1
|
Lin YE, Lin HP, Lu KH, Huang YJ, Panyod S, Liu WT, Lu YS, Chen MH, Sheen LY. Cordyceps militaris and Armillaria mellea formula alleviates depressive behaviors via microglia regulation in an unpredictable chronic mild stress animal model. J Tradit Complement Med 2025; 15:24-35. [PMID: 39807265 PMCID: PMC11725130 DOI: 10.1016/j.jtcme.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 01/16/2025] Open
Abstract
Background and aim Cordyceps militaris (CM) and Armillaria mellea (AM) are medicinal mushrooms with potential applications in the treatment of mood disorders, including depression and anxiety. While research suggests that both CM and AM possess anti-inflammatory properties and hold potential for treating depression when administered separately, there is limited knowledge about their efficacy when combined in a formula, as well as the underlying mechanism involving the modulation of microglia. Experimental procedure Rats received oral administrations of the low-dose formulation, medium-dose formulation, and high-dose formulation over 28 consecutive days as part of the UCMS protocols. The concentrations of serotonin, dopamine, and the corresponding metabolites in the rat prefrontal cortex and hippocampus were assessed. Blood samples were collected to examine corticosterone levels, and the brains were dissected for evaluating activated microglia morphologies and associated pro- and anti-inflammatory signaling pathways. Results and conclusion The CM-AM formula effectively averted abnormal behaviors triggered by UCMS, such as anhedonia and hypoactivity, and decreased the turnover rate of monoamines in both the prefrontal cortex and hippocampus. The formula mitigated the increase in serum corticosterone levels induced by chronic stress. Furthermore, the formula alleviated stress-induced microglia activation in the hippocampus, achieving this by down-regulating hyperactivated pro-inflammatory proteins and up-regulating hypoactivated anti-inflammatory proteins in the hippocampus. The antidepressant-like effects potentially stemming from the regulation of neurotransmitters and immunomodulation, likely by restoring the balance of M1 and M2 microglia fractions in the hippocampus. Consequently, the CM-AM formula could be explored as a prospective complementary and alternative therapy for depression.
Collapse
Affiliation(s)
- Yu-En Lin
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hui-Ping Lin
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Suraphan Panyod
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Liu
- Taiwan Agricultural Research Institute, Council of Agricultural, Taichung, Taiwan
| | - Yun-Sheng Lu
- Taiwan Agricultural Research Institute, Council of Agricultural, Taichung, Taiwan
| | - Mei-Hsing Chen
- Taiwan Agricultural Research Institute, Council of Agricultural, Taichung, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Wang CK, Kim G, Aleksandrova LR, Panenka WJ, Barr AM. A scoping review of the effects of mushroom and fungus extracts in rodent models of depression and tests of antidepressant activity. Front Pharmacol 2024; 15:1387158. [PMID: 38887548 PMCID: PMC11181029 DOI: 10.3389/fphar.2024.1387158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
One of the most important developments in psychopharmacology in the past decade has been the emergence of novel treatments for mood disorders, such as psilocybin for treatment-resistant depression. Psilocybin is most commonly found in different species of mushroom; however, the literature on mushroom and fungus extracts with potential antidepressant activity extends well beyond just psilocybin-containing mushrooms, and includes both psychedelic and non-psychedelic species. In the current review, we systematically review the preclinical literature on mushroom and fungus extracts, and their effects of animal models of depression and tests of antidepressant activity. The PICO structure, PRISMA checklist and the Cochrane Handbook for systematic reviews of intervention were used to guide the search strategy. A scoping search was conducted in electronic databases PubMed, CINAHL, Embase and Web of Science. The literature search identified 50 relevant and suitable published studies. These included 19 different species of mushrooms, as well as seven different species of other fungi. Nearly all studies reported antidepressant-like effects of treatment with extracts. Treatments were most commonly delivered orally, in both acute and chronically administered studies to predominantly male rodents. Multiple animal models of depression were used, the most common being unpredictable chronic mild stress, while the tail suspension test and forced swim test were most frequently used as standalone antidepressant screens. Details on each experiment with mushroom and fungus species are discussed in detail, while an evaluation is provided of the strengths and weaknesses of these studies.
Collapse
Affiliation(s)
- Catherine K. Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Gio Kim
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Lily R. Aleksandrova
- Department of Psychiatry, Faculty of Medicine, Canada Faculty of Pharmaceutical Sciences, UBC, Vancouver, BC, Canada
| | - William J. Panenka
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, Faculty of Medicine, Canada Faculty of Pharmaceutical Sciences, UBC, Vancouver, BC, Canada
| | - Alasdair M. Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| |
Collapse
|
3
|
Sun H, Shu F, Guan Y, Kong F, Liu S, Liu Y, Li L. Study of anti-fatigue activity of polysaccharide from fruiting bodies of Armillaria gallica. Int J Biol Macromol 2023; 241:124611. [PMID: 37119895 DOI: 10.1016/j.ijbiomac.2023.124611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Fatigue is a common physiological response that is closely related to energy metabolism. Polysaccharides, as excellent dietary supplements, have been proven to have a variety of pharmacological activities. In this study, A 23.007 kDa polysaccharide from Armillaria gallica (AGP) was purified and performed structural characterization, including analysis of homogeneity, molecular weight and monosaccharide composition. Methylation analysis is used to analyze the glycosidic bond composition of AGP. The mouse model of acute fatigue was used to evaluate the anti-fatigue effect of AGP. AGP-treatment improved exercise endurance in mice and reduced fatigue symptoms caused by acute exercise. AGP regulated the levels of adenosine triphosphate, lactic acid, blood urea nitrogen and lactate dehydrogenase, muscle glycogen and liver glycogen of acute fatigue mice. AGP affected the composition of intestinal microbiota, the changes of some intestinal microorganisms are correlated with fatigue and oxidative stress indicators. Meanwhile, AGP reduced oxidative stress levels, increased antioxidant enzyme activity and regulated the AMP-dependent protein kinase/nuclear factor erythroid 2-related factor 2 signaling pathway. AGP exerted an anti-fatigue effect through modulation of oxidative stress, which is related to intestinal microbiota.
Collapse
Affiliation(s)
- Huihui Sun
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Fang Shu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yue Guan
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Fange Kong
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Shuyan Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yang Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Lanzhou Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Huang HS, Lin YE, Panyod S, Chen RA, Lin YC, Chai LMX, Hsu CC, Wu WK, Lu KH, Huang YJ, Sheen LY. Anti-depressive-like and cognitive impairment alleviation effects of Gastrodia elata Blume water extract is related to gut microbiome remodeling in ApoE -/- mice exposed to unpredictable chronic mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115872. [PMID: 36343797 DOI: 10.1016/j.jep.2022.115872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume (GE) is a traditional Chinese dietary therapy used to treat neurological disorders. Gastrodia elata Blume water extract (WGE) has been shown to ameliorate inflammation and improve social frustration in mice in a chronic social defeat model. However, studies on the anti-depressive-like effects and cognitive impairment alleviation related to the impact of WGE on the gut microbiome of ApoE-/- mice remain elusive. AIM OF THE STUDY The present study aimed to investigate the anti-depressive-like effect and cognitive impairment alleviation and mechanisms of WGE in ApoE-/- mice subjected to unpredictable chronic mild stress (UCMS), as well as its impact on the gut microbiome of the mice. MATERIALS AND METHODS Sixty ApoE-/- mice (6 months old) were randomly grouped into six groups: control, UCMS, WGE groups [5, 10, 20 mL WGE/kg body weight (bw) + UCMS], and a positive group (fluoxetine 20 mg/kg bw + UCMS). After four weeks of the UCMS paradigm, the sucrose preference, novel object recognition, and open field tests were conducted. The neurotransmitters serotonin (5-HT), dopamine (DA) and their metabolites were measured in the prefrontal cortex. Serum was collected to measure corticosterone and amyloid-42 (Aβ-42) levels. Feces were collected, and the gut microbiome was analyzed. RESULTS WGE restored sucrose preference, exploratory behavior, recognition ability, and decreased the levels of serum corticosterone and Aβ-42 in ApoE-/- mice to alleviate depressive-like behavior and cognitive impairment. Furthermore, WGE regulated the monoamine neurotransmitter via reduced the 5-HT and DA turnover rates in the prefrontal cortex. Moreover, WGE elevated the levels of potentially beneficial bacteria such as Bifidobacterium, Akkermansia, Alloprevotella, Defluviitaleaceae_UCG-011, and Bifidobacterium pseudolongum as well as balanced fecal short-chain fatty acids (SCFAs). CONCLUSION WGE demonstrates anti-depressive-like effects, cognitive impairment alleviation, and gut microbiome and metabolite regulation in ApoE-/- mice. Our results support the possibility of developing a functional and complementary medicine to prevent or alleviate depression and cognitive decline using WGE in CVDs patients.
Collapse
Affiliation(s)
- Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Ying-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Kuan-Hung Lu
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Li H, Xu G, Yuan G. Effects of an Armillaria mellea Polysaccharide on Learning and Memory of D-Galactose-Induced Aging Mice. Front Pharmacol 2022; 13:919920. [PMID: 35924065 PMCID: PMC9341523 DOI: 10.3389/fphar.2022.919920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Arm illaria mellea has been known and used in traditional medicine in East Asia for hundreds of years. It has already been reported that A. mellea extracts have various pharmacological effects, and the polysaccharides of A. mellea exhibit antioxidant and anti-apoptotic activities. In this study, a water-soluble polysaccharide (AMP-N-a-1), with an average molecular weight of 17 kD, was isolated and purified from the water extract of A. mellea using DEAE-52, Sepharose CL-4B, and Sephadex G-100 column chromatography. AMP-N-a-1 was mainly composed of Man (1.65%), Glca (1.64%), Rha (1.82%), Gala (2.49%), Glc (90.48%), Gal (0.89%), Xyl (0.42%), and Ara (0.61%). AMP-N-a-1 was used to study the effect on the learning and memory of mice and its underlying mechanisms. The results showed that AMP-N-a-1 could significantly increase the activities of catalase (CAT) and superoxide dismutase (SOD) and reduce the content of nitric oxide (NO) in mouse brain tissue. Meanwhile, AMP-N-a-1 could reduce the contents of norepinephrine (NE) and dopamine (DA) but could increase the content of 5-hydroxytryptamine (5-HT) in mouse brain tissue. In addition, the immunofluorescence experiment showed that AMP-N-a-1 could promote the proliferation of hippocampal dentate gyrus neurons. The above results indicate that AMP-N-a-1 can significantly improve the learning and memory of mice, and the mechanism may be that AMP-N-a-1 can participate in the regulation of learning and memory through a variety of ways.
Collapse
Affiliation(s)
- Hongyu Li
- School of Pharmacy, Beihua University, Jilin, China
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Guangyu Xu
- School of Pharmacy, Beihua University, Jilin, China
| | | |
Collapse
|
6
|
Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022; 19:132. [PMID: 35668399 PMCID: PMC9168645 DOI: 10.1186/s12974-022-02492-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder is a highly debilitating psychiatric disorder involving the dysfunction of different cell types in the brain. Microglia are the predominant resident immune cells in the brain and exhibit a critical role in depression. Recent studies have suggested that depression can be regarded as a microglial disease. Microglia regulate inflammation, synaptic plasticity, and the formation of neural networks, all of which affect depression. In this review, we highlighted the role of microglia in the pathology of depression. First, we described microglial activation in animal models and clinically depressed patients. Second, we emphasized the possible mechanisms by which microglia recognize depression-associated stress and regulate conditions. Third, we described how antidepressants (clinical medicines and natural products) affect microglial activation. Thus, this review aimed to objectively analyze the role of microglia in depression and focus on potential antidepressants. These data suggested that regulation of microglial actions might be a novel therapeutic strategy to counteract the adverse effects of devastating mental disorders.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Siyu Ren
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Mingxia Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
7
|
Li H, Li J, Zhang T, Xie X, Gong J. Antidepressant effect of Jujuboside A on corticosterone-induced depression in mice. Biochem Biophys Res Commun 2022; 620:56-62. [DOI: 10.1016/j.bbrc.2022.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022]
|
8
|
Wu Q, Duan WZ, Chen JB, Zhao XP, Li XJ, Liu YY, Ma QY, Xue Z, Chen JX. Extracellular Vesicles: Emerging Roles in Developing Therapeutic Approach and Delivery Tool of Chinese Herbal Medicine for the Treatment of Depressive Disorder. Front Pharmacol 2022; 13:843412. [PMID: 35401216 PMCID: PMC8988068 DOI: 10.3389/fphar.2022.843412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 01/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells, which play an essential role in intercellular communication by delivering cellular components including DNA, RNA, lipids, metabolites, cytoplasm, and cell surface proteins into recipient cells. EVs play a vital role in the pathogenesis of depression by transporting miRNA and effector molecules such as BDNF, IL34. Considering that some herbal therapies exhibit antidepressant effects, EVs might be a practical delivery approach for herbal medicine. Since EVs can cross the blood-brain barrier (BBB), one of the advantages of EV-mediated herbal drug delivery for treating depression with Chinese herbal medicine (CHM) is that EVs can transfer herbal medicine into the brain cells. This review focuses on discussing the roles of EVs in the pathophysiology of depression and outlines the emerging application of EVs in delivering CHM for the treatment of depression.
Collapse
Affiliation(s)
- Qian Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wen-Zhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Peng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
10
|
Yao L, Lv J, Duan C, An X, Zhang C, Li D, Li C, Liu S. Armillaria mellea fermentation liquor ameliorates p-chlorophenylalanine-induced insomnia associated with the modulation of serotonergic system and gut microbiota in rats. J Food Biochem 2022; 46:e14075. [PMID: 34984694 DOI: 10.1111/jfbc.14075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022]
Abstract
In China, Armillaria mellea (Vahl) P. Kumm. has been used as a folk medicine to treat insomnia for several hundred years. However, the underlying mechanisms involved are currently unknown. In this study, the anti-insomnia efficacy of A. mellea fermentation liquor (AFL) was evaluated in p-chlorophenylalanine-induced insomnia rats by measuring the serotonergic systems and gut microbiota. Our results demonstrate that all doses of AFL significantly reduced locomotor activity and alleviated decreasing weights in insomnia rats. Further, AFL exhibited better sedative effects by reducing sleep latency and increasing sleep duration in pentobarbital-treated rats. AFL treatment also elevated serum glutathione peroxidase and superoxide dismutase levels, while reducing serum interleukin-6, tumor necrosis factor-α, and interleukin-1β levels. Furthermore, AFL alleviated insomnia by enhancing 5-hydroxytryptamine content and the expression 5-HT1A and 5-HT2A receptor in the hippocampus. Meanwhile, AFL treatment normalized the composition of gut microbiota in insomnia-model rats, while increasing relative abundance of Lachnospiraceae, Ruminococcaceae, and Saccharimonadaceae restores the gut microbial ecosystem altered in insomnia rats. The experiments show that A. mellea alleviated insomnia by modulating serotonergic system and gut microbiota. PRACTICAL APPLICATIONS: Insomnia has become a serious health issue of global concern. As a well-known traditional Chinese medicine, Armillaria mellea has been clinically employed in the treatment of insomnia for centuries in Asia with significant efficacy. In the present study, we firstly reported A. mellea fermentation liquor potentially relieved insomnia rats by alteration of gut microbiota and serotonergic systems and could guide future clinical studies. As a popular edible and medicinal mushroom, A. mellea also can be potentially used in the development and production of novel food products in the future.
Collapse
Affiliation(s)
- Lan Yao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Jianhua Lv
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Chao Duan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Xiaoya An
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Chen Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Dan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Solano-Aguilar GI, Lakshman S, Jang S, Gupta R, Molokin A, Schroeder SG, Gillevet PM, Urban JF. The Effects of Consuming White Button Mushroom Agaricus bisporus on the Brain and Liver Metabolome Using a Targeted Metabolomic Analysis. Metabolites 2021; 11:metabo11110779. [PMID: 34822437 PMCID: PMC8625434 DOI: 10.3390/metabo11110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
A targeted metabolomic analysis was performed on tissues derived from pigs fed diets supplemented with white button mushrooms (WBM) to determine the effect on the liver and brain metabolome. Thirty-one pigs were fed a grower diet alone or supplemented with either three or six servings of freeze-dried WBM for six weeks. Tissue metabolomes were analyzed using targeted liquid chromatography-mass spectrometry (LC-MS) combined with chemical similarity enrichment analysis (ChemRICH) and correlated to WBM-induced changes in fecal microbiome composition. Results indicated that WBM can differentially modulate metabolites in liver, brain cortex and hippocampus of healthy pigs. Within the glycero-phospholipids, there was an increase in alkyl-acyl-phosphatidyl-cholines (PC-O 40:3) in the hippocampus of pigs fed six servings of WBM. A broader change in glycerophospholipids and sphingolipids was detected in the liver with a reduction in several lipid species in pigs fed both WBM diets but with an increase in amino acids known as precursors of neurotransmitters in the cortex of pigs fed six servings of WBM. Metabolomic changes were positively correlated with increased abundance of Cryomorphaceae, Lachnospiraceae, Flammeovirgaceae and Ruminococcaceae in the microbiome suggesting that WBM can also positively impact tissue metabolite composition.
Collapse
Affiliation(s)
- Gloria I. Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
- Correspondence: ; Tel.: +1-301-504-8068
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Saebyeol Jang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Richi Gupta
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA; (R.G.); (P.M.G.)
| | - Aleksey Molokin
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Steven G. Schroeder
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA;
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA; (R.G.); (P.M.G.)
| | - Joseph F. Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| |
Collapse
|
12
|
Lin YE, Chen YC, Lu KH, Huang YJ, Panyod S, Liu WT, Yang SH, Lu YS, Chen MH, Sheen LY. Antidepressant-like effects of water extract of Cordyceps militaris (Linn.) Link by modulation of ROCK2/PTEN/Akt signaling in an unpredictable chronic mild stress-induced animal model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114194. [PMID: 33974945 DOI: 10.1016/j.jep.2021.114194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Cordyceps militaris (Linn.) Link (CM) is a medicinal mushroom traditionally used in tonics for treating several neurological disorders, including epilepsy and anxiety, in Asia. Reports have shown that CM has anti-inflammatory and anti-oxidative effects and may be beneficial for depression management. AIM OF THE STUDY This study aimed to investigate the potential of CM as an antidepressant for a long-term unpredictable chronic mild stress (UCMS) rodent models and explore its underlying mechanisms. MATERIALS AND METHODS Rats were orally administered with 125 (low, L), 250 (medium, M), and 500 (high, H) mg/kg bodyweight (bw) of the water extract of CM (WCM) for 35 consecutive days in the UCMS protocol. The levels of cerebral serotonin (5-HT), dopamine (DA), and metabolites in the frontal cortex of the rats were measured. Blood was collected to investigate the levels of proinflammatory cytokines, and the brain was dissected to assay the stress-associated ROCK2/PTEN/Akt signaling. RESULTS All doses of the WCM prevented abnormal behaviors induced by UCMS, including anhedonia and hypoactivity. The LWCM treatment reduced the turnover rate of 5-HT, and all doses of the WCM reduced the turnover rate of DA in the frontal cortex. The LWCM also attenuated the elevation of serum IL-1β induced by chronic stress. All doses of the WCM attenuated the ROCK2 protein hyperactivation, and the LWCM further increased the down-regulation of p-Akt/Akt signaling. CONCLUSION The WCM has antidepressant-like effects, which may result from the regulation of the stress-related ROCK2/PTEN/Akt pathway. Therefore, the WCM may be developed and used for the complementary treatment of depression.
Collapse
Affiliation(s)
- Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Yi-Chun Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Kuan-Hung Lu
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan.
| | - Yun-Ju Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Wei-Ting Liu
- Taiwan Agricultural Research Institute, Council of Agricultural, Taichung, Taiwan.
| | - Shu-Hui Yang
- Taiwan Agricultural Research Institute, Council of Agricultural, Taichung, Taiwan.
| | - Yun-Sheng Lu
- Taiwan Agricultural Research Institute, Council of Agricultural, Taichung, Taiwan.
| | - Mei-Hsing Chen
- Taiwan Agricultural Research Institute, Council of Agricultural, Taichung, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|