1
|
Liang Z, Wei J, Chan S, Zhang S, Xu L, Shen C, Zhong Z, Wang Y. Pinelliae Rhizoma: a systematic review on botany, ethnopharmacology, phytochemistry, preclinical and clinical evidence. Chin J Nat Med 2025; 23:1-20. [PMID: 39855824 DOI: 10.1016/s1875-5364(25)60807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 01/27/2025]
Abstract
Pinelliae Rhizoma (PR), known as Banxia in Chinese, Hange in Japanese, and Banha in Korean, is a renowned herbal medicine in East Asia derived from the dry tuber of Pinellia ternata (Thunb.) Breit. (PT). It is extensively utilized in dispensing granules, classical prescriptions, and herbal formulas to treat various conditions, including cough, infection, phlegm, nausea, asthma, and inflammation. Despite numerous studies on PR and its classical prescriptions over recent decades, a comprehensive synthesis of available evidence regarding its multifunctional roles and therapeutic potential is lacking. This review aims to address this gap by examining emerging evidence from metabonomics, preclinical studies, and clinical trials, while exploring potential trends and prospects for future research. A systematic literature search was conducted across six electronic databases, including PubMed, Web of Science, Scopus, ScienceDirect, Wanfang, and China National Knowledge Infrastructure, to identify relevant articles on PR published until March 2023. PR contains 107 compounds with diverse pharmacological activities, including anti-inflammatory, immune regulatory, anti-viral, anti-cancer, anti-asthma, antitussive and expectorant, antioxidant, anti-obesity, anti-atherosclerosis, anti-microbial, emetic and anti-emetic, anti-convulsant and anti-epileptic, sedative and hypnotic, learning and memory enhancement, and anti-depressant effects. Metabonomic studies suggest that raw PR may exhibit cardiotoxicity and pregnancy toxicity while showing no apparent hepatorenal toxicity. However, limited pharmacokinetic investigations on PR constrain its clinical translation. Furthermore, clinical safety data on PR is scarce, with only four clinical trials assessing its positive effects in pediatric epilepsy, nausea and vomiting, soft tissue injury, and chronic sinus tract. This review aims to enhance understanding of PR and provide valuable information and recommendations for further research and development of herbal medicine.
Collapse
Affiliation(s)
- Zuanji Liang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Sioi Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Li Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Chenxiao Shen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
2
|
Luo W, Wu H, Yang Z, Lan T, Wu L, Huang Y. Machine Learning and Experimental Validation Identified Ferroptosis Signature and Innovative Biomarkers (ESR1 and GSTZ1) in Liver Fibrosis. J Inflamm Res 2024; 17:10313-10332. [PMID: 39649424 PMCID: PMC11625426 DOI: 10.2147/jir.s490258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
Background Targeting ferroptosis is an effective approach to mitigate hepatic fibrosis, yet no reports exist on the ferroptosis signature in liver fibrosis. This study aimed to explore ferroptosis characteristics in this disease. Methods RNAseq data from GSE6764, GSE188604 and Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) were downloaded. Multiple machine learning methods, including Weighted Gene Co-expression Network Analysis (WGCNA), Random Forest (RF) and Support Vector Machine (SVM), were used to identify core genes in liver fibrosis and ferroptosis. WGCNA can pinpoint modules linked to clinical traits, aiding in discovering diagnostic and progression molecules in complex diseases. RF and SVM are often utilized for WGCNA validation to boost result accuracy. Carbon tetrachloride (CCl4) was used to establish a mouse liver fibrosis model to validate core gene expression, which was also assessed in test and validation GEO datasets. Finally, the diagnostic role of the core genes in liver fibrosis and hepatocellular carcinoma (HCC) was also investigated using ROC analysis. Results Multiple machine learning methods screened nine core genes, including IL1B, GSTZ1, LIFR, SLC25A37, PTGS2, MT1G, HSPB1, ESR1, and PHGDH. In vivo experimental validation, RT-PCR showed ESR1 and GSTZ1 were significantly under-expressed in the liver fibrosis group compared to the normal group. Simultaneously, in GSE6764 and GSE188604, ESR1 and GSTZ1 were also identified as protective genes for liver fibrosis. More in-depth research found that ESR1 and GSTZ1 exhibited a good diagnostic performance both in liver fibrosis and HCC, suggesting that a persistent decrease in ESR1 and GSTZ1 in patients might signal the progression from hepatic fibrosis to HCC. Conclusion The present study is the first to report the ferroptosis signature in liver fibrosis and identifies two novel biomarkers, ESR1 and GSTZ1, providing new insights for the diagnosis and treatment of liver fibrosis in the future.
Collapse
Affiliation(s)
- Wen Luo
- Department of Gastrointestinal Surgery, Liuzhou Workers Hospital, Liuzhou, People’s Republic of China
| | - Hongwen Wu
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, People’s Republic of China
| | - Zhijie Yang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, People’s Republic of China
| | - Tian Lan
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, People’s Republic of China
| | - Liya Wu
- Department of Neurology, Liuzhou Workers Hospital, Liuzhou, People’s Republic of China
| | - Yushen Huang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhong Y, Li J, Zhu X, Huang N, Liu R, Sun R. A comprehensive review of bupleuri radix and its bioactive components: with a major focus on treating chronic liver diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118244. [PMID: 38663781 DOI: 10.1016/j.jep.2024.118244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleuri Radix (BR) has been recognized as an essential herbal medicine for relieving liver depression for thousands of years. Contemporary research has provided compelling evidence of its pharmacological effects, including anti-inflammatory, immunomodulatory, metabolic regulation, and anticancer properties, positioning it as a promising treatment option for various liver diseases. Hepatitis, steatohepatitis, cirrhosis, and liver cancer are among the prevalent and impactful liver diseases worldwide. However, there remains a lack of comprehensive systematic reviews that explore the prescription, bio-active components, and underlying mechanisms of BR in treating liver diseases. AIM OF THE REVIEW To summarize the BR classical Chinese medical prescription and ingredients in treating liver diseases and their mechanisms to inform reference for further development and research. MATERIALS AND METHODS Literature in the last three decades of BR and its classical Chinese medical prescription and ingredients were collated and summarized by searching PubMed, Wiley, Springer, Google Scholar, Web of Science, CNKI, etc. RESULTS: BR and its classical prescriptions, such as Xiao Chai Hu decoction, Da Chai Hu decoction, Si Ni San, and Chai Hu Shu Gan San, have been utilized for centuries as effective therapies for liver diseases, including hepatitis, steatohepatitis, cirrhosis, and liver cancer. BR is a rich source of active ingredients, such as saikosaponins, polysaccharides, flavonoids, sterols, organic acids, and so on. These bioactive compounds exhibit a wide range of beneficial effects, including anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism regulation. However, it is important to acknowledge that BR and its constituents can also possess hepatotoxicity, which is associated with cytochrome P450 (CYP450) enzymes and oxidative stress. Therefore, caution should be exercised when using BR in therapeutic applications to ensure the safe and appropriate utilization of its potential benefits while minimizing any potential risks. CONCLUSIONS To sum up, BR, its compounds, and its based traditional Chinese medicine are effective in liver diseases through multiple targets, multiple pathways, and multiple effects. Advances in pharmacological and toxicological investigations of BR and its bio-active components in the future will provide further contributions to the discovery of novel therapeutics for liver diseases.
Collapse
Affiliation(s)
- Ying Zhong
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Jianchao Li
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Xiaomin Zhu
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Nana Huang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Rong Sun
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Advanced Medical Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Lv Y, Li H, Zhai BT, Sun J, Cheng JX, Zhang XF, Guo DY. Evidence of synergistic mechanisms of hepatoprotective botanical herbal preparation of Pueraria montana var. lobata and Schisandra sphenanthera. Front Pharmacol 2024; 15:1412816. [PMID: 38978983 PMCID: PMC11228302 DOI: 10.3389/fphar.2024.1412816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Background Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) and Schisandra sphenanthera Rehder & E.H. Wilson are traditional edible and medicinal hepatoprotective botanical drugs. Studies have shown that the combination of two botanical drugs enhanced the effects of treating acute liver injury (ALI), but the synergistic effect and its action mechanisms remain unclear. This study aimed to investigate the synergistic effect and its mechanism of the combination of Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) (PM) and Schisandra sphenanthera Rehder & E.H. Wilson (SS) in the treatment of ALI. Methods High performance liquid chromatography (HPLC) were utilized to conduct the chemical interaction analysis. Then the synergistic effects of botanical hybrid preparation of PM-SS (BHP PM-SS) against ALI were comprehensively evaluated by the CCl4 induced ALI mice model. Afterwards, symptom-oriented network pharmacology, transcriptomics and metabolomics were applied to reveal the underlying mechanism of action. Finally, the key target genes were experimentally by RT-qPCR. Results Chemical analysis and pharmacodynamic experiments revealed that BHP PM-SS was superior to the single botanical drug, especially at 2:3 ratio, with a better dissolution rate of active ingredients and synergistic anti-ALI effect. Integrated symptom-oriented network pharmacology combined with transcriptomics and metabolomics analyses showed that the active ingredients of BHP PM-SS could regulate Glutathione metabolism, Pyrimidine metabolism, Arginine biosynthesis and Amino acid sugar and nucleotide sugar metabolism, by acting on the targets of AKT1, TNF, EGFR, JUN, HSP90AA1 and STAT3, which could be responsible for the PI3K-AKT signaling pathway, MAPK signaling pathway and Pathway in cancer to against ALI. Conclusion Our study has provided compelling evidence for the synergistic effect and its mechanism of the combination of BHP PM-SS, and has contributed to the development and utilization of BHP PM-SS dietary supplements.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong-Yan Guo
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
5
|
Li L, Ju J, Zhuang X, Li S, Ma R, Li J, Ding M, Ma C, Wang X, Zhang B. Chemistry of Bairui granules and its mechanisms in the protective effect against methotrexate-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155158. [PMID: 37935081 DOI: 10.1016/j.phymed.2023.155158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Bairui granules (BRKL), a traditional Chinese medicine preparation, possess a range of pharmacological effects. However, its impact on methotrexate (MTX)-induced liver damage remains unexplored. PURPOSE The present work focused on investigating the potential protection of BRKL on MTX-induced liver damage, along with its potential active ingredients and underlying mechanisms. METHODS We evaluated the hepatoprotective activities of BRKL in liver-damaged Wistar rats induced by intraperitoneal MTX injection, observing the liver's morphological and pathological features. Additionally, we measured serum ALT, AST, and LDH levels using kits. Ultra High-Performance Liquid Chromatography-Q-Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS) analyzed BRKL composition, and network pharmacology strategy predicted and analyzed BRKL's targets and pathways. Thereafter, we conducted molecular docking for analyzing affinity of bioactive ingredients for targets with Autodock. At last, results were verified through in vitro experiments. RESULTS The animal experiments revealed the significant protection of BRKL against MTX-mediated rat liver damage. A total of 64 major chemical constituents were identified in BRKL by UHPLC-Q-Exactive Orbitrap MS. We then applied the network-based pharmacological strategy to clarify BRKL's molecular mechanism on liver damage based on the identified components. The targets EGFR, SRC, PIK3R1, AKT1, and ESR1, as well as compounds isorhamnetin 3,7-O-diglucoside, β-ecdysone, chrysoeriol, apigenin, and diosmetin, may play pivotal roles in treating MTX-mediated liver damage. According to our in vitro experiments, isorhamnetin 3,7-O-diglucoside may exert its liver-protective effect via AKT/NF-κB pathway. CONCLUSION BRKL protected against MTX-mediated liver injury, and the bioactive ingredients, key pathways, and liver injury-related molecular targets have been identified. These findings provide new insights into using BRKL in treating liver damage and propose a feasible approach to exploring phytomedicine's chemical and pharmacological foundation.
Collapse
Affiliation(s)
- Li Li
- Department of pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (TCM), Jinan 250014, China
| | - Jianfeng Ju
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Xiuping Zhuang
- School of Pharmacy, Shandong University of TCM, Jinan 250355, China
| | - Shuming Li
- Jiuhua Huayuan Pharmaceutical Company Limited, Chuzhou 239001,China
| | - Rui Ma
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Ji Li
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Ming Ding
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Chuanjiang Ma
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China
| | - Xin Wang
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan 250014, China; School of Pharmacy, Shandong University of TCM, Jinan 250355, China.
| | - Baoqing Zhang
- Department of pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (TCM), Jinan 250014, China.
| |
Collapse
|
6
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Mechanisms of Xiaochaihu Decoction on Treating Hepatic Fibrosis Explored by Network Pharmacology. DISEASE MARKERS 2022; 2022:8925637. [PMID: 36246566 PMCID: PMC9553551 DOI: 10.1155/2022/8925637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Purpose. To explore the material basis and pharmacological mechanism of Xiaochaihu Decoction (XCHD), the classic Traditional Chinese Medicine (TCM) formula in inhibiting hepatic fibrosis (HF). Methods. The main components in XCHD were screened from the TCMSP database, ETCM database, and literature, and their potential targets were detected and predicted using the Swiss Target Prediction platform. The HF-related targets were retrieved and screened through GeneCard database and OMIM database, combined with GEO gene chips. The XCHD targets and HF targets were mapped to search common targets. The protein-protein interaction (PPI) network was acquired via the STRING11.0 database and analyzed visually using Cytoscape 3.8.0 software. The potential mechanisms of the common targets identified through GO and KEGG pathway enrichment analysis were analyzed by using Metascape database. The results were visualized through OmicShare Tools. The “XCHD compound-HF target” network was visually constructed by Cytoscape 3.8.0 software. AutoDockVina1.1.2 and PyMoL software were used to verify the molecular docking of XCHD main active compounds and HF key targets. Results. A total of 164 potential active compounds from XCHD were screened to act on 95 HF-related targets. Bioinformatics analysis revealed that quercetin, β-sitosterol, and kaempferol may be candidate agents, which acted on multiple targets like PTGS2, HSP90AA1, and PTGS1 and regulate multiple key biological pathways like IL-17 signaling pathway, TNF signaling pathway and PI3K-Akt signaling pathway to relieve HF. Moreover, molecular docking suggested that quercetin and PTGS2 could statically bind and interact with each other through amino acid residues val-349, LEU-352, PHE-381, etc. Conclusion. This work provides a systems perspective to study the relationship between Chinese medicines and diseases. The therapeutic efficacy of XCHD on HF was the sum of multitarget and multi-approach effects from the bioactive ingredients. This study could be one of the cornerstones for further research.
Collapse
|