1
|
Rajbongshi BL, Mukherjee AK. Drugs from poisonous plants: Ethnopharmacological relevance to modern perspectives. Toxicon X 2025; 25:100215. [PMID: 39990776 PMCID: PMC11847069 DOI: 10.1016/j.toxcx.2025.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
The world of plant diversity is endlessly fascinating and essential for life on Earth. Since the inception of early civilization, humans have utilized plants for several purposes, particularly for their medicinal value. While some plants are known for their toxicity, they also contain beneficial phytochemicals that are important for both plants and humans, indicating their dual nature. This study aims to explore and synthesize the existing knowledge on various poisonous plant species found worldwide. It primarily focuses on the therapeutic potential of specific types of phytochemicals responsible for treating multiple diseases. This review includes a list of 70 poisonous plants with medicinal properties for treating various ailments, as well as some of their traditional uses. A few of these plants are emphasized, which have been tremendously explored and studied, hold significant potential to contribute to modern drug discovery. Furthermore, it addresses the possible prospects and challenges of using poisonous plants and their phytochemicals as therapeutic agents. Although the therapeutic potential of poisonous plants is substantial, many toxins remain unexplored. This review accentuates the need for rigorous scientific investigations, prior to clinical trials to validate their traditional uses, which would reveal the pharmacological interventions that will eventually advance human health and well-being.
Collapse
Affiliation(s)
- Bhagya Lakhmi Rajbongshi
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashis K. Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
2
|
Mata-Bermudez A, Diaz-Ruiz A, Silva-García LR, Gines-Francisco EM, Noriega-Navarro R, Rios C, Romero-Sánchez HA, Arroyo D, Landa A, Navarro L. Mucuna pruriens, a Possible Treatment for Depressive Disorders. Neurol Int 2024; 16:1509-1527. [PMID: 39585071 PMCID: PMC11587415 DOI: 10.3390/neurolint16060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Depression is a mental disorder that depicts a wide variety of symptoms, including mood and cognitive alterations, as well as recurrent thoughts of death or suicide. It could become the second leading cause of premature death or disability worldwide. Treatments with conventional antidepressants have several limitations in terms of effectiveness, side effects, and high costs. Therefore, medicinal plants such as Mucuna pruriens are potent candidates for treating depressive disorders. This review shows a compendium of evidence supporting the antidepressant effect of the Mucuna pruriens plant in diverse animal models. This includes the mechanisms of action underlying the antidepressant activity of the treatment concerning dopamine, serotonin, norepinephrine, reactive oxygen species, nitric oxide, cortisol, and inflammation. Clinical trials are needed to study the efficacy and safety of Mucuna pruriens for depression.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-B.); (R.N.-N.); (D.A.)
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico; (L.R.S.-G.); (E.M.G.-F.); (H.A.R.-S.)
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México 14269, Mexico;
| | - Luis Ricardo Silva-García
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico; (L.R.S.-G.); (E.M.G.-F.); (H.A.R.-S.)
| | - Eduardo Manuel Gines-Francisco
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico; (L.R.S.-G.); (E.M.G.-F.); (H.A.R.-S.)
| | - Roxana Noriega-Navarro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-B.); (R.N.-N.); (D.A.)
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico;
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico
| | - Héctor Alonso Romero-Sánchez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico; (L.R.S.-G.); (E.M.G.-F.); (H.A.R.-S.)
| | - Diego Arroyo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-B.); (R.N.-N.); (D.A.)
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Luz Navarro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-B.); (R.N.-N.); (D.A.)
| |
Collapse
|
3
|
Ganesh MK, Lakshmanan G, Khan MZI, Prakash S. Aging induced testicular damage: analyzing the ameliorative potential of Mucuna pruriens seed extract. 3 Biotech 2023; 13:206. [PMID: 37229277 PMCID: PMC10203096 DOI: 10.1007/s13205-023-03618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Mucuna pruriens Linn. (M. pruriens), a leguminous plant, was used extensively in Ayurveda, to treat male-related infertility. Previous studies have demonstrated antioxidant, androgenic, aphrodisiac, and spermatogenic properties of M. pruriens seed extract. Surprisingly, the biological activities of M. pruriens on aging-induced pathological changes in the testis microenvironment have never been explored and the present study was focused on the testing therapeutic efficacy of M. pruriens on aged rat testis. Male Wistar albino rats were grouped as; adult (3 months), aged (24 months), aged + M. pruriens and adult + M. pruriens (N = 6/group). The extract was administrated at a dose of 200 mg/kg body weight (dosage determined in our previous study) daily by gavage for 60 days. The total and free testosterone, FSH and LH levels were considerably increased in aged + M. pruriens. The diameter & volume of the seminiferous tubules, the height & volume of the epithelium, and the number of Leydig cells number were significantly decreased in aged rat testis, concomitantly connective tissue proportion was increased compared to adult rats. The seminiferous epithelium indicates significant rejuvenation or restoration of spermatogenic cells in aged + M. pruriens rat testis. The highlighting observations in aged + M. pruriens was increased in the following parameters i.e., tubular diameter (25%), number of tubules (35%), epithelial height (25%) & volume (20%), and number of Leydig cells (35%) when compared to untreated aged rat testis. The TNFα, NF-κB, cytochrome c, Caspase-9, Caspase-3, Bcl-2, Bax, PARP iNOS, and inflammatory and apoptotic factors were downregulated in aged + M. pruriens. M. pruriens was able to restore spermatogenesis and enhance the activity of Sertoli cells and Leydig cells and improve the pituitary-gonadal axis in aged rat testis and observations indicate the therapeutic activity of M. pruriens in aged rat testis.
Collapse
Affiliation(s)
- Mohanraj Karthik Ganesh
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu India
- Department of Anatomy, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu India
| | - Ganesh Lakshmanan
- Department of Anatomy, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu India
| | - Mohammad Zafar Iqbal Khan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu India
| | - Seppan Prakash
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu India
| |
Collapse
|
4
|
Duarte GM, de Araújo FEA, da Rocha JMC, Idalina Neta F, do Rego ACM, Araújo Filho I, Pinheiro FI, de Azevedo EP, Cobucci RN, Guzen FP. Neuroprotective Potential of Seed Extracts: Review of In Vitro and In Vivo Studies. Nutrients 2023; 15:nu15112502. [PMID: 37299465 DOI: 10.3390/nu15112502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023] Open
Abstract
INTRODUCTION Neurodegenerative diseases are characterized by neuronal dysfunction and death. Studies suggest that some seed extracts have a neuroprotective effect. Considering the increased incidence of these diseases and the need for new effective therapies with fewer side effects, this review aimed to assess the evidence of the efficacy and safety of seed extracts in experimental models of neurodegeneration. MATERIAL AND METHOD The search was carried out through studies published between 2000 and 2021 in Science Direct, PubMed, Scientific Electronic Library Online (SciELO), and Latin American Literature in Health Sciences (LILACS) databases, in which the effects of seed extracts in in vitro and in vivo experimental models of neurodegeneration were investigated. Based on the eligibility criteria, 47 studies were selected for this review. RESULTS In the in vitro models, the neuroprotection of the seed extracts was a result of their antioxidant, anti-inflammatory, and anti-apoptotic properties. In the in vivo models, neuroprotection resulted from the antioxidant and anti-inflammatory properties, a decrease in motor deficits, an improvement in learning and memory, as well as the increased release of neurotransmitters. The results show promise for the future of clinical research on new therapies for neurodegenerative diseases. However, the studies are still limited, which does not allow us to extrapolate the results to human beings with ND. CONCLUSIONS Therefore, clinical trials are needed in order to prove the results of the in vitro and in vivo studies, as well as to assess the ideal, safe, and effective dose of these seed extracts in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabriella Mendes Duarte
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | | | | | - Francisca Idalina Neta
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59610-210, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59610-210, Brazil
| | | | - Irami Araújo Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil
- Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil
| | - Francisco Irochima Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - Eduardo Pereira de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - Ricardo Ney Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil
- Graduate Program in Science Applied to Women's Health, Medical School, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil
| | - Fausto Pierdoná Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59610-210, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59610-210, Brazil
- Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59610-110, Brazil
| |
Collapse
|
5
|
Ban M, Su H, Zeng X, Chen C, Zhou S, Chen X, Nong Z. An active fraction from Spatholobus suberectus dunn inhibits the inflammatory response by regulating microglia activation, switching microglia polarization from M1 to M2 and suppressing the TLR4/MyD88/NF-κB pathway in LPS-stimulated BV2 cells. Heliyon 2023; 9:e14979. [PMID: 37064439 PMCID: PMC10102548 DOI: 10.1016/j.heliyon.2023.e14979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Neurodegenerative disorders are known to be associated with neuroinflammation caused by microglia. Therefore, regulation of microglia activation and polarization to inhibit neuroinflammatory reactions seems to hold promise as a therapeutic approach in neurodegenerative disorders. Spatholobus suberectus Dunn (SSD) has been utilized as a traditional Chinese medicine remedy for brain diseases for thousands of years. SSD possesses various pharmacological activities, such as circulation invigoration, neuroprotection, and anti-inflammatory. The objective of this research was to examine the anti-neuroinflammatory effects and molecular mechanisms of an active fraction from SSD (ASSD) in vitro culture BV2 cells, a type of mouse microglia cell line. The inflammatory responses in BV2 cells were induced by stimulating them with 1 μg/mL lipopolysaccharide (LPS) and the effects of ASSD on LPS-stimulated inflammation were monitored. Besides, by using the methods of Western blot, immunofluorescence, and RT-PCR, the mechanisms of ASSD on microglia activation, M1/M2 polarization, and the TLR4/MyD88/NF-κB pathway were investigated. Our findings demonstrate that the treatment doses of ASSD neither induce cytotoxicity nor promote the production of inflammatory cytokines. In addition, immunofluorescence analysis show that ASSD inhibited the expression of ionized calcium-binding adapter molecule 1(Iba1) and inducible nitricoxide synthase (iNOS), and induced arginase 1 (Arg1) expression. Moreover, Western blot analysis indicated that ASSD significantly down-regulated TLR4, MyD88, p-IκB, NF-κB p65, and NF-κB p-p65 protein expression levels. Furthermore, RT-qPCR assay show that ASSD significantly down-regulated iNOS, TLR4, MyD88, and NF-κB mRNA expression levels, and up-regulated Arg1 mRNA expression level. According to the findings, ASSD can suppress microglia-mediated inflammatory responses by modulating microglia activation, inducing a shift from M1 to M2 polarization, and inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
6
|
Mechanisms of Autoimmune Cell in DA Neuron Apoptosis of Parkinson's Disease: Recent Advancement. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7965433. [PMID: 36567855 PMCID: PMC9771667 DOI: 10.1155/2022/7965433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that manifests as motor and nonmotor symptoms due to the selective loss of midbrain DArgic (DA) neurons. More and more studies have shown that pathological reactions initiated by autoimmune cells play an essential role in the progression of PD. Autoimmune cells exist in the brain parenchyma, cerebrospinal fluid, and meninges; they are considered inducers of neuroinflammation and regulate the immune in the human brain in PD. For example, T cells can recognize α-synuclein presented by antigen-presenting cells to promote neuroinflammation. In addition, B cells will accelerate the apoptosis of DA neurons in the case of PD-related gene mutations. Activation of microglia and damage of DA neurons even form the self-degeneration cycle to deteriorate PD. Numerous autoimmune cells have been considered regulators of apoptosis, α-synuclein misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation of DA neurons in PD. The evidence is mounting that autoimmune cells promote DA neuron apoptosis. In this review, we discuss the current knowledge regarding the regulation and function of B cell, T cell, and microglia as well as NK cell in PD pathogenesis, focusing on DA neuron apoptosis to understand the disease better and propose potential target identification for the treatment in the early stages of PD. However, there are still some limitations in our work, for example, the specific mechanism of PD progression caused by autoimmune cells in mitochondrial dysfunction, ferroptosis, and autophagy has not been clarified in detail, which needs to be summarized in further work.
Collapse
|
7
|
Han DG, Bae MJ, An BJ. Anti-Inflammatory Activity of Velvet Bean ( Mucuna pruriens) Substances in LPS-Stimulated RAW 264.7 Macrophages. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248797. [PMID: 36557931 PMCID: PMC9781689 DOI: 10.3390/molecules27248797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
In this study, Mucuna pruriens extracts were used to verify their application as a natural-based raw material with anti-inflammatory function. A nitric oxide inhibition activity assay showed that M. pruriens extracted with hot water (MW), M. pruriens extracted with 70% ethanol (ME), and M. pruriens extracted with 70% acetone (MA) presented NO inhibition activity; among them, MW and ME demonstrated the best activity and were selected for Western blot analysis. After identifying the expression patterns of inflammation-related proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), through Western blots, both MW and ME showed inhibition patterns. As a result of analyzing L-DOPA contained in M. pruriens through ultra-performance liquid chromatography (UPLC), high L-DOPA content was detected in MW, ME, and MA. Therefore, it can be concluded that M. pruriens extracts have the potential for use as an anti-inflammatory material.
Collapse
Affiliation(s)
| | | | - Bong-Jeon An
- Correspondence: ; Tel.: +82-53-819-1435; Fax: +82-53-819-1429
| |
Collapse
|
8
|
Tan B, Chiranthanut N, Chansakaow S, Sireeratawong S, Khonsung P, Nimlamool W, Takuathung MN, Lertprasertsuke N. Anti-inflammatory effects of Pikad Tri-phol-sa-mut-than remedy, consisting of dried fruits of Aegle marmelos (L.) Corrêa, Coriandrum sativum L., and Morinda citrifolia L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115639. [PMID: 35964822 DOI: 10.1016/j.jep.2022.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation has been known to possess some essential roles in many diseases, especially those with chronic or severe conditions. Pikad Tri-phol-sa-mut-than, a Thai traditional herbal remedy, has long been used to treat gastrointestinal sicknesses, fever, and severe illness caused by the deformities of Tridosha. In particular, this recipe has also been applied for inflammation-related conditions including gout and rheumatoid arthritis. The Pikad Tri-phol-sa-mut-than recipe consists of dried fruits of three herbs including Aegle marmelos (L.) Corrêa, Morinda citrifolia L., and Coriandrum sativum L. Each of these plant components of Pikad Tri-phol-sa-mut-than exhibited anti-inflammatory activities. However, anti-inflammatory effect of Pikad Tri-phol-sa-mut-than remedy has not been reported. AIM OF THE STUDY The objective of this study was to elucidate the anti-inflammatory activities of Pikad Tri-phol-sa-mut-than extract (TS) against acute and chronic inflammation in rats. MATERIALS AND METHODS To study the effects of TS on acute inflammation, ethyl phenylpropiolate (EPP)-induced ear edema, carrageenan- and arachidonic acid (AA)-induced hind paw edema models were carried out. In addition, cotton pellet-induced granuloma formation was performed to specify the inhibitory effects of TS on chronic inflammation. RESULTS The topical application of TS significantly inhibited EPP-induced ear edema in rats. In the carrageenan- and AA-induced paw edema models, the oral administration of TS significantly reduced paw volumes, compared to those of the control groups. In addition, the 7-day oral treatment of TS demonstrated a significant suppressive effect on cotton pellet-induced granuloma formation. CONCLUSIONS The current study revealed that TS possesses anti-inflammatory activities against acute and chronic inflammation. Our studies support the use of TS in traditional medicine, and the development of TS as a novel natural product for treating diseases associated with inflammation.
Collapse
Affiliation(s)
- Bing Tan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Seewaboon Sireeratawong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Parirat Khonsung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Nirush Lertprasertsuke
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Zahra W, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, Keshri PK, Gautam P, Singh SP. Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases. Neurochem Res 2022; 47:1816-1829. [PMID: 35380400 DOI: 10.1007/s11064-022-03591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
The medicinal plant Mucuna pruriens (Fabaceae) is widely known for its anti-oxidative and anti-inflammatory properties. It is a well-established drug in Ayurveda and has been widely used for the treatment of neurological disorders and male infertility for ages. The seeds of the plant have potent medicinal value and its extract has been tested in different models of neurodegenerative diseases, especially Parkinson's disease (PD). Apart from PD, Mucuna pruriens is now being studied in models of other nervous systems disorders such as Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and stroke because of its neuroprotective importance. This review briefly discusses the pathogenesis of PD, AD, ALS and stroke. It aims to summarize the medicinal importance of Mucuna pruriens in treatment of these diseases, and put forward the potential targets where Mucuna pruriens can act for therapeutic interventions. In this review, the effect of Mucuna pruriens on ameliorating the neurodegeneration evident in PD, AD, ALS and stroke is briefly discussed. The potential targets for neuroprotection by the plant are delineated, which can be studied further to validate the hypothesis regarding the use of Mucuna pruriens for the treatment of these diseases.
Collapse
Affiliation(s)
- Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Gautam
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Zhu H, Wang G, Bai Y, Tao Y, Wang L, Yang L, Wu H, Huang F, Shi H, Wu X. Natural bear bile powder suppresses neuroinflammation in lipopolysaccharide-treated mice via regulating TGR5/AKT/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115063. [PMID: 35149130 DOI: 10.1016/j.jep.2022.115063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Tang Dynasty classics Dietetic Material Medica and the Ming Dynasty classics Compendium of Materia Medica records, bear bile powder (BBP) has been used to treat a variety of diseases, such as febrile seizures, the pathogenesis of which is associated to neuroinflammation. However, the mechanism of BBP on alleviating neuroinflammation remains unclear. AIMS OF THE STUDY Microglia can be activated by peripheral lipopolysaccharide (LPS) and play an important role in the pathogenesis of neuroinflammation. The purpose of this study is to investigate the effects and mechanism of BBP in inhibiting LPS-induced microglia inflammation in vitro and in vivo. MATERIALS AND METHODS The anti-microglia inflammatory effects and mechanism of BBP were assessed in LPS-treated BV2 microglial cells and in LPS-treated mice. The mRNA expression levels of the inflammatory factor and the protein expressions of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), takeda G-protein coupled receptor 5 (TGR5), nuclear factor-κB (NF-κB), inhibitor of NF-κB (IκBɑ), protein kinase B (AKT) in BV2 cells, mouse hippocampus and cortex were detected. The NF-κB transcription activity and NF-κB nuclear translocation were observed. RESULTS Our findings showed that BBP reduces branched process retraction and NO in LPS-treated BV2 cells, inhibits the protein expression of ionized calcium binding adaptor molecule 1 in the hippocampus of LPS-treated mice. Moreover, we observed that BBP decreases tumor necrosis factor α, interleukin (IL)-6 and IL-1β mRNA levels, deceases iNOS and COX-2 protein levels, increases TGR5 protein levels, suppresses the phosphorylation of AKT, NF-κB and IκBɑ protein in microglia both in vitro and in vivo. Further, we found that triamterene, the inhibitor of TGR5, abolishes the effects of BBP in LPS- treated BV2 cells. CONCLUSION BBP inhibits LPS-induced microglia activation, and the mechanism of its action is partly through TGR5/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Han Zhu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
11
|
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease – more than just a rare lipid storage disease. J Mol Med (Berl) 2022; 100:499-518. [DOI: 10.1007/s00109-021-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
|
12
|
Khan ST, Ahmed S, Gul S, Khan A, Al-Harrasi A. Search for safer and potent natural inhibitors of Parkinson's disease. Neurochem Int 2021; 149:105135. [PMID: 34271080 DOI: 10.1016/j.neuint.2021.105135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022]
Abstract
After Alzheimer's disease, Parkinson's disease (PD) has taken second place in becoming one of the most commonly occurring neurological diseases being responsible for a number of disabling motor symptoms ranging from bradykinesia, akinesia, tremors to rigidity, that mostly targets the elderly population and severely disrupts their quality of life. The true underlying pathology of PD yet remains a mystery, however, recent advances in the field have pointed towards the production of α-synuclein aggregates, oxidative stress, and an imbalance between levels of acetylcholine and dopamine neurotransmitters in the brain that have been shown to result in loss of coordinated movement. Current treatments of PD include the gold standard dopamine precursor L-dopa, dopamine agonists pergolide and bromocriptine, catechol-o-methyl transferases inhibitors, entacapone and tolcapone and monoamine oxidase inhibitors such as Selegine and Rasagiline amongst several other drugs. While these drugs are successful in treating motor symptoms of the disease, they do so with a plethora of side effects that are especially debilitating to the elderly. In the recent years, a considerable amount of attention has been shifted towards phytocompounds such as flavonoids and green tea catechins due to promising experimental results. In this review, we have compiled phytocompounds that have shown potent activity against some of the most important targets for antiparkinsonian therapy. These compounds have exhibited activities that transcend the limits of simply attenuating mitochondrial oxidative stress and have opened doors to the discovery of novel lead compounds for newer, efficacious antiparkinsonian therapies with wider therapeutic windows.
Collapse
Affiliation(s)
- Sidrah Tariq Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | - Saima Gul
- Department of Physical Therapy, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Oman.
| |
Collapse
|