1
|
Xiao H, Song X, Wang P, Li W, Qin S, Huang C, Wu B, Jia B, Gao Q, Song Z. Termite Fungus Comb Polysaccharides Alleviate Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice by Regulating Hepatic Glucose/Lipid Metabolism and the Gut Microbiota. Int J Mol Sci 2024; 25:7430. [PMID: 39000541 PMCID: PMC11242180 DOI: 10.3390/ijms25137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.
Collapse
Affiliation(s)
- Haihan Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xudong Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Weilin Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Senhua Qin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chaofu Huang
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Beimin Wu
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Bao Jia
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Qionghua Gao
- Guangxi Key Laboratory of Agri-Environmental and Agri-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Siddiqui SA, Fernando I, Saraswati YR, Rahayu T, Harahap IA, Yao Q, Nagdalian A, Blinov A, Shah MA. Termites as human foods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:3647-3684. [PMID: 37350054 DOI: 10.1111/1541-4337.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023]
Abstract
Global food production is anticipated to rise along with the growth of the global population. As a result, creative solutions must be devised to ensure that everyone has access to nutritious, affordable, and safe food. Consequently, including insects in diets has the potential to improve global food and nutrition security. This paper aims to share recent findings by covering edible termites as the main aspect, from their consumption record until consumer acceptance. A total of 53 termite species are reported as edible ones and distributed in 6 biogeographic realms. Generally, termites have a nutrient composition that is suitable for human consumption, and cooked termites are a better dietary choice than their raw counterparts. Besides, increasing customer interest in eating termite-based food can be achieved by making it more palatable and tastier through various cooking processes, that is, boiling, frying, grilling, roasting, smoking, and sun-drying. Moreover, edible termites can also be used as a new source of medication by exhibiting antimicrobial activity. Regarding their advantages, it is strongly encouraged to implement a seminatural rearing system to sustain the supply of edible termites. Overall, this paper makes it evident that termites are an important natural resource for food or medicine. Hence, the long-term objective is to stimulate scientific inquiry into the potential of edible insects as an answer to the problem of global food security.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department of Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrueck, Germany
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Yuniar Rizky Saraswati
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Teguh Rahayu
- CV HermetiaTech, Surabaya, Jawa Timur, Indonesia
| | | | - Qifa Yao
- Insect Engineers, Melderslo, The Netherlands
| | - Andrey Nagdalian
- Department of Food Technology and Engineering, Faculty of Food Engineering and Biotechnology, North-Caucasus Federal University, Stavropol, Russia
| | - Andrey Blinov
- Department of Food Technology and Engineering, Faculty of Food Engineering and Biotechnology, North-Caucasus Federal University, Stavropol, Russia
| | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Somali, Ethiopia
- School of Business, Woxsen University, Hyderabad, Telangana, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Ethnomedicinal Information on Plants Used for the Treatment of Bone Fractures, Wounds, and Sprains in the Northern Region of the Republic of Benin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8619330. [PMID: 36588593 PMCID: PMC9797300 DOI: 10.1155/2022/8619330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Medicinal plants are frequently used in African countries due to their importance in the treatment of various conditions. In the northern Republic of Benin, traditional healers are recognized as specialists in the treatment of fractures, wounds, and sprains. The present study was conducted to document the practices (diagnosis and materials) and traditional knowledge accumulated by healers in this region on their area of specialty. In addition, literature-based research was performed to support the usage of the most cited plants. Sixty traditional healers identified as "reference persons" from Atakora and Donga departments in the northern Republic of Benin, who specialized in the treatment of fractures, wounds, and sprains, were interviewed in their communities through a semi-structured questionnaire. Information about the practice, age of the healers, medicinal plants used in this treatment, methods of preparation, and administration were collected. Samples of the plant species were also collected, identified, and stored in the national herbarium at the University of Abomey-Calavi, the Republic of Benin. The study enabled the identification of thirty-four (34) species belonging to twenty-three (23) families. Ochna rhizomatosa and Ochna schweinfurthiana (21%) were the most quoted plants among the species, followed by Chasmanthera dependens (12.1%), Piliostigma thonningii (11.3%), and Combretum sericeum (8.1%). These plants were reported to strengthen bones, reduce inflammation, relieve pain, and promote healing in the northern part of the Republic of Benin. Besides their ability to treat fractures, wounds, and sprains, they are also used for multiple purposes in the West African subregions. According to the available literature, some of the plants will need to be investigated for their phytoconstituents and pharmacological activity to validate their ethnobotanical uses. These results confirm the need for documenting traditional knowledge since it represents an opportunity for exploring plant species with potentially good pharmacological effects, which have been barely investigated. Plants identified may constitute a significant source of bioactive compounds in the treatment of various ailments such as skin inflammation and musculoskeletal disorders. They can be further explored to justify their use in traditional Beninese medicine.
Collapse
|
4
|
Hammoud Mahdi D, Hubert J, Renault JH, Martinez A, Schubert A, Engel KM, Koudogbo B, Vissiennon Z, Ahyi V, Nieber K, Vissiennon C. Chemical Profile and Antimicrobial Activity of the Fungus-Growing Termite Strain Macrotermes Bellicosus Used in Traditional Medicine in the Republic of Benin. Molecules 2020; 25:molecules25215015. [PMID: 33138110 PMCID: PMC7662623 DOI: 10.3390/molecules25215015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
The fungus growing termite species Macrotermes bellicosus (M. bellicosus) is used in nutrition and traditional medicine in the Republic of Benin for the treatment of infectious and inflammatory diseases. Previous findings demonstrated evidence of anti-inflammatory and spasmolytic properties of M. bellicosus. The aim of the present study was to evaluate the antimicrobial potential of different extracts of M. bellicosus samples and determine the chemical profile of an ethanolic M. bellicosus extract. Chemical profiling was conducted using centrifugal partition chromatography and 13C-NMR, followed by MALDI-TOF MS. Major identified compounds include hydroquinone (HQ), methylhydroquinone (MHQ), 3,4-dihydroxyphenethyl glycol (DHPG), N-acetyldopamine (NADA) and niacinamide. The fatty acid mixture of the extract was mainly composed of linoleic and oleic acid and highlights the nutritional purpose of M. bellicosus. Using the Kirby–Bauer disc diffusion and broth microdilution assay, an antibacterial activity of M. bellicosus samples was observed against various clinical strains with a highest growth inhibition of S. aureus. In addition, HQ and MHQ as well as fractions containing DHPG, niacinamide and NADA inhibited S. aureus growth. The reported antimicrobial activity of M. bellicosus and identified active substances provide a rationale for the traditional medicinal use of M. bellicosus.
Collapse
Affiliation(s)
- Dima Hammoud Mahdi
- Inter-Regional University of Industrial Engineering Biotechnologies and Applied Sciences, IRGIB Africa, Cotonou 07 BP 231, Benin; (B.K.); (Z.V.); (V.A.)
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr 16-18, 04107 Leipzig, Germany;
- Correspondence: (D.H.M.); (C.V.); Tel.: +229-97-21-96-96 (D.H.M.); +49-341-971-5772 (C.V.)
| | - Jane Hubert
- CNRS ICMR UMR 7312, Université de Reims Champagne Ardenne, BP 1039, 51687 Reims CEDEX 2, France; (J.H.); (J.-H.R.); (A.M.)
- NatExplore SAS, 51140 Prouilly, France
| | - Jean-Hugues Renault
- CNRS ICMR UMR 7312, Université de Reims Champagne Ardenne, BP 1039, 51687 Reims CEDEX 2, France; (J.H.); (J.-H.R.); (A.M.)
| | - Agathe Martinez
- CNRS ICMR UMR 7312, Université de Reims Champagne Ardenne, BP 1039, 51687 Reims CEDEX 2, France; (J.H.); (J.-H.R.); (A.M.)
| | - Andreas Schubert
- Fraunhofer IZI, Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany;
| | - Kathrin Monika Engel
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr 16-18, 04107 Leipzig, Germany;
| | - Blaise Koudogbo
- Inter-Regional University of Industrial Engineering Biotechnologies and Applied Sciences, IRGIB Africa, Cotonou 07 BP 231, Benin; (B.K.); (Z.V.); (V.A.)
| | - Zacharie Vissiennon
- Inter-Regional University of Industrial Engineering Biotechnologies and Applied Sciences, IRGIB Africa, Cotonou 07 BP 231, Benin; (B.K.); (Z.V.); (V.A.)
| | - Virgile Ahyi
- Inter-Regional University of Industrial Engineering Biotechnologies and Applied Sciences, IRGIB Africa, Cotonou 07 BP 231, Benin; (B.K.); (Z.V.); (V.A.)
| | - Karen Nieber
- Medical Faculty, Institute of Pharmacy, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany;
| | - Cica Vissiennon
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr 16-18, 04107 Leipzig, Germany;
- Correspondence: (D.H.M.); (C.V.); Tel.: +229-97-21-96-96 (D.H.M.); +49-341-971-5772 (C.V.)
| |
Collapse
|