1
|
Gonda K, Hai T, Suzuki K, Ozaki A, Shibusa T, Takenoshita S, Maejima Y, Shimomura K. Effect of Ficus pumila L. on Improving Insulin Secretory Capacity and Resistance in Elderly Patients Aged 80 Years Old or Older Who Develop Diabetes After COVID-19 Infection. Nutrients 2025; 17:290. [PMID: 39861420 PMCID: PMC11767592 DOI: 10.3390/nu17020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
(1) Background: It has been reported that people affected by COVID-19, an infectious disease caused by SARS-CoV-2, suffer from various diseases, after infection. One of the most serious problems is the increased risk of developing diabetes after COVID-19 infection. However, a treatment for post-COVID-19 infection diabetes has not yet been established. In this study, we investigated the effects of Ficus pumila L. extract, which has traditionally been used to reduce blood glucose levels in Okinawa, on patients who developed diabetes after COVID-19 infection. (2) Methods: In total, 128 rehabilitation patients aged 80 years old or older who developed diabetes after COVID-19 infection were included. The HOMA-β (Homeostatic model assessment of β-cell function) and HOMA-IR (Homeostatic model assessment of insulin resistance) were assessed to evaluate the glucose tolerance. (3) Results: The HOMA-β decreased and HOMA-IR increased in patients who developed after diabetes after COVID-19 infection. Subsequently, 59 patients were given Ficus pumila L. extract and their HOMA-β and HOMA-IR improved after ingestion. On the other hand, the control group of patients who did not consume Ficus pumila L. showed no improvement in both HOMA-β and HOMA-IR. (4) Conclusions: Ficus pumila L. extract, ingested by patients who developed diabetes after COVID-19 infection, stimulated insulin secretion capacity and improved insulin resistance.
Collapse
Affiliation(s)
- Kenji Gonda
- Department of Breast and Thyroid Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki City 972-8322, Fukushima, Japan;
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan; (K.S.); (Y.M.); (K.S.)
| | - Takeshi Hai
- Department of Internal Medicine, Daido Central Hospital, 1-1-37 Asato, Naha City 902-0067, Okinawa, Japan;
| | - Kouichi Suzuki
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan; (K.S.); (Y.M.); (K.S.)
- Department of Internal Medicine, Daido Central Hospital, 1-1-37 Asato, Naha City 902-0067, Okinawa, Japan;
| | - Akihiko Ozaki
- Department of Breast and Thyroid Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki City 972-8322, Fukushima, Japan;
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan
| | - Takashi Shibusa
- Department of Internal Medicine, Jyoban Hospital of Tokiwa Foundation, Iwaki City 972-8322, Fukushima, Japan;
| | - Seiichi Takenoshita
- Department of Drug Research for Astatine-221 Targeted Alfa Therapy, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan;
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan; (K.S.); (Y.M.); (K.S.)
| | - Kenjyu Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan; (K.S.); (Y.M.); (K.S.)
| |
Collapse
|
2
|
Ahmed SA, Manna P, Borah JC. Stachydrine, a pyrrole alkaloid with promising therapeutic potential against metabolic syndrome and associated organ dysfunction. RSC Med Chem 2024:d4md00425f. [PMID: 39290386 PMCID: PMC11403578 DOI: 10.1039/d4md00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Metabolic syndrome is a multifaceted condition marked by interconnected risk factors, significantly increasing the risk of serious diseases like cardiovascular disease, type 2 diabetes, and stroke. Effective management often demands new medications due to complexity of the conditions and limitations of current treatments. Natural compounds are increasingly recognized in drug discovery due to their vast chemical diversity, commercial availability, low cost, and minimal side effects. One such compound is stachydrine (STA), also known as proline betaine or N-dimethyl proline. This simple pyrrole alkaloid is a major constituent of the genus Leonurus and the family Lamiaceae, and it shows promise due to its potential therapeutic properties. A comprehensive review of the literature, sourced from databases such as PubMed, Scopus, SciFinder, and Google Scholar, has provided extensive information on the sources, chemistry, biosynthesis, derivatives, molecular targets, biological activities, bioavailability, and toxicity of STA. This review highlights numerous in vitro and in vivo studies that demonstrate the effectiveness of STA in various therapeutic areas, including anti-obesity, neuroprotective, nephroprotective, and cardiovascular protection, among others. The wide range of biological activities of STA is attributed to its influence on multiple molecular targets and signaling pathways, such as ACE/AngII/AT1R-TGFβ1, NF-κB, JAK/STAT, AKT/ERK, AMPK/CAMKKβ/LKB1, CaMKII/PLN, etc. which are critical in the development and progression of metabolic syndrome. Additionally, this review addresses limitations related to the pharmacokinetics and bioavailability of STA. Overall, the findings underscore the potential of STA as a therapeutic agent for metabolic syndrome and related disorders, suggesting that further clinical investigation is warranted to fully understand and utilize its benefits.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology Guwahati-781035 Assam India +91 361 2273063 +91 361 2273061
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology Jorhat Assam 785006 India +91 376 2370011 +91 376 2370012
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology Guwahati-781035 Assam India +91 361 2273063 +91 361 2273061
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati Guwahati-781101 Assam India
| |
Collapse
|
3
|
Ma Y, Lai J, Chen Z, Wan Q, Shi X, Zhou H, Li J, Yang Z, Wu J. Exploring therapeutic targets and molecular mechanisms for treating diabetes mellitus-associated heart failure with Qishen Yiqi dropping pills: A network pharmacology and bioinformatics approach. Medicine (Baltimore) 2024; 103:e39104. [PMID: 39093800 PMCID: PMC11296435 DOI: 10.1097/md.0000000000039104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetes mellitus (DM) and heart failure frequently coexist, presenting significant public health challenges. QiShenYiQi Dropping Pills (QSDP) are widely employed in the treatment of diabetes mellitus concomitant with heart failure (DM-HF). Nevertheless, the precise mechanisms underlying their efficacy have yet to be elucidated. Active ingredients and likely targets of QSDP were retrieved from the TCMSP and UniProt databases. Genes associated with DM-HF were pinpointed through searches in the GeneCards, OMIM, DisGeNET, and TTD databases. Differential genes connected to DM-HF were sourced from the GEO database. Enrichment analyses via gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways, as well as immune infiltration assessments, were conducted using R software. Further analysis involved employing molecular docking strategies to explore the interactions between the identified targets and active substances in QSDP that are pertinent to DM-HF treatment. This investigation effectively discerned 108 active compounds and 257 targets relevant to QSDP. A protein-protein interaction network was constructed, highlighting 6 central targets for DM-HF treatment via QSDP. Gene ontology enrichment analysis predominantly linked these targets with responses to hypoxia, metabolism of reactive oxygen species, and cytokine receptor interactions. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways demonstrated that these targets mainly participate in pathways linked to diabetic complications, such as AGE-RAGE signaling, dyslipidemia, arteriosclerosis, the HIF-1 signaling pathway, and the tumor necrosis factor signaling pathway. Further, immune infiltration analysis implied that QSDP's mechanism in treating DM-HF might involve immune-mediated inflammation and crucial signaling pathways. Additionally, molecular docking studies showed that the active substances in QSDP have strong binding affinities with these identified targets. This research presents a new model for addressing DM-HF through the use of QSDP, providing novel insights into incorporating traditional Chinese medicine (TCM) principles in the clinical treatment of DM-HF. The implications of these findings are substantial for both clinical application and further scientific inquiry.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhengtao Chen
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiang Wan
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianlin Shi
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hao Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiaming Li
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zurong Yang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
Mili C, Dowarah B, Dutta C, Laskar RA, Tayung K, Boruah T. A comprehensive review on traditional uses, phytochemical, and pharmacological properties of the genus Antidesma L. Fitoterapia 2024; 176:106023. [PMID: 38772510 DOI: 10.1016/j.fitote.2024.106023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
The genus Antidesma L. (Phyllanthaceae) consists of 102 species and is distributed throughout the subtropical, temperate, and subpolar regions. Numerous species in this genus are employed in ethnomedical practices to treat a range of ailments including anaemia, diabetes, herpes, skin infections, typhoid, throat and lung diseases, gastrointestinal, jaundice, rheumatic, and many more diseases. This review aimed to highlight the ethnopharmacological uses, phytochemical components, biological activities, and future research opportunities of the genus. A total number of 112 research papers published between the period 1977 and 2023 were considered and reviewed were retrieved from scientific databases such as Scopus, Web of Science, Elsevier Scient Direct, Google Scholar, and PubMed. The literature study revealed that both plant extracts and phytochemicals exhibited a wide range of biological activities including antidiabetes, anticancer, antimicrobial, anti-inflammation, and many other activities. Overall, a total number of 236 compounds have been encountered from the different species of Antidesma. These compounds belong to different chemical groups such as alkaloids, flavonoids, fatty acids, lignans, sterols, terpenoids, coumarins, and others. Three compounds such as antidesmone, amentoflavone, and β-sitosterol were found to be possible chemotaxonomic markers for the genus Antisema. Furthermore, only 16 species have been investigated in the context of phytochemistry and pharmacological activities of the genus so far. This review could serve as a comprehensive resource for future research in drug discovery and also lay the groundwork for the exploration of additional species within this genus for pharmaceutical applications.
Collapse
Affiliation(s)
- Chiranjib Mili
- Department of Botany, B.P. Chaliha College, Nagarbera, Kamrup, Assam 781127, India.
| | - Bhaskar Dowarah
- Department of Botany, Bahona College, Bahona, Jorhat, Assam 785101, India
| | - Champak Dutta
- Department of Chemistry, Bahona College, Bahona, Jorhat, Assam 785101, India
| | - Rafiul Amin Laskar
- Department of Botany, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj, Assam, India
| | - Kumanand Tayung
- Department of Botany, Gauhati University, Guwahati, Assam 781014, India
| | - Tridip Boruah
- Department of Botany, Madhab Choudhury College, Barpeta, Assam 781301, India
| |
Collapse
|
5
|
Lombardo GE, Russo C, Maugeri A, Navarra M. Sirtuins as Players in the Signal Transduction of Citrus Flavonoids. Int J Mol Sci 2024; 25:1956. [PMID: 38396635 PMCID: PMC10889095 DOI: 10.3390/ijms25041956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.
Collapse
Affiliation(s)
- Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| |
Collapse
|
6
|
Yao Y, Chen Y, Chen H, Pan X, Li X, Liu W, Bahetjan Y, Lu B, Pang K, Yang X, Pang Z. Black mulberry extract inhibits hepatic adipogenesis through AMPK/mTOR signaling pathway in T2DM mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117216. [PMID: 37741475 DOI: 10.1016/j.jep.2023.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Black mulberry (Morus nigra L.) is an ancient dual-use plant resource for medicine and food. It is widely used in Uyghur folklore for hypoglycemic treatment and is a folkloric plant medicine with regional characteristics. However, the mechanism of Morus nigra L. treatment in diabetes mellitus has not been fully understood, especially from the perspective of hepatic lipid accumulation is less reported. OBJECTIVE OF THIS STUDY This study was to explore the potential of Morus nigra L. fruit ethyl acetate extract (MNF-EA) to reduce blood sugar levels by preventing the production of hepatic lipogenesis and to provide more evidence for the use of MNF-EA as an adjuvant therapy for type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS In this study, the chemical composition of MNF-EA was first analyzed and characterized using UPLC-Q-TOF-MS technique. A series of in vitro studies were performed with HepG2-IR cells and oleic acid (OA)-induced HepG2 cells, including MTT assay, glucose uptake assay, oil red O staining and Western blot analysis. The STZ-HFD co-induced T2DM mice were employed for in vivo research, including physical indices, biochemical analysis, histopathological examination, and Western blot analysis. RESULTS The 19 compounds in MNF-EA were identified by UPLC-Q-TOF-MS technique. Insulin resistance (IR) and lipid droplet accumulation in HepG2 cells were greatly improved by MNF-EA treatment, which had no appreciable side effects at the dosage used. In T2DM mice, MNF-EA decreased fasting blood glucose (FBG), saved body weight, and significantly improved oral glucose tolerance (OGTT) and IR status. In addition, MNF-EA treatment also improved lipid metabolism disorders and liver function in T2DM mice. Histopathological sections showed that MNF-EA treatment reduced hepatic steatosis. Mechanistic studies suggest that MNF-EA acted through the AMPK/mTOR pathway. CONCLUSIONS These results suggest that MNF-EA has great potential to reverse the metabolic abnormalities associated with T2DM by regulating the AMPK/mTOR signaling pathway. Therefore, we believe that MNF is a promising medicinal and food-homologous agent to improve T2DM.
Collapse
Affiliation(s)
- Yudi Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yang Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huijian Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenqi Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yerlan Bahetjan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Kejian Pang
- College of Biological and Geographical Sciences, Yili Normal University, Yining, 835000, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
7
|
Saikia K, Dey S, Hazarika SN, Handique GK, Thakur D, Handique AK. Chemical and biochemical characterization of Ipomoea aquatica: genoprotective potential and inhibitory mechanism of its phytochemicals against α-amylase and α-glucosidase. Front Nutr 2023; 10:1304903. [PMID: 38192648 PMCID: PMC10772144 DOI: 10.3389/fnut.2023.1304903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Ipomea aquatica, also known as water spinach, is an aquatic non-conventional leafy vegetable and is considered a healthy and seasonal delicacy in ethnic food culture. The study revealed the presence of rich chemical and biochemical composition in I. aquatica and antioxidant activities. Moreover, the plant extracts demonstrated significant DNA damage prevention activity against UV/H2O2-induced oxidative damage. High-resolution mass spectrometric analysis by UPLC-qTOF-MS/MS resulted in the identification of over 65 different compounds and 36 important secondary metabolites. Most of the compounds identified represented polyphenolic compounds, viz. polyphenol glycosides and phenolic acids, followed by alkaloids and terpenoids. A UPLC-DAD method was developed and quantified for 10 different polyphenolic compounds. Out of all the metabolites examined, a significant number of compounds were reported to have various bioactive properties, including antibacterial, antiviral, antitumor, hepatoprotection, and anti-depressant effects. The plant extracts were found to contain various compounds, including euphornin, lucidenic acid, and myricitin glycosides, which possess significant medicinal value. Metabolite analysis utilizing GC-MS revealed the presence of various fatty acids, amino acids, sugars, and organic acids. The analysis revealed the presence of essential unsaturated fatty acids such as α-linolenic acid as well as beneficial substances such as squalene., The evaluation of glycemic control activity was carried out by comprehending the inhibitory potential of α-amylase and α-glucosidase, outlining the kinetics of the inhibition process. The inhibitory activities were compared to those of acarbose and revealed stronger inhibition of α-glucosidase as compared to α-amylase. Furthermore, the mechanism of inhibition was determined using in silico analysis, which involved molecular docking and molecular dynamic simulation of the identified IA phytochemicals complexed with the hydrolase enzymes. The study generates convincing evidence that dietary intake of I. aquatica provides a positive influence on glycemic control along with various health-protective and health-promoting benefits.
Collapse
Affiliation(s)
- Kangkon Saikia
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Saurav Dey
- Guwahati Biotech Park, Guwahati, Assam, India
| | - Shabiha Nudrat Hazarika
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | | | - Debajit Thakur
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | | |
Collapse
|
8
|
Zhang L, Mohankumar K, Martin G, Mariyam F, Park Y, Han SJ, Safe S. Flavonoids Quercetin and Kaempferol Are NR4A1 Antagonists and Suppress Endometriosis in Female Mice. Endocrinology 2023; 164:bqad133. [PMID: 37652054 PMCID: PMC10502789 DOI: 10.1210/endocr/bqad133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Nuclear receptor 4A1 (NR4A1) plays an important role in endometriosis progression; levels of NR4A1 in endometriotic lesions are higher than in normal endometrium, and substituted bis-indole analogs (NR4A1) antagonists suppress endometriosis progression in mice with endometriosis. In addition, the flavonoids kaempferol and quercetin are natural products that directly bind NR4A1 and significantly repress the intrinsic NR4A1-dependent transcriptional activity in human endometriotic epithelial and stromal cells and Ishikawa endometrial cancer cells. NR4A1 knockdown and inhibition of NR4A1 by kaempferol and quercetin suppressed proliferation of human endometriotic epithelial cells and Ishikawa cells by inhibiting epidermal growth factor receptor/c-Myc/survivin-mediated growth-promoting and survival pathways, The mammalian target of rapamycin (mTOR) signaling and αSMA/CTGF/COL1A1/FN-mediated fibrosis signaling but increasing Thioredoxin domain Containing 5/SESN2-mediated oxidative/estrogen receptors stress signaling. In human endometriotic stromal cells, NR4A1 knockdown and inhibition of NR4A1 by kaempferol and quercetin primarily inhibited mTOR signaling by suppressing proliferation of human endometrial stromal cells. In addition, kaempferol and quercetin treatment also effectively suppressed the growth of endometriotic lesions in mice with endometriosis compared with the vehicle without any body weight changes. Therefore, kaempferol and quercetin are NR4A1 antagonists with potential as nutritional therapy for endometriosis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Gregory Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Fuada Mariyam
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yuri Park
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Molinari S, Imbriano C, Moresi V, Renzini A, Belluti S, Lozanoska-Ochser B, Gigli G, Cedola A. Histone deacetylase functions and therapeutic implications for adult skeletal muscle metabolism. Front Mol Biosci 2023; 10:1130183. [PMID: 37006625 PMCID: PMC10050567 DOI: 10.3389/fmolb.2023.1130183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Skeletal muscle is a highly adaptive organ that sustains continuous metabolic changes in response to different functional demands. Healthy skeletal muscle can adjust fuel utilization to the intensity of muscle activity, the availability of nutrients and the intrinsic characteristics of muscle fibers. This property is defined as metabolic flexibility. Importantly, impaired metabolic flexibility has been associated with, and likely contributes to the onset and progression of numerous pathologies, including sarcopenia and type 2 diabetes. Numerous studies involving genetic and pharmacological manipulations of histone deacetylases (HDACs) in vitro and in vivo have elucidated their multiple functions in regulating adult skeletal muscle metabolism and adaptation. Here, we briefly review HDAC classification and skeletal muscle metabolism in physiological conditions and upon metabolic stimuli. We then discuss HDAC functions in regulating skeletal muscle metabolism at baseline and following exercise. Finally, we give an overview of the literature regarding the activity of HDACs in skeletal muscle aging and their potential as therapeutic targets for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Viviana Moresi
- Institute of Nanotechnology, Department of Physics, National Research Council (CNR-NANOTEC), Sapienza University of Rome, Rome, Italy
- *Correspondence: Viviana Moresi,
| | - Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, Department of Physics, National Research Council (CNR-NANOTEC), Sapienza University of Rome, Rome, Italy
| |
Collapse
|