzyme kinetic study and inhibition test were performed. As a result, the IC50 of PTP1B inhibitors Ⅳ and ⅩⅧ were consistent with reported values measured by a conventional method. It was found that the extracts of Astragalus membranaceus (Fisch) Bunge and Morus alba L. showed prominent inhibition on the activity of PTP1B, which were stronger than the positive controls. Meanwhile, on top of the excellent advantages of CE, the whole analysis time is less than 2 min. Thus, the results demonstrated that a fast and efficient screening method was successfully developed. This method could be a powerful tool for screening inhibitors from complex systems. It can also provide an effective basis for lead compound development in drug discovery.
Collapse
Affiliation(s)
- Juan Gao
- KU Leuven, University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven 3000, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Erwin Adams
- KU Leuven, University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven 3000, Belgium
| | - Ann Van Schepdael
- KU Leuven, University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven 3000, Belgium.
| |
Collapse
|
15
|
Zhang J, Lu M, Li C, Yan B, Xu F, Wang H, Zhang Y, Yang Y. Astragaloside IV mitigates hypoxia-induced cardiac hypertrophy through calpain-1-mediated mTOR activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155250. [PMID: 38295664 DOI: 10.1016/j.phymed.2023.155250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Astragaloside IV (AsIV), a key functioning element of Astragalus membranaceus, has been recognized for its potential cardiovascular protective properties. However, there is a need to elucidate the impacts of AsIV on myocardial hypertrophy under hypoxia conditions and its root mechanisms. PURPOSE This study scrutinized the influence of AsIV on cardiac injury under hypoxia, with particular emphasis on the role of calpain-1 (CAPN1) in mediating mTOR pathways. METHODS Hypoxia-triggered cardiac hypertrophy was examined in vivo with CAPN1 knockout and wild-type C57BL/6 mice and in vitro with H9C2 cells. The impacts of AsIV, 3-methyladenine, and CAPN1 inhibition on hypertrophy, autophagy, apoptosis, [Ca2+]i, and CAPN1 and mTOR levels in cardiac tissues and H9C2 cells were investigated. RESULTS Both AsIV treatment and CAPN1 knockout mitigated hypoxia-induced cardiac hypertrophy, autophagy, and apoptosis in mice and H9C2 cells. Moreover, AsIV, 3-methyladenine, and CAPN1 inhibition augmented p-mTOR level but reduced [Ca2+]i and CAPN1 level. Additionally, lentivirus-mediated CAPN1 overexpression in H9C2 cells exacerbated myocardial hypertrophy, apoptosis, and p-mTOR inhibition under hypoxia. Specifically, AsIV treatment reversed the impacts of increased CAPN1 expression on cardiac injury and the inhibition of p-mTOR. CONCLUSION These findings suggest that AsIV may alleviate cardiac hypertrophy under hypoxia by attenuating apoptosis and autophagy through CAPN1-mediated mTOR activation.
Collapse
Affiliation(s)
- Jingliang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Cong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Bingju Yan
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fang Xu
- Department of Pharmacy, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| | - Yingjie Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Yuhong Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
16
|
Wang M, Yan M, Tan L, Zhao X, Liu G, Zhang Z, Zhang J, Gao H, Qin W. Non-coding RNAs: targets for Chinese herbal medicine in treating myocardial fibrosis. Front Pharmacol 2024; 15:1337623. [PMID: 38476331 PMCID: PMC10928947 DOI: 10.3389/fphar.2024.1337623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
Collapse
Affiliation(s)
- Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
17
|
Han M, Liu H, Liu G, Li X, Zhou L, Liu Y, Dou T, Yang S, Tang W, Wang Y, Li L, Ding H, Liu Z, Wang J, Chen X. Mogroside V alleviates inflammation response by modulating miR-21-5P/SPRY1 axis. Food Funct 2024; 15:1909-1922. [PMID: 38258992 DOI: 10.1039/d3fo01901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mogroside V (MV) is a natural sweetener extracted from the edible plant Siraitia grosvenorii that possesses anti-inflammatory bioactivity. It has been reported that microRNAs (miRNAs) play an important role in the inflammation response suppression by natural agents. However, whether the anti-inflammation effect of mogroside V is related to miRNAs and the underlying mechanism remains unclear. Our study aimed to identify the key miRNAs important for the anti-inflammation effect of MV and reveal its underlying mechanisms. Our results showed that MV effectively alleviated lung inflammation in ovalbumin-induced (OVA-induced) asthmatic mice. miRNA-seq and mRNA-seq combined analysis identified miR-21-5p as an important miRNA for the inflammation inhibition effect of MV and it predicted SPRY1 to be a target gene of miR-21-5p. We found that MV significantly inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and nitric oxide (NO), as well as the protein expression of p-P65/P65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in OVA-induced asthmatic mice and LPS-treated RAW 264.7 cells. Moreover, the release of ROS increased in LPS-stimulated RAW 264.7 cells but was mitigated by MV pretreatment. In the meantime, the expression of miR-21-5p was decreased by MV, leading to an increase in the expression of SPRY1 in RAW 264.7 cells. Furthermore, miR-21-5p overexpression or SPRY1 knockdown reversed MV's protective effect on inflammatory responses. Conversely, miR-21-5p inhibition or SPRY1 overexpression enhanced MV's effect on inflammatory responses in LPS-exposed RAW 264.7 cells. Therefore, the significant protective effect of mogroside V on inflammation response is related to the downregulation of miR-21-5p and upregulation of SPRY1 in vitro and in vivo, MiR-21-5p/SPRY1 may be novel therapeutic targets of MV for anti-inflammation treatment.
Collapse
Affiliation(s)
- Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Haiping Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, P.R. China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, P.R. China
| | - Sijie Yang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Wei Tang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Yan Wang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Linjun Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Hongfang Ding
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Zhangchi Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Juan Wang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, 541001, P.R. China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Faculty of Basic Medicine, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| |
Collapse
|
18
|
Xue Y, Tong T, Zhang Y, Huang H, Zhao L, Lv H, Xiong L, Zhang K, Han Y, Fu Y, Wang Y, Huo R, Wang N, Ban T. miR-133a-3p/TRPM4 axis improves palmitic acid induced vascular endothelial injury. Front Pharmacol 2024; 14:1340247. [PMID: 38269270 PMCID: PMC10806017 DOI: 10.3389/fphar.2023.1340247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Background: Vascular endothelial injury is a contributing factor to the development of atherosclerosis and the resulting cardiovascular diseases. One particular factor involved in endothelial cell apoptosis and atherosclerosis is palmitic acid (PA), which is a long-chain saturated fatty acid. In addition, transient receptor potential melastatin 4 (TRPM4), a non-selective cation channel, plays a significant role in endothelial dysfunction caused by various factors related to cardiovascular diseases. Despite this, the specific role and mechanisms of TRPM4 in atherosclerosis have not been fully understood. Methods: The protein and mRNA expressions of TRPM4, apoptosis - and inflammation-related factors were measured after PA treatment. The effect of TRPM4 knockout on the protein and mRNA expression of apoptosis and inflammation-related factors was detected. The changes of intracellular Ca2+, mitochondrial membrane potential, and reactive oxygen species were detected by Fluo-4 AM, JC-1, and DCFH-DA probes, respectively. To confirm the binding of miR-133a-3p to TRPM4, a dual luciferase reporter gene assay was conducted. Finally, the effects of miR-133a-3p and TRPM4 on intracellular Ca2+, mitochondrial membrane potential, and reactive oxygen species were examined. Results: Following PA treatment, the expression of TRPM4 increases, leading to calcium overload in endothelial cells. This calcium influx causes the assemblage of Bcl-2, resulting in the opening of mitochondrial calcium channels and mitochondrial damage, ultimately triggering apoptosis. Throughout this process, the mRNA and protein levels of IL-1β, ICAM-1, and VCAM1 significantly increase. Database screenings and luciferase assays have shown that miR-133a-3p preferentially binds to the 3'UTR region of TRPM4 mRNA, suppressing TRPM4 expression. During PA-induced endothelial injury, miR-133a-3p is significantly decreased, but overexpression of miR-133a-3p can attenuate the progression of endothelial injury. On the other hand, overexpression of TRPM4 counteracts the aforementioned changes. Conclusion: TRPM4 participates in vascular endothelial injury caused by PA. Therefore, targeting TRPM4 or miR-133a-3p may offer a novel pharmacological approach to preventing endothelial injury.
Collapse
Affiliation(s)
- Yadong Xue
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Tong
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuyao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haijun Huang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ling Zhao
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongzhao Lv
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingzhao Xiong
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kai Zhang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuxuan Han
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuyang Fu
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yongzhen Wang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rong Huo
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Ban
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology) at College of Pharmacy, Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- National-Local Joint Engineering Laboratory of Drug Research and Development of Cardio-Cerebrovascular Diseases in Frigid Zone, The National Development and Reform Commission, Harbin, China
| |
Collapse
|
19
|
Wang AH, Ma HY, Yi YL, Zhu SJ, Yu ZW, Zhu J, Mei S, Bahetibike S, Lu YQ, Huang LT, Yang RY, Rui-Wang, Xiao SL, Qi R. Oleanolic acid derivative alleviates cardiac fibrosis through inhibiting PTP1B activity and regulating AMPK/TGF-β/Smads pathway. Eur J Pharmacol 2023; 960:176116. [PMID: 38059443 DOI: 10.1016/j.ejphar.2023.176116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
Cardiac fibrosis (CF) in response to persistent exogenous stimuli or myocardial injury results in cardiovascular diseases (CVDs). Protein tyrosine phosphatase 1B (PTP1B) can promote collagen deposition through regulating AMPK/TGF-β/Smads signaling pathway, and PTP1B knockout improves cardiac dysfunction against overload-induced heart failure. Oleanolic acid (OA) has been proven to be an inhibitor of PTP1B, and its anti-cardiac remodeling effects have been validated in different mouse models. To improve the bioactivity of OA and to clarify whether OA derivatives with stronger inhibition of PTP1B activity have greater prevention of cardiac remodeling than OA, four new OA derivatives were synthesized and among them, we found that compound B had better effects than OA in inhibiting cardiac fibrosis both in vivo in the isoproterenol (ISO)-induced mouse cardiac fibrosis and in vitro in the TGF-β/ISO-induced 3T3 cells. Combining with the results of molecular docking, surface plasmon resonance and PTP1B activity assay, we reported that OA and compound B directly bound to PTP1B and inhibited its activity, and that compound B showed comparable binding capability but stronger inhibitory effect on PTP1B activity than OA. Moreover, compound B presented much greater effects on AMPK activation and TGF-β/Smads inhibition than OA. Taken together, OA derivative compound B more significantly alleviated cardiac fibrosis than OA through much greater inhibition of PTP1B activity and thus much stronger regulation of AMPK/TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- An-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Hao-Yue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Yan-Liang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Su-Jie Zhu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Zhe-Wei Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Zhu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Si Mei
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Shamuha Bahetibike
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - You-Qun Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Li-Ting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ruo-Yao Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Rui-Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Su-Long Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| |
Collapse
|
20
|
Qiu Y, Song X, Liu Y, Wu Y, Shi J, Zhang F, Pan Y, Cao Z, Zhang K, Liu J, Chu Y, Yuan X, Wu D. Application of recombinant TGF-β1 inhibitory peptide to alleviate isoproterenol-induced cardiac fibrosis. Appl Microbiol Biotechnol 2023; 107:6251-6262. [PMID: 37606791 DOI: 10.1007/s00253-023-12722-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Cardiac fibrosis is a remodeling process of the cardiac interstitium, characterized by abnormal metabolism of the extracellular matrix, excessive accumulation of collagen fibers, and scar tissue hyperplasia. Persistent activation and transdifferentiation into myofibroblasts of cardiac fibroblasts promote the progression of fibrosis. Transforming growth factor-β1 (TGF-β1) is a pivotal factor in cardiac fibrosis. Latency-associated peptide (LAP) is essential for activating TGF-β1 and its binding to the receptor. Thus, interference with TGF-β1 and the signaling pathways using LAP may attenuate cardiac fibrosis. Recombinant full-length and truncated LAP were previously constructed, expressed, and purified. Their effects on cardiac fibrosis were investigated in isoproterenol (ISO)-induced cardiac fibroblasts (CFs) and C57BL/6 mice. The study showed that LAP and tLAP inhibited ISO-induced CF activation, inflammation, and fibrosis, improved cardiac function, and alleviated myocardial injury in ISO-induced mice. LAP and tLAP alleviated the histopathological alterations and inhibited the elevated expression of inflammatory and fibrosis-related markers in cardiac tissue. In addition, LAP and tLAP decreased the ISO-induced elevated expression of TGF-β, αvβ3, αvβ5, p-Smad2, and p-Smad3. The study indicated that LAP and tLAP attenuated ISO-induced cardiac fibrosis via suppressing TGF-β/Smad pathway. This study may provide a potential approach to alleviate cardiac fibrosis. KEY POINTS: • LAP and tLAP inhibited ISO-induced CF activation, inflammation, and fibrosis. • LAP and tLAP improved cardiac function and alleviated myocardial injury, inflammation, and fibrosis in ISO-induced mice. • LAP and tLAP attenuated cardiac fibrosis via suppressing TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Yufei Qiu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xudong Song
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yong Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yan Wu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jiayi Shi
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Fan Zhang
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yu Pan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Zhiqin Cao
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Keke Zhang
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jingruo Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| | - Dan Wu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| |
Collapse
|
21
|
Ren Z, Zhang Z, Ling L, Liu X, Wang X. Drugs for treating myocardial fibrosis. Front Pharmacol 2023; 14:1221881. [PMID: 37771726 PMCID: PMC10523299 DOI: 10.3389/fphar.2023.1221881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Myocardial fibrosis, which is a common pathological manifestation of many cardiovascular diseases, is characterized by excessive proliferation, collagen deposition and abnormal distribution of extracellular matrix fibroblasts. In clinical practice, modern medicines, such as diuretic and β receptor blockers, and traditional Chinese medicines, such as salvia miltiorrhiza and safflower extract, have certain therapeutic effects on myocardial fibrosis. We reviewed some representative modern medicines and traditional Chinese medicines (TCMs) and their related molecular mechanisms for the treatment of myocardial fibrosis. These drugs alleviate myocardial fibrosis by affecting related signaling pathways and inhibiting myocardial fibrosis-related protein synthesis. This review will provide more references and help for the research and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zixuan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Ling
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
22
|
Liu J, Chen H, Li X, Song C, Wang L, Wang D. Micro-Executor of Natural Products in Metabolic Diseases. Molecules 2023; 28:6202. [PMID: 37687031 PMCID: PMC10488769 DOI: 10.3390/molecules28176202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Obesity, diabetes, and cardiovascular diseases are the major chronic metabolic diseases that threaten human health. In order to combat these epidemics, there remains a desperate need for effective, safe, and easily available therapeutic strategies. Recently, the development of natural product research has provided new methods and options for these diseases. Numerous studies have demonstrated that microRNAs (miRNAs) are key regulators of metabolic diseases, and natural products can improve lipid and glucose metabolism disorders and cardiovascular diseases by regulating the expression of miRNAs. In this review, we present the recent advances involving the associations between miRNAs and natural products and the current evidence showing the positive effects of miRNAs for natural product treatment in metabolic diseases. We also encourage further research to address the relationship between miRNAs and natural products under physiological and pathological conditions, thus leading to stronger support for drug development from natural products in the future.
Collapse
Affiliation(s)
- Jinxin Liu
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Huanwen Chen
- Center for Agricultural and Rural Development, Zhangdian District, Zibo 255000, China;
| | - Xiaoli Li
- Zibo Digital Agriculture and Rural Development Center, Zibo 255000, China;
| | - Chunmei Song
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Deguo Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| |
Collapse
|
23
|
Liang Y, Chen B, Liang D, Quan X, Gu R, Meng Z, Gan H, Wu Z, Sun Y, Liu S, Dou G. Pharmacological Effects of Astragaloside IV: A Review. Molecules 2023; 28:6118. [PMID: 37630371 PMCID: PMC10458270 DOI: 10.3390/molecules28166118] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Astragaloside IV (AS-IV) is one of the main active components extracted from the Chinese medicinal herb Astragali and serves as a marker for assessing the herb's quality. AS-IV is a tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and exhibits various biological activities. This review article summarizes the chemical structure of AS-IV, its pharmacological effects, mechanism of action, applications, future prospects, potential weaknesses, and other unexplored biological activities, aiming at an overall analysis. Papers were retrieved from online electronic databases, such as PubMed, Web of Science, and CNKI, and data from studies conducted over the last 10 years on the pharmacological effects of AS-IV as well as its impact were collated. This review focuses on the pharmacological action of AS-IV, such as its anti-inflammatory effect, including suppressing inflammatory factors, increasing T and B lymphocyte proliferation, and inhibiting neutrophil adhesion-associated molecules; antioxidative stress, including scavenging reactive oxygen species, cellular scorching, and regulating mitochondrial gene mutations; neuroprotective effects, antifibrotic effects, and antitumor effects.
Collapse
Affiliation(s)
- Yutong Liang
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Biqiong Chen
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Di Liang
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Xiaoxiao Quan
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing 100091, China; (Y.L.); (D.L.); (X.Q.); (R.G.); (Z.M.); (H.G.); (Z.W.); (Y.S.)
| |
Collapse
|
24
|
Li L, Guan J, Lin R, Wang F, Ma H, Mao C, Guo X, Qu Z, Guan R. Astragaloside IV alleviates lung inflammation in Klebsiella pneumonia rats by suppressing TGF-β1/Smad pathway. Braz J Med Biol Res 2023; 56:e12203. [PMID: 37493767 PMCID: PMC10361639 DOI: 10.1590/1414-431x2023e12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 07/27/2023] Open
Abstract
Astragaloside IV is a biologically active substance derived from the traditional Chinese medicine Astragalus mambranaceus Bunge, and has antioxidant, anti-inflammatory, and anti-apoptotic properties. In this study, we aimed to investigate the effects of astragaloside IV on Klebsiella pneumonia rats and the underlying mechanisms. Klebsiella pneumoniae (K. pneumoniae) rats were treated with different dosages of astragaloside IV (5, 10, and 20 mg/kg) by intragastric administration. The levels of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) were determined. Pathological changes of lung tissue were inspected by HE staining. The expression of transforming growth factor (TGF)-β1 in lung tissue was determined with immunohistochemistry, and the expression levels of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3, IκBα/p-IκBα, and p65/p-p65 in lung tissue were determined by western blot. The mechanism was further investigated with TGF-β1 inhibitor SB-431542. Astragaloside IV reduced the elevated levels of pro-inflammatory cytokines caused by K. pneumoniae and improved lung tissue damage in a dose-dependent manner. Astragaloside IV also decreased the expression of TGF-β1/Smad signaling pathway-related proteins and decreased the protein levels of inflammation-related p-IκBα and p65 in lung tissues induced by K. pneumoniae. Additionally, it was found that the effects of 20 mg/kg astragaloside IV were similar to SB-431542, which could improve pulmonary fibrosis induced by K. pneumoniae, decrease the levels of TGF-β1/Smad signaling pathway-related proteins in lung, and reduce inflammation at the same time. Astragaloside IV could alleviate the inflammation of rat pneumonia induced by K. pneumoniae through suppressing the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Lei Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Guan
- Department of Neurology, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Rongjun Lin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Wang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Ma
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenggang Mao
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqing Guo
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Renzheng Guan
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
26
|
Yang C, Pan Q, Ji K, Tian Z, Zhou H, Li S, Luo C, Li J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front Pharmacol 2023; 14:1187910. [PMID: 37251311 PMCID: PMC10213926 DOI: 10.3389/fphar.2023.1187910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cardiovascular disease is a global health problem. Astragaloside IV (AS-IV) is a saponin compound extracted from the roots of the Chinese herb Astragalus. Over the past few decades, AS-IV has been shown to possess various pharmacological properties. It can protect the myocardium through antioxidative stress, anti-inflammatory effects, regulation of calcium homeostasis, improvement of myocardial energy metabolism, anti-apoptosis, anti-cardiomyocyte hypertrophy, anti-myocardial fibrosis, regulation of myocardial autophagy, and improvement of myocardial microcirculation. AS-IV exerts protective effects on blood vessels. For example, it can protect vascular endothelial cells through antioxidative stress and anti-inflammatory pathways, relax blood vessels, stabilize atherosclerotic plaques, and inhibit the proliferation and migration of vascular smooth muscle cells. Thus, the bioavailability of AS-IV is low. Toxicology indicates that AS-IV is safe, but should be used cautiously in pregnant women. In this paper, we review the mechanisms of AS-IV prevention and treatment of cardiovascular diseases in recent years to provide a reference for future research and drug development.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhuang Tian
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Meshram S, Verma VK, Mutneja E, Sahu AK, Malik S, Mishra P, Bhatia J, Arya DS. Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats. Br J Nutr 2023; 129:1105-1118. [PMID: 35177130 DOI: 10.1017/s0007114522000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cardiac hypertrophy is the enlargement of cardiomyocytes in response to persistent release of catecholamine which further leads to cardiac fibrosis. Chrysin, flavonoid from honey, is well known for its multifarious properties like antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic. To investigate the cardioprotective potential of chrysin against isoproterenol (ISO), cardiac hypertrophy and fibrosis are induced in rats. Acclimatised male albino Wistar rats were divided into seven groups (n 6): normal (carboxymethyl cellulose at 0·5 % p.o.; as vehicle), hypertrophy control (ISO 3 mg/kg, s.c.), CHY15 + H, CHY30 + H & CHY60 + H (chrysin; p.o.15, 30 and 60 mg/kg respectively + ISO at 3 mg/kg, s.c.), CHY60 (chrysin 60 mg/kg in per se) and LST + H (losartan 10 mg/kg p.o. + ISO 3 mg/kg, s.c.) were treated for 28 d. After the dosing schedule on day 29, haemodynamic parameters were recorded, after that blood and heart were excised for biochemical, histological, ultra-structural and molecular evaluations. ISO administration significantly increases heart weight:body weight ratio, pro-oxidants, inflammatory and cardiac injury markers. Further, histopathological, ultra-structural and molecular studies confirmed deteriorative changes due to ISO administration. Pre-treatment with chrysin of 60 mg/kg reversed the ISO-induced damage to myocardium and prevent cardiac hypertrophy and fibrosis through various anti-inflammatory, anti-apoptotic, antioxidant and anti-fibrotic pathways. Data demonstrated that chrysin attenuated myocardial hypertrophy and prevented fibrosis via activation of transforming growth factor-beta (TGF-β)/Smad signalling pathway.
Collapse
Affiliation(s)
- Sonali Meshram
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Vipin Kumar Verma
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Ekta Mutneja
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Anil Kumar Sahu
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Prashant Mishra
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Dharamvir S Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| |
Collapse
|
28
|
Ren C, Zhao X, Liu K, Wang L, Chen Q, Jiang H, Gao X, Lv X, Zhi X, Wu X, Li Y. Research progress of natural medicine Astragalus mongholicus Bunge in treatment of myocardial fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116128. [PMID: 36623754 DOI: 10.1016/j.jep.2022.116128] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis (MF) is a common pathological manifestation of many cardiovascular diseases at a certain stage, with excessive accumulation of collagen fibers, excessive increase in collagen content, and a significant increase in collagen volume as the main pathological changes. There are currently no effective drugs for the treatment of myocardial fibrosis. Traditional Chinese medicine (TCM), the main component of the medical practice used for more than 5000 years, especially in China, often exerts a wider action spectrum than previously attempted options in treating human diseases. In recent times, the great potential of TCM in the treatment of MF has received much attention. Especially many experimental studies on the treatment of MF by Astragalus mongholicus Bunge have been conducted, and the effect is remarkable, which may provide more comprehensive database and theoretical support for the application of Astragalus mongholicus Bunge in the treatment of MF and could be considered a promising candidate drug for preventing MF. AIM OF THE REVIEW This review summarizes the chemical components of Astragalus mongholicus Bunge, Astragalus mongholicus Bunge extract, Astragalus mongholicus Bunge single prescription, and Astragalus mongholicus Bunge compound preparation in the treatment of MF, and provides comprehensive information and a reliable basis for the exploration of new treatment strategies of botanical drugs in the therapy of MF. METHODS The literature information was obtained from the scientific databases on ethnobotany and ethnomedicines (up to August 2022), mainly from the PubMed, Web of Science, and CNKI databases. The experimental studies on the anti-myocardial fibrosis role of the effective active components of Astragalus mongholicus Bunge and the utility of its compound preparation and the involved mechanisms were identified. The search keywords for such work included: "myocardial fibrosis" or "Cardiac fibrosis ", and "Astragalus mongholicus Bunge", "extract," or "herb". RESULTS Several studies have shown that the effective active components of Astragalus mongholicus Bunge and its formulas, particularly Astragaloside IV, Astragalus polysaccharide, total saponins of Astragalus mongholicus Bunge, triterpenoid saponins of Astragalus mongholicus Bunge, and cycloastragenol, exhibit potential benefits against MF, the mechanisms of which appear to involve the regulation of inflammation, oxidant stress, and pro-fibrotic signaling pathways, etc. Conclusion: These research works have shown the therapeutic benefits of Astragalus mongholicus Bunge in the treatment of MF. However, further research should be undertaken to clarify the unconfirmed chemical composition and regulatory mechanisms, conduct standard clinical trials, and evaluate the possible side effects. The insights in the present review provided rich ideas for developing new anti-MF drugs. THESIS Myocardial fibrosis (MF) with excessive accumulation of collagen fibers, excessive increase in collagen content, and a significant increase in collagen volume as the main pathological changes is a common pathological manifestation of many cardiovascular diseases at a certain stage, which seriously affects cardiac function. At present, there is still a lack of effective drugs for the treatment of MF. Traditional Chinese medicine (TCM), the main component of the medical practice used for more than 5000 years especially in China, often exerts wider action spectrum than previously attempted options in treating human diseases. In recent times, the great potential of TCM in the treatment of MF has received much attention. Especially many experimental studies on the treatment of MF by Astragalus mongholicus Bunge have been conducted, and the effect is remarkable, which may provide more comprehensive data base and theoretical support for the application of Astragalus mongholicus Bunge in the treatment of MF and could be considered a promising candidate drug for preventing MF.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Xinke Zhao
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Lirong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China; The second hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Gansu Province Key Laboratory of Chinese Medicine for the Prevention andTreatment of Chronic Diseases, Lanzhou, 730000, China; Key clinical specialty of the National Health Commission of the People's Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
29
|
Chen X, Tian C, Zhang Z, Qin Y, Meng R, Dai X, Zhong Y, Wei X, Zhang J, Shen C. Astragaloside IV Inhibits NLRP3 Inflammasome-Mediated Pyroptosis via Activation of Nrf-2/HO-1 Signaling Pathway and Protects against Doxorubicin-Induced Cardiac Dysfunction. FRONT BIOSCI-LANDMRK 2023; 28:45. [PMID: 37005753 DOI: 10.31083/j.fbl2803045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 03/06/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is an effective broad-spectrum antitumor drug, but its clinical application is limited due to the side effects of cardiac damage. Astragaloside IV (AS-IV) is a significant active component of Astragalus membranaceus that exerts cardioprotective effects through various pathways. However, whether AS-IV exerts protective effects against DOX-induced myocardial injury by regulating the pyroptosis is still unknown and is investigated in this study. METHODS The myocardial injury model was constructed by intraperitoneal injection of DOX, and AS-IV was administered via oral gavage to explore its specific protective mechanism. Cardiac function and cardiac injury indicators, including lactate dehydrogenase (LDH), cardiac troponin I (cTnI), creatine kinase isoenzyme (CK-MB), and brain natriuretic peptide (BNP), and histopathology of the cardiomyocytes were assessed 4 weeks post DOX challenge. Serum levels of IL-1β, IL-18, superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) and the expression of pyroptosis and signaling proteins were also determined. RESULTS Cardiac dysfunction was observed after the DOX challenge, as evidenced by reduced ejection fraction, increased myocardial fibrosis, and increased BNP, LDH, cTnI, and CK-MB levels (p < 0.05, N = 3-10). AS-IV attenuated DOX-induced myocardial injury. The mitochondrial morphology and structure were also significantly damaged after DOX treatment, and these changes were restored after AS-IV treatment. DOX induced an increase in the serum levels of IL-1β, IL-18, SOD, MDA and GSH as well as an increase in the expression of pyroptosis-related proteins (p < 0.05, N = 3-6). Besides, AS-IV depressed myocardial inflammatory-related pyroptosis via activation of the expressions of nuclear factor E2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1) (p < 0.05, N = 3). CONCLUSIONS Our results showed that AS-IV had a significant protective effect against DOX-induced myocardial injury, which may be associated with the activation of Nrf-2/HO-1 to inhibit pyroptosis.
Collapse
Affiliation(s)
- Xueheng Chen
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Chao Tian
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Zhiqiang Zhang
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Yiran Qin
- Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, China
| | - Runqi Meng
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Xuening Dai
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Yuanyuan Zhong
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Xiqing Wei
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Jinguo Zhang
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Cheng Shen
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| |
Collapse
|
30
|
Li C, Meng X, Wang L, Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway. Front Pharmacol 2023; 14:1092148. [PMID: 36843918 PMCID: PMC9947662 DOI: 10.3389/fphar.2023.1092148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Cardiac fibrosis is a serious public health problem worldwide that is closely linked to progression of many cardiovascular diseases (CVDs) and adversely affects both the disease process and clinical prognosis. Numerous studies have shown that the TGF-β/Smad signaling pathway plays a key role in the progression of cardiac fibrosis. Therefore, targeted inhibition of the TGF-β/Smad signaling pathway may be a therapeutic measure for cardiac fibrosis. Currently, as the investigation on non-coding RNAs (ncRNAs) move forward, a variety of ncRNAs targeting TGF-β and its downstream Smad proteins have attracted high attention. Besides, Traditional Chinese Medicine (TCM) has been widely used in treating the cardiac fibrosis. As more and more molecular mechanisms of natural products, herbal formulas, and proprietary Chinese medicines are revealed, TCM has been proven to act on cardiac fibrosis by modulating multiple targets and signaling pathways, especially the TGF-β/Smad. Therefore, this work summarizes the roles of TGF-β/Smad classical and non-classical signaling pathways in the cardiac fibrosis, and discusses the recent research advances in ncRNAs targeting the TGF-β/Smad signaling pathway and TCM against cardiac fibrosis. It is hoped, in this way, to give new insights into the prevention and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Chunjun Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangxiang Meng
- College of Marxism, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Wang
- First College of Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Dai
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Xia Dai,
| |
Collapse
|
31
|
Zhou R, Guo T, Li J. Research progress on the antitumor effects of astragaloside IV. Eur J Pharmacol 2023; 938:175449. [PMID: 36473596 DOI: 10.1016/j.ejphar.2022.175449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
One of the most important and effective components of Astragalus membranaceus is astragaloside IV (AS-IV), which can exert anti-tumor effects through various pathways. For instance, AS-IV exerts an anti-tumor effect by acting at the cellular level, regulating the phenotype switch of tumor-associated macrophages, or inhibiting the development of tumor cells. Furthermore, AS-IV inhibits tumor cell progression by enhancing its sensitivity to antitumor drugs or reversing the drug resistance of tumor cells. This article reviews the different mechanisms of AS-IV inhibition of epithelial-mesenchymal transition (EMT), migration, proliferation, and invasion of tumor cells, inducing apoptosis and improving the sensitivity of anti-tumor drugs. This review summarizes recent progress in the current research into AS-IV anti-tumor effect and provides insight on the next anti-tumor research of AS-IV.
Collapse
Affiliation(s)
- Ruixi Zhou
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
32
|
Fan X, Feng K, Liu Y, Yang L, Zhao Y, Tian L, Tang Y, Wang X. miR-135a Regulates Atrial Fibrillation by Targeting Smad3. Cardiovasc Ther 2023; 2023:8811996. [PMID: 37187923 PMCID: PMC10181910 DOI: 10.1155/2023/8811996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Background Atrial fibrillation (AF) is the most common arrhythmia in clinical. Atrial fibrosis is a hallmark feature of atrial structural remodeling in AF, which is regulated by the TGF-β1/Smad3 pathway. Recent studies have implicated that miRNAs are involved in the process of AF. However, the regulatory mechanisms of miRNAs remain largely unknown. This study is aimed at investigating the function and regulatory network of miR-135a in AF. Methods In vivo, the plasma was collected from patients with AF and non-AF subjects. Adult SD rats were induced by acetylcholine (ACh) (66 μg/ml)-CaCl2 (10 mg/ml) to establish an AF rat model. In vitro, atrial fibroblasts (AFs), isolated from adult SD rats, were treated with high-frequency electrical stimulation (HES) (12 h) and hypoxia (24 h) to mimic the AF and atrial fibrosis, respectively. miR-135a expression was detected through quantitative real-time polymerase chain reaction (qRT-PCR). The association between miR-135a and Smad3 was speculated by the TargetScan database and confirmed by the luciferase reporter assay. Fibrosis-related genes, Smad3, and TRPM7 were all assessed. Results The expression of miR-135a was markedly decreased in the plasma of AF patients and AF rats, which was consistent with that in HES-treated and hypoxia-treated AFs. Smad3 was identified as a target of miR-135a. the downregulation of miR-135a was associated with the enhancement of Smad3/TRPM7 expressions in AFs. Additionally, the knockdown of Smad3 significantly reduced the expression of TRPM7 and further inhibited atrial fibrosis. Conclusions Our study demonstrates that miR-135a regulates AF via Smad3/TRPM7, which is a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Xueting Fan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Kai Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonghui Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Leixi Yang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yizhuo Zhao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmacy, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Liping Tian
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaozhi Wang
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
33
|
Yuan W, Tian Y, Lin C, Wang Y, Liu Z, Zhao Y, Chen F, Miao X. Pectic polysaccharides derived from Hainan Rauwolfia ameliorate NLR family pyrin domain-containing 3-mediated colonic epithelial cell pyroptosis in ulcerative colitis. Physiol Genomics 2023; 55:27-40. [PMID: 36440907 DOI: 10.1152/physiolgenomics.00081.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pectic polysaccharides (PPs) could exert functions on ulcerative colitis (UC), which is classified as a nonspecific inflammatory disorder. This study investigated the molecular mechanism of PPs derived from Rauwolfia in UC. First, the dextran sodium sulfate (DSS)-induced mouse colitis models and lipopolysaccharide (LPS)-treated colonic epithelial cell (YAMC) models were established and treated with PP. Subsequently, the effects of PPs on mucosal damages in DSS mice were detected, and the levels of inflammatory cytokines, pyroptosis-related factors, oxidative stress-related markers, and the tight junction-related proteins in the tissues or cells were examined, and the results suggested that PPs ameliorated colonic mucosal damages and cell pyroptosis in DSS mice, and limited colonic epithelial cell pyroptosis in in vitro UC models. Subsequently, the binding relations of retinol-binding protein 4 (RBP4) to miR-124-3p and NLR pyrin domain-containing 3 (NLRP3) were analyzed. miR-124-3p targeted RBP4 and reduced the binding of RBP4 to NLRP3, thus inhibiting NLRP3-mediated pyroptosis. Finally, functional rescue experiments revealed that miR-124-3p suppression or RBP4 overexpression promoted colonic epithelial cell pyroptosis. Collectively, Rauwolfia-derived PPs limited miR-124-3p and targeted RBP4 and reduced the binding potency of RBP4 to NLRP3 to inhibit NLRP3-mediated pyroptosis, resulting in the alleviation of colonic epithelial cell pyroptosis and mucosal damages in UC.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Emergency Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Tian
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Cheng Lin
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuxuan Wang
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ye Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengying Chen
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
34
|
Zhao ZX, Tang XH, Jiang SL, Pang JQ, Xu YB, Yuan DD, Zhang LL, Liu HM, Fan Q. Astragaloside IV improves the pharmacokinetics of febuxostat in rats with hyperuricemic nephropathy by regulating urea metabolism in gut microbiota. Front Pharmacol 2022; 13:1031509. [PMID: 36605404 PMCID: PMC9807765 DOI: 10.3389/fphar.2022.1031509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hyperuricemic nephropathy (HN) is a common clinical complication of hyperuricemia. The pathogenesis of HN is directly related to urea metabolism in the gut microbiota. Febuxostat, a potent xanthine oxidase inhibitor, is the first-line drug used for the treatment of hyperuricemia. However, there have been few studies on the pharmacokinetics of febuxostat in HN animal models or in patients. In this study, a high-purine diet-induced HN rat model was established. The pharmacokinetics of febuxostat in HN rats was evaluated using LC-MS/MS. Astragaloside IV (AST) was used to correct the abnormal pharmacokinetics of febuxostat. Gut microbiota diversity analysis was used to evaluate the effect of AST on gut microbiota. The results showed that the delayed elimination of febuxostat caused drug accumulation after multiple administrations. Oral but not i. p. AST improved the pharmacokinetics of febuxostat in HN rats. The mechanistic study showed that AST could regulate urea metabolism in faeces and attenuate urea-ammonia liver-intestine circulation. Urease-related genera, including Eubacterium, Parabacteroides, Ruminococcus, and Clostridia, decreased after AST prevention. In addition, the decrease in pathogenic genera and increase in short-chain fatty acids (SCFA) producing genera also contribute to renal function recovery. In summary, AST improved the pharmacokinetics of febuxostat in HN rats by comprehensive regulation of the gut microbiota, including urea metabolism, anti-calcification, and short-chain fatty acid generation. These results imply that febuxostat might accumulate in HN patients, and AST could reverse the accumulation through gut microbiota regulation.
Collapse
Affiliation(s)
- Zhen Xiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xiao Hui Tang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Sheng Lu Jiang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jia Qian Pang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yu Bin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Dan Dan Yuan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Ling Zhang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hui Min Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Fan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,*Correspondence: Qing Fan,
| |
Collapse
|
35
|
Ma X, Lu J, Gu XR, Jia Y, Shen B, Weiming Y, Du GH, Zheng CB. Cardioprotective Effects and Mechanisms of Saponins on Cardiovascular Disease. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221147404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease (CVD), a leading cause of morbidity and mortality, is among the most prevalent health problems worldwide and effective strategies for its prevention and treatment are urgently required. In this regard, increasing research has demonstrated that natural drugs offer antihypertensive, antiatherosclerotic, and cardioprotective activities, and many are applied widely for the treatment of CVD and its manifestations such as myocardial infarction, peripheral vascular diseases, and coronary heart disease. Natural drugs have significant advantages in the treatment of CVD due to their efficacy and safety profiles. Saponins are an important class of active components of plant natural products and play an important role in the treatment of CVD. This review covers the most up-to-date information on saponins concerning their cardioprotective effects and mechanisms of action.
Collapse
Affiliation(s)
- Xin Ma
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Jun Lu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xue-Rong Gu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yinnong Jia
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Baochun Shen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yang Weiming
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
36
|
Zhu Y, Chai Y, Xiao G, Liu Y, Xie X, Xiao W, Zhou P, Ma W, Zhang C, Li L. Astragalus and its formulas as a therapeutic option for fibrotic diseases: Pharmacology and mechanisms. Front Pharmacol 2022; 13:1040350. [PMID: 36408254 PMCID: PMC9669388 DOI: 10.3389/fphar.2022.1040350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 09/14/2023] Open
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, characterized by accumulation of collagen and other extracellular matrix components, which causes organ dysfunction and even death. Despite advances in understanding fibrosis pathology and clinical management, there is no treatment for fibrosis that can prevent or reverse it, existing treatment options may lead to diarrhea, nausea, bleeding, anorexia, and liver toxicity. Thus, effective drugs are needed for fibrotic diseases. Traditional Chinese medicine has played a vital role in fibrotic diseases, accumulating evidence has demonstrated that Astragalus (Astragalus mongholicus Bunge) can attenuate multiple fibrotic diseases, which include liver fibrosis, pulmonary fibrosis, peritoneal fibrosis, renal fibrosis, cardiac fibrosis, and so on, mechanisms may be related to inhibition of epithelial-mesenchymal transition (EMT), reactive oxygen species (ROS), transforming growth factor beta 1 (TGF-β1)/Smads, apoptosis, inflammation pathways. The purpose of this review was to summarize the pharmacology and mechanisms of Astragalus in treating fibrotic diseases, the data reviewed demonstrates that Astragalus is a promising anti-fibrotic drug, its main anti-fibrotic components are Calycosin, Astragaloside IV, Astragalus polysaccharides and formononetin. We also review formulas that contain Astragalus with anti-fibrotic effects, in which Astragalus and Salvia miltiorrhiza Bunge, Astragalus and Angelica sinensis (Oliv.) Diels are the most commonly used combinations. We propose that combining active components into new formulations may be a promising way to develop new drugs for fibrosis. Besides, we expect Astragalus to be accepted as a clinically effective method of treating fibrosis.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojin Xiao
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Xie
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Xiao
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ma
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuying Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Heart Disease of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, China
| |
Collapse
|
37
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|
38
|
Cheng XY, Li SF, Chen Y, Zhao YJ, Hu W, Lu C, Zhou RP. Transient receptor potential melastatin 7 and their modulators. Eur J Pharmacol 2022; 931:175180. [DOI: 10.1016/j.ejphar.2022.175180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
39
|
Chinese Herbal Formula Huayu-Qiangshen-Tongbi Decoction Attenuates Rheumatoid Arthritis through Upregulating miR-125b to Suppress NF-κB-Induced Inflammation by Targeting CK2. J Immunol Res 2022; 2022:2836128. [PMID: 35832651 PMCID: PMC9273410 DOI: 10.1155/2022/2836128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
The Huayu-Qiangshen-Tongbi (HQT) decoction, a Chinese medical formula, has been identified to show a potent therapeutic effect on rheumatoid arthritis (RA). However, the specific molecular mechanism of HQT in RA has not been well studied. In the present study, LPS-treated human rheumatoid fibroblast-like synoviocyte (FLS) MH7A cells and collagen-induced arthritis (CIA) mice were utilized as in vitro and in vivo models. Our results demonstrated that HQT could efficiently inhibit RA-induced inflammation by reducing the production of cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Moreover, HQT significantly upregulated the expression of miR-125b. Besides, analysis of bioinformatics suggested casein kinase 2 (CK2) was a potential target of miR-125b. Luciferase reporter assay was performed and revealed that miR-125b suppressed CK2 expression in MH7A cells. Furthermore, miR-125b inhibited LPS-induced NF-kappa-B (NF-κB) activation, which is a downstream target of CK2. In addition, the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate (PDTC) and NF-kappa-B inhibitor alpha (IkB-α) enhanced the inhibitory effect of miR-125b on the expression of TNF-α, IL-1β, and IL-6. Taken together, our study revealed that HQT could attenuate RA through upregulating miR-125b to suppress NF-κB-induced inflammation by targeting CK2. The findings of this study should facilitate investigating the mechanism of HQT on RA and discovering novel therapeutic targets for RA.
Collapse
|
40
|
Ren C, Liu K, Zhao X, Guo H, Luo Y, Chang J, Gao X, Lv X, Zhi X, Wu X, Jiang H, Chen Q, Li Y. Research Progress of Traditional Chinese Medicine in Treatment of Myocardial fibrosis. Front Pharmacol 2022; 13:853289. [PMID: 35754495 PMCID: PMC9213783 DOI: 10.3389/fphar.2022.853289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Effective drugs for the treatment of myocardial fibrosis (MF) are lacking. Traditional Chinese medicine (TCM) has garnered increasing attention in recent years for the prevention and treatment of myocardial fibrosis. This Article describes the pathogenesis of myocardial fibrosis from the modern medicine, along with the research progress. Reports suggest that Chinese medicine may play a role in ameliorating myocardial fibrosis through different regulatory mechanisms such as reduction of inflammatory reaction and oxidative stress, inhibition of cardiac fibroblast activation, reduction in extracellular matrix, renin-angiotensin-aldosterone system regulation, transforming growth Factor-β1 (TGF-β1) expression downregulation, TGF-β1/Smad signalling pathway regulation, and microRNA expression regulation. Therefore, traditional Chinese medicine serves as a valuable source of candidate drugs for exploration of the mechanism of occurrence and development, along with clinical prevention and treatment of MF.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Huan Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yali Luo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Chang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
41
|
Du XQ, Shi LP, Chen ZW, Hu JY, Zuo B, Xiong Y, Cao WF. Astragaloside IV Ameliorates Isoprenaline-Induced Cardiac Fibrosis in Mice via Modulating Gut Microbiota and Fecal Metabolites. Front Cell Infect Microbiol 2022; 12:836150. [PMID: 35656031 PMCID: PMC9152365 DOI: 10.3389/fcimb.2022.836150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/19/2022] [Indexed: 01/15/2023] Open
Abstract
Aim Gut microbiota is of crucial importance to cardiac health. Astragaloside IV (AS-IV) is a main active ingredient of Huangqi, a traditional edible and medicinal herb that has been shown to have beneficial effects on cardiac fibrosis (CF). However, it is still uncertain whether the consumption of AS-IV alleviates cardiac fibrosis through the gut microbiota and its metabolites. Therefore, we assessed whether the anti-fibrosis effect of AS-IV is associated with changes in intestinal microbiota and fecal metabolites and if so, whether some specific gut microbes are conducive to the benefits of AS-IV. Methods Male C57BL-6J mice were subcutaneously injected with isoprenaline (ISO) to induce cardiac fibrosis. AS-IV was administered to mice by gavage for 14 days. The effects of AS-IV on cardiac function, myocardial enzyme, cardiac weight index (CWI), and histopathology of ISO-induced CF mice were investigated. Moreover, 16S rRNA sequencing was used to establish gut-microbiota profiles. Fecal-metabolites profiles were established using the liquid chromatograph-mass spectrometry (LC-MS). Results AS-IV treatment prevented cardiac dysfunction, ameliorated myocardial damage, histopathological changes, and cardiac fibrosis induced by ISO. AS-IV consumption increased the richness of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella. AS-IV also modulated gut metabolites in their feces. Among 141 altered gut metabolites, amino acid production was sharply changed. Furthermore, noticeable correlations were found between several specific gut microbes and altered fecal metabolites. Conclusions An increase of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella abundance, and modulation of amino acid metabolism, may contribute to the anti-fibrosis and cardiac protective effects of Astragaloside IV.
Collapse
Affiliation(s)
- Xu-Qin Du
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Li-Peng Shi
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Zhi-Wei Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jin-Yuan Hu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Biao Zuo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Yu Xiong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Wen-Fu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Wen-Fu Cao,
| |
Collapse
|
42
|
Chen H, Qiao H, Zhao Q, Wei F. microRNA-135a-5p regulates NOD-like receptor family pyrin domain containing 3 inflammasome-mediated hypertensive cardiac inflammation and fibrosis via thioredoxin-interacting protein. Bioengineered 2022; 13:4658-4673. [PMID: 35148667 PMCID: PMC8973706 DOI: 10.1080/21655979.2021.2024956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypertension is a severe public health problem that induces cardiac injury with alterations of gene expressions. The current study sought to evaluate the mechanism of microRNA(miR)-135a-5p in NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediation of cardiac inflammation and hypertensive cardiac fibrosis. Firstly, hypertensive mouse models were established using angiotensin II (Ang II), followed by miR-135a-5p agomir treatment. Subsequently, mouse blood pressure and basic cardiac function indexes, histopathological changes, and cardiac fibrosis were all determined, in addition to detection of factors related to inflammation and fibrosis. Additionally, mice cardiac fibroblasts (CFs) were isolated and treated with Ang II. The binding relationship of miR-135a-5p and thioredoxin-interacting protein (TXNIP) was predicted and testified, while the interaction of TXNIP and NLRP3 was detected by means of a co-immunoprecipitation assay. It was found that miR-135a-5p was poorly-expressed in Ang II-treated mice and further exerted cardioprotective effects against hypertensive heart diseases. Moreover, over-expression of miR-135a-5p resulted in inhibition of inflammatory infiltration and almost eliminated cardiac fibrosis, as evidenced by decreased Collagen (COL)-I, COL-III, a-smooth muscle actin, NLRP3, tumor necrosis factor-α, and interleukin-6. Mechanically, miR-135a-5p inhibited TXNIP expression to block the binding of TXNIP and NLRP3. On the other hand, TXNIP up-regulation reversed the protective role of miR-135a-5p over-expression in CFs. Collectively, our findings indicated that miR-135a-5p over-expression inhibited TXNIP expression to block the binding of TXNIP and NLRP3, thereby alleviating hypertensive cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Hao Chen
- Department of Cardiovascular Center, The 8th Medical Center of General Hospital of PLA, Beijing, China
| | - Huilian Qiao
- Department of Pathology, Air Force Medical Center PLA, Beijing, China
| | - Qiang Zhao
- Department of Cardiovascular Center, The 8th Medical Center of General Hospital of PLA, Beijing, China
| | - Fuling Wei
- Department of Cardiovascular Center, The 8th Medical Center of General Hospital of PLA, Beijing, China
| |
Collapse
|
43
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
44
|
Jia T, Wang X, Tang Y, Yu W, Li C, Cui S, Zhu J, Meng W, Wang C, Wang Q. Sacubitril Ameliorates Cardiac Fibrosis Through Inhibiting TRPM7 Channel. Front Cell Dev Biol 2021; 9:760035. [PMID: 34778271 PMCID: PMC8586221 DOI: 10.3389/fcell.2021.760035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure caused by cardiac fibrosis has become a major challenge of public health worldwide. Cardiomyocyte programmed cell death (PCD) and activation of fibroblasts are crucial pathological features, both of which are associated with aberrant Ca2+ influx. Transient receptor potential cation channel subfamily M member 7 (TRPM7), the major Ca2+ permeable channel, plays a regulatory role in cardiac fibrosis. In this study, we sought to explore the mechanistic details for sacubitril, a component of sacubitril/valsartan, in treating cardiac fibrosis. We demonstrated that sacubitril/valsartan could effectively ameliorate cardiac dysfunction and reduce cardiac fibrosis induced by isoprotereno (ISO) in vivo. We further investigated the anti-fibrotic effect of sacubitril in fibroblasts. LBQ657, the metabolite of sacubitril, could significantly attenuate transforming growth factor-β 1 (TGF-β1) induced cardiac fibrosis by blocking TRPM7 channel, rather than suppressing its protein expression. In addition, LBQ657 reduced hypoxia-induced cardiomyocyte PCD via suppression of Ca2+ influx regulated by TRPM7. These findings suggested that sacubitril ameliorated cardiac fibrosis by acting on both fibroblasts and cardiomyocytes through inhibiting TRPM7 channel.
Collapse
Affiliation(s)
- Tian Jia
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaozhi Wang
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Shufang Cui
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
45
|
Jing WB, Ji H, Jiang R, Wang J. Astragaloside positively regulated osteogenic differentiation of pre-osteoblast MC3T3-E1 through PI3K/Akt signaling pathway. J Orthop Surg Res 2021; 16:579. [PMID: 34620219 PMCID: PMC8496022 DOI: 10.1186/s13018-021-02690-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoporosis is a widespread chronic disease characterized by low bone density. There is currently no gold standard treatment for osteoporosis. The aim of this study was to explore the role and mechanism of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. METHODS MC3T3-E1 cells were divided into control and different dose of Astragaloside (10, 20, 40, 50, and 60 μg/ml). Then, ALP and ARS staining were performed to identify the effects of Astragaloside for early and late osteogenic capacity of MC3T3-E1 cells, respectively. Real-time PCR and western blot were performed to assess the ALP, OCN, and OSX expression. PI3K/Akt signaling pathway molecules were then assessed by Western blot. Finally, PI3K inhibitor, LY294002, was implemented to assess the mechanism of Astragaloside in promoting osteogenic differentiation of MC3T3-E1 cells. RESULTS Astragaloside significantly increased the cell viability than the control group. Moreover, Astragaloside enhanced the ALP activity and calcium deposition than the control groups. Compared with the control group, Astragaloside increased the ALP, OCN, and OSX expression in a dose-response manner. Western blot assay further confirmed the real-time PCR results. Astragaloside could significantly increase the p-PI3K and p-Akt expression than the control group. LY294002 partially reversed the promotion effects of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. LY294002 partially reversed the promotion effects of Astragaloside on ALP, OCN, and OSX of MC3T3-E1 cells. CONCLUSION The present study suggested that Astragaloside promoted osteogenic differentiation of MC3T3-E1 cells through regulating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei Bing Jing
- Department of Orthopedics, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu Province, China
| | - Hongjuan Ji
- Department of Orthopedics, Huai'an Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an, China
| | - Rui Jiang
- Department of Orthopedics, Lianshui County People's Hospital, 6 Hongri Road, Huai'an, 223400, Jiangsu, P.R. China
| | - Jinlong Wang
- Department of Orthopedics, Hongze District People's Hospital, 102 Dongfeng Road, Hongze District, Huai'an, 223100, Jiangsu Province, China.
| |
Collapse
|
46
|
Pan J, Cao Z, Fang C, Lei Y, Sun J, Huang X, Han D. Huangqi Shengmai Yin Ameliorates Myocardial Fibrosis by Activating Sirtuin3 and Inhibiting TGF-β/Smad Pathway. Front Pharmacol 2021; 12:722530. [PMID: 34483934 PMCID: PMC8414644 DOI: 10.3389/fphar.2021.722530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Myocardial fibrosis (MF) is an important pathological process in which a variety of cardiovascular diseases transform into heart failure. The main manifestation of MF is the excessive deposition of collagen in the myocardium. Here, we explored whether Huangqi Shengmai Yin (HSY) can inhibit isoprenaline (ISO)-induced myocardial collagen deposition in rats, thereby reducing the cardiac dysfunction caused by MF. The results of echocardiography showed that HSY upregulated fractional shortening and ejection fraction, and reduced the left ventricular systolic dysfunction in the rats with MF. Pathological results showed that HSY protected myocardium, inhibited apoptosis, and effectively reduced collagen deposition. HSY also inhibited the expression of collagen I and III and α-smooth muscle actin (α-SMA) in the heart tissue. HSY increased the expression of Sirtuin 3 (Sirt3) and inhibited the protein levels of the components in the transforming growth factor-β (TGF-β)/Smad pathway. At the same time, it also regulated the expression of related proteins in the matrix metalloproteinases family. In summary, HSY played a therapeutic role in rats with ISO-induced MF by protecting myocardium and inhibiting collagen deposition. Therefore, HSY is a potential therapeutic agent for ameliorating MF.
Collapse
Affiliation(s)
- Jianheng Pan
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhanhong Cao
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chunqiu Fang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaowei Huang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
47
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Li XX, Wu Y, Fan ZJ, Cui J, Li D, Lin Q, Zhuang R, Yan RK, Lin Q, Li Y. Qishen Taohong Granule () as Adjuvant Therapy for Improving Cardiac Function and Quality of Life in Patients with Chronic Heart Failure: A Randomized Controlled Trial. Chin J Integr Med 2021; 28:12-19. [PMID: 34387827 DOI: 10.1007/s11655-021-2866-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To confirm the improvement of cardiac function and quality of life (QOL) in patients with chronic heart failure (CHF) via Chinese medicine (CM) Qishen Taohong Granule (, QTG). METHODS This study was a single-center, prospective, randomized, controlled clinical trial. Seventy-six patients from 27 to 84 years old diagnosed with CHF New York Heart Association (NYHA) class II or III in stage C were enrolled and randomly assigned at a 1:1 ratio to receive QTG or trimetazidine (TMZ), in addition to their standard medications for the treatment of CHF. The study period was 4 weeks. The primary outcomes included cardiac function evaluated by NYHA classification and left ventricular ejection fraction (LVEF), as well as QOL evaluated by CHF Integrated Chinese and Western Medicine Survival Scale (CHFQLS). The secondary outcomes included 6-min walking test (6MWT), CM syndrome score, symptom and sign scores and N-terminal pro-B-type natriuretic peptide (NT-proBNP). All indices were measured at baseline and the end of the trial. RESULTS At the 4-week follow-up period, the effective rate according to NYHA classification in the QTG group was better than that in the TMZ group (74.29% vs. 54.29%, P<0.05). But there was no significant difference in post-treatment level of LVEF between the two groups (P>0.05). The CHFQLS scores improved by 13.82±6.04 vs. 7.49±2.28 in the QTG and TMZ groups, respectively (P<0.05). Subgroup analysis of the CHFQLS results showed that physiological function, role limitation and vitality were significantly higher in the QTG group than in the TMZ group (15.76±7.85 vs. 7.40±3.36, P<0.05; 16.00±8.35 vs. 10.53±4.64, P<0.05; 15.31±8.09 vs. 7.89±4.60, P<0.05). Compared with TMZ group, treatment with QTG also demonstrated superior performance with respect to 6MWT, CM syndrome, shortness of breath, fatigue, gasping, general edema and NT-proBNP level. No significant adverse reactions or adverse cardiac events occurred during treatment in either group. CONCLUSION In addition to conventional treatments, the use of QTG as an adjuvant therapy significantly improved cardiac function and QOL in patients with CHF class II or III in stage C. [Registration No. ChiCTR1900022036 (retrospectively registered)].
Collapse
Affiliation(s)
- Xing-Xing Li
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Wu
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Zong-Jing Fan
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jie Cui
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Quan Lin
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Rui Zhuang
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong-Kun Yan
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
49
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
50
|
Durazzo A, Nazhand A, Lucarini M, Silva AM, Souto SB, Guerra F, Severino P, Zaccardelli M, Souto EB, Santini A. Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-01003-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractMedicinal plants always are part of folk medicine and are nowadays receiving worldwide attention for prophylaxis, management, and treatment of several diseases, as an alternative to chemical drugs. The current work provided a comprehensive overview and analysis of the Astragalus and health relationship in literature. The analysis of their therapeutic potential is thus instrumental to understand their bioactivity. Among these, the flowering medicinal plant Astragalus membranaceus has raised interest due to several beneficial health effects. This perspective review discussed the botanical, geographical, historical, and the therapeutic properties of A. membranaceus, with a special focus on its health improving effects and medicinal applications both in vitro and in vivo.
Graphic abstract
Collapse
|