1
|
Guo JW, Lin GQ, Tang XY, Yao JY, Feng CG, Zuo JP, He SJ. Therapeutic potential and pharmacological mechanisms of Traditional Chinese Medicine in gout treatment. Acta Pharmacol Sin 2025; 46:1156-1176. [PMID: 39825190 DOI: 10.1038/s41401-024-01459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025]
Abstract
Gout is a systemic metabolic disorder caused by elevated uric acid (UA) levels, affecting over 1% of the population. The most common complication of gout is gouty arthritis (GA), characterized by swelling, pain or tenderness in peripheral joints or bursae, which can lead to the formation of tophi. At present, western medicines like colchicine, febuxostat and allopurinol are the primary treatment strategy to alleviate pain and prevent flare-ups in patients with GA, but they have significant side effects and increased mortality risks. Traditional Chinese medicine (TCM) has been utilized for thousands of years for the prevention and treatment of GA, demonstrating effective control over serum UA (SUA) levels with fewer side effects. Herein we summarized a total of 541 studies published from 2000 to 2023 in sources including PubMed, Web of Science, the Cochrane Library and Embase, highlighting the therapeutic potential of TCM in treating gout and GA, particularly in combination with modern medical strategies. This review focuses on TCM formulas, Chinese herbal extracts, and active compounds derived from TCM, providing an overview of recent clinical application and the pharmacological research based on animal models and cellular systems. Particularly, the current review categorized the clinical and experimental evidence into the strategies for improving hyperuricemia, decreasing the sudden onset of acute GA and retarding chronic GA progression, supplied further coherent reference and enlightenment for clinicians, investigators of natural product chemistry, researchers in TCM and pharmacology. We hope this article will inspire the development of novel formulas and molecular entities for the treatment of gout and GA.
Collapse
Affiliation(s)
- Jing-Wen Guo
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yi Tang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Ying Yao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen-Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Li LY, Liu SZ, Yu X, Shi X, You H, Liu P, Wang F, Wang P, Chen LL. Liuwei Anshen Capsule alleviates cognitive impairment induced by sleep deprivation by reducing neuroapoptosis and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119311. [PMID: 39743184 DOI: 10.1016/j.jep.2024.119311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive dysfunction is a common complication of chronic insomnia. Liuwei Anshen Capsule (LAC), a traditional Chinese patent medicine clinically prescribed for insomnia, has been proved to possess good efficacy in reducing insomnia complications including dementia and anxiety in clinic. However, the active substances in LAC and their mechanisms in treating cognitive deficit associated with sleep disorders remain unclear. AIM OF THE STUDY This study aims to explore the potential material basis and therapeutic mechanisms of LAC on cognitive impairment caused by sleep deprivation (SD) through an integrative approach involving serum pharmacochemistry, network pharmacology and experimental validation. METHODS The active ingredients of LAC in vitro and in vivo were screened and identified by liquid chromatography-mass spectrometry (LC-MS) technology. The potential targets and signaling pathways of LAC against cognitive impairment were predicted based on network pharmacology and molecular docking. Subsequently, MWM and NOR were employed to evaluate the efficacy of LAC on cognitive impairment in SD rats, and the mechanism was further validated from pathological and molecular biology perspectives. RESULTS Totally 85 active ingredients in LAC were accurately identified and 8 components absorbed into blood were found by LC-MS. Network pharmacology and molecular docking analysis predicted potential targets involving caspase-3, MAPK3, MAPK1, and Bcl-2. LAC (192, 384, and 768 mg/kg, i.g.) could improve spatial learning and memory of SD rats in a dose-dependent manner, restrain hippocampal neuronal apoptosis and microglia activation, and diminish TNF-α, IL-1β, and IL-6 expression levels, which were achieved by regulating apoptosis-related proteins (caspase-3, Bax, and Bcl-2) and MAPK (p-ERK and p-P38) signaling pathway. CONCLUSION The findings provide evidence that LAC alleviates cognitive abnormality and pathological alterations in sleep-deprived rats by regulating the expression of apoptosis related proteins and MAPK signaling pathway, indicating its potential therapy for the cognitive complaints caused by insomnia or other neurological diseases.
Collapse
Affiliation(s)
- Lian-Yu Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shang-Zhi Liu
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xuecheng Yu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiaoyuan Shi
- SCIEX, Analytical Instrument Trading Co., Ltd, Shanghai, 200355, China
| | - Hongtao You
- Chongqing Pharscin Pharmaceutical Group Co., Ltd., Chongqing, 401120, China
| | - Ping Liu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fei Wang
- Dept. of Brain Disease, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Ping Wang
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China; School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Lin-Lin Chen
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
3
|
Liu X, Gong Q, Deng X, Li L, Luo R, Li X, Guo D, Deng F. UHPLC-Q/Orbitrap HRMS combined with spectrum-effect relationship and network pharmacology to discovery the gastrointestinal motility-promoting material basis in Citri Sarcodactylis Fructus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118926. [PMID: 39393559 DOI: 10.1016/j.jep.2024.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of gastrointestinal motility disorders (GMD) is increasing and is characterized by long-term recurrence. Citri Sarcodactylis Fructus (CSF), as a traditional Chinese medicine (TCM) known in "regulating qi and harmonizing the stomach", has therapeutic effects on GMD. However, the material basis of its efficacy is not clear. AIM OF THE STUDY The aim of this study was to evaluate the gastrointestinal motility-promoting activity of CSF extracts and to screen their active ingredients and to perform a preliminary validation. METHODS The chemical composition spectrum of different extracts of CSF were established by ultra high-performance liquid chromatography coupled with quadrupole orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS). The gastrointestinal motility-promoting activities of CSF were investigated by determining the intestinal propulsion rate, gastric emptying rate, acetylcholinesterase activity, and motilin content in L-arginine-induced GMD mice. Spectrum-effect relationship and network pharmacology analysis were used for the screening of potential active ingredients. A zebrafish gastrointestinal motility model traced with Nile Red was established to validate the active ingredients. Molecular docking prediction was used to explore the mechanism of action of the active ingredient. Finally, Western blotting and TUNEL staining were performed to validate the molecular docking predictions. RESULTS In total, 42 shared components were identified. The main active fraction of CSF to promote gastrointestinal motility was 70% ethanol elution fraction. Eleven potential active ingredients were screened by grey correlation analysis, orthogonal partial least squares analysis, and "active ingredient-target" network. Six compounds were confirmed as the pharmacodynamic substances of CSF by zebrafish gastrointestinal motility model, namely, quercetin, kaempferol, isorhamnetin, diosmetin, hesperetin, and 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone. Molecular docking predictions and Western blotting assays indicated that CSF may act on AKT and MMP9 targets to exert gastrointestinal motility-promoting activity. CONCLUSION This study provided a foundation for elucidating the gastrointestinal motility-promoting activity of CSF and its material basis by integrating spectrum-effect relationship and network pharmacology. It also provided a theoretical basis for quality control of CSF and a new idea for the discovery and validation of pharmacodynamic substances in TCM.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qianqian Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianglan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dale Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Zhai Y, Liu L, Zhang F, Chen X, Wang H, Zhou J, Chai K, Liu J, Lei H, Lu P, Guo M, Guo J, Wu J. Network pharmacology: a crucial approach in traditional Chinese medicine research. Chin Med 2025; 20:8. [PMID: 39800680 PMCID: PMC11725223 DOI: 10.1186/s13020-024-01056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Network pharmacology plays a pivotal role in systems biology, bridging the gap between traditional Chinese medicine (TCM) theory and contemporary pharmacological research. Network pharmacology enables researchers to construct multilayered networks that systematically elucidate TCM's multi-component, multi-target mechanisms of action. This review summarizes key databases commonly used in network pharmacology, including those focused on herbs, components, diseases, and dedicated platforms for network pharmacology analysis. Additionally, we explore the growing use of network pharmacology in TCM, citing literature from Web of Science, PubMed, and CNKI over the past two decades with keywords like "network pharmacology", "TCM network pharmacology", and "herb network pharmacology". The application of network pharmacology in TCM is widespread, covering areas such as identifying the material basis of TCM efficacy, unraveling mechanisms of action, and evaluating toxicity, safety, and novel drug development. However, challenges remain, such as the lack of standardized data collection across databases and insufficient consideration of processed herbs in research. Questions also persist regarding the reliability of study outcomes. This review aims to offer valuable insights and reference points to guide future research in precision TCM network pharmacology.
Collapse
Affiliation(s)
- Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liu Liu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaodong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haojia Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiying Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyan Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiangying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiling Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peiying Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meiling Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jincheng Guo
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Jia X, Lv W, Wei C, Liang Y, Yang J, Hou X, Li Z, Chen X, Wei M, Sun D. Q-Marker Prediction of Astragali Complanati Semen Based on Fingerprint and Network Pharmacology. J AOAC Int 2025; 108:78-89. [PMID: 39400545 DOI: 10.1093/jaoacint/qsae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/29/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Astragali Complanati, known in Chinese as Shayuanzi, is a common medicinal material in traditional Chinese medicine, mainly used for tonifying the kidney, supporting yang, consolidating essence, reducing urine, and other diseases. OBJECTIVE The ultra performance liquid chromatography (UPLC) fingerprint of Astragali Complanati Semen (ACS) was established, and the Q-markers of ACS were analyzed by network pharmacology. METHODS First, a UPLC fingerprint detection method was established for ACS, and the common peaks were identified by UPLC-MS/MS. The "component-target-pathway" network relationships of characteristic components of ACS were constructed by network pharmacology, and the potential quality markers (Q-markers) were predicted. RESULTS A total of 24 common peaks were identified from the UPLC fingerprint of ACS, and 12 chromatographic peaks were identified by UPLC-MS/MS. A total of 12 Q-markers candidate components were screened out. Through network pharmacological analysis, it is predicted that myricetin 3-O-β-D-xylopyranosyl-(1-2)-[α-L-rhamnopyranosyl-(1-6)]-β-D-glucopyranoside, myricetin 3-O-β-D-xylopyranosyl(1-2)-β-D-glucopyranoside, myricetin 3-β-D-glucopyranoside, cannabiscitrin, laricitrin-3-O-glucoside, leucoside, complanatoside B, complanatuside, complanatuside 6''-malonate, clycosin, rhamnocitrin 3-O-β-D-apiofuranosyl(1→2)-β-D-glucopyranoside, and 3-O-[5'''-O-feruloyl-beta-D-apiofuranosyl(1'''->2'')-beta-D-glucopyranosyl] rhamnocitrin are the Q-markers of ACS. CONCLUSION The method established in this study was accurate, reliable, simple, and practical and could be used as a reference method for ACS quality detection. Twelve Q-markers selected by network pharmacology could provide support and references for ACS QC.
Collapse
Affiliation(s)
- Xiaozhou Jia
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
- Guangzhou University of Traditional Chinese Medicine, Guangdong, Guangzhou 510400, China
| | - Weisheng Lv
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| | - Cuijie Wei
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| | - Yueyi Liang
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| | - Jie Yang
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| | - Xuxuan Hou
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| | - Zhenyu Li
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| | - Xiangdong Chen
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| | - Mei Wei
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| | - Dongmei Sun
- Guangdong Yifang Pharmaceutical Co. Ltd, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula, Guangdong, Foshan 528244, China
| |
Collapse
|
6
|
Chen S, Zhou C, Huang J, Qiao Y, Wang N, Huang Y, Li B, Xu W, He X, Wang K, Zhi Y, Lv G, Shen S. Bioinformatics based exploration of the anti-NAFLD mechanism of Wang's empirical formula via TLR4/NF-κB/COX2 pathway. Mol Med 2024; 30:278. [PMID: 39730994 DOI: 10.1186/s10020-024-01022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/01/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has developed as a leading public wellness challenge as a result of changes in dietary patterns. Unfortunately, there is still a lack of effective pharmacotherapy methods for NAFLD. Wang's empirical formula (WSF) has demonstrated considerable clinical efficacy in treating metabolic disorders for years. Nevertheless, the protective effect of WSF against NAFLD and its underlying mechanism remains poorly understood. METHODS The NAFLD model was established using a 17-week high-sucrose and high-fat (HSHF) diet with 32 ICR mice. In assessing the therapeutic efficacy of WSF on NAFLD, we detected changes in body weight, viscera weight, biomarkers of glycolipid metabolism in serum and liver, transaminase levels and histopathology of liver with H&E and Oil Red O staining after oral administration. The chemical components in WSF were extensively identified and gathered utilizing the HPLC-Q-TOF/MS system, database mining from HMDB, MassBank, and TCMSP databases, alongside literature searches from CNKI, Wanfang and VIP databases. The forecast of network pharmacology approach was then utilized to investigate the probable mechanisms by which WSF improves NAFLD based on the performance of prospective target identification and pathway enrichment analysis. Besides, molecular docking was also conducted for the verification of combination activities between active components of WSF and core proteins related to NAFLD. In final, validation experiments of obtained pathways were conducted through ELISA, immunohistochemistry (IHC), and western blot (WB) analysis. RESULTS Pharmacodynamic outcomes indicated that WSF intervention effectively mitigated obesity, fat accumulation in organs, lipid metabolism disorders, abnormal transaminase levels and liver pathology injury in NAFLD mice (P < 0.05, 0.01). A total of 72 existent ingredients of WSF were acquired by HPLC-Q-TOF/MS and database, and 254 common targets (11.6% in total targets) of NAFLD and WSF were identified. Network pharmacology revealed that WSF presses NAFLD via modulating TNF, IL6, AKT1, IL1B, PTGS2 (COX2), and other targets, and the probable pathways were primarily inflammatory signaling pathways, as confirmed by molecular docking. Molecular biology experiments further conformed that WSF could decrease levels of inflammatory factors like IL-1β, IL-6 and TNF-α (P < 0.01) and expression of TLR4, NF-κB and COX-2 (P < 0.05, 0.01) in the liver. CONCLUSION WSF treatment effectively protects against lipid metabolism disorders and liver inflammation injury in HSHF diet-induced NAFLD mice, and its molecular mechanism might be via suppressing the TLR4/NF-κB/COX-2 inflammatory pathway to reduce the release of inflammatory cytokines in the liver.
Collapse
Affiliation(s)
- Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Biniang District, Hangzhou, 310053, Zhejiang, China
| | - Chuanjie Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
| | - Jiahui Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
| | - Yunlong Qiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
| | - Yuzhen Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
| | - Wanfeng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang, 313200, China
| | - Kungen Wang
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China.
- Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, 310006, Zhejiang, China.
| | - Yihui Zhi
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China.
- Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, 310006, Zhejiang, China.
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Biniang District, Hangzhou, 310053, Zhejiang, China.
| | - Shuhua Shen
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China.
- Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
7
|
Liu W, Zhang M, Tan J, Liu H, Wang L, Liao J, Huang D, Jie W, Jin X. Integrated Data Mining and Animal Experiments to Investigate the Efficacy and Potential Pharmacological Mechanism of a Traditional Tibetan Functional Food Terminalia chebula Retz. in Hyperuricemia. J Inflamm Res 2024; 17:11111-11128. [PMID: 39713714 PMCID: PMC11662633 DOI: 10.2147/jir.s484987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Background Hyperuricemia (HUA), a common metabolic disorder associated with gout, renal dysfunction, and systemic inflammation, necessitates safer and more comprehensive therapeutic approaches. Traditional Tibetan medicine has a rich history of treating HUA. This study aimed to identify novel anti-hyperuricemic herb derived from traditional Tibetan medicine. Methods Traditional Tibetan medicine prescriptions for HUA were analyzed using data mining techniques, identifying T. chebula as a high-frequency herb. Its phytochemical composition was characterized by UPLC-QE-Orbitrap-MS. Hyperuricemic rat models were treated with T. chebula to assess its effects on serum uric acid (UA) levels, renal inflammation, intestinal barrier integrity, and gut microbiota composition. Molecular and histological analyses evaluated its impact on key biomarkers. Results Through data mining, we identified T. chebula as a promising candidate for HUA treatment. T. chebula demonstrated dose-dependent inhibition of xanthine oxidase (XOD) in vitro and significantly reduced serum UA levels and XOD activity in vivo. It restored gut barrier function by upregulating tight junction proteins (ZO-1, Occludin, Claudin-1) and reduced pro-inflammatory cytokines (IL-6, TNF-α). T. chebula improved renal function, reducing serum creatinine (Cre) and blood urea nitrogen (BUN) levels. Gut microbiota analysis revealed a favorable shift in microbial composition, with reductions in harmful bacteria (eg, Clostridium spp.) and increases in beneficial bacteria (eg, Roseburia). These effects aligned with the modulation of the gut-kidney axis. Conclusion This study highlights the multi-target therapeutic potential of T. chebula in HUA management. By regulating the gut-kidney axis, T. chebula alleviates systemic inflammation, enhances intestinal and renal health, and addresses critical aspects of HUA pathology. These findings underscore the value of integrating traditional medicine with modern scientific methodologies to develop innovative treatments.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Mingchao Zhang
- People’s Hospital of Foshan Nanhai Economy Development Zone, Foshan, People’s Republic of China
| | - Jingli Tan
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Hao Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Lijun Wang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jingyang Liao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Dan Huang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Wang Jie
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xiaobao Jin
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Wu C, Zhang Z, Bai L, Lei S, Zou M, Bao Z, Ren Z, Liu K, Gong HH, Ma W, Chen L. Piper longum L. ameliorates gout through the MAPK/PI3K-AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118254. [PMID: 38670409 DOI: 10.1016/j.jep.2024.118254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gout, a painful joint disease with a prevalence ranging from 0.86% to 2.2% in China over the past decade. Traditional medicine has long utilized the medicinal and edible Piper longum L. (PL) fruit spikes for treating gout and other joint conditions like rheumatoid arthritis. However, the exact mechanisms behind its effectiveness remain unclear. AIM OF THE STUDY This study aimed to investigate the potential of alcoholic extracts from PL fruit spikes as a safe and effective treatment for gout. We used a combined network pharmacology and experimental validation approach to evaluate the mechanisms behind the anti-gout properties of PL. MATERIALS AND METHODS UPLC-Q/TOF-MS analysis determined the major components of PL. Subsequently, network pharmacology analysis predicted potential molecular targets and related signaling pathways for the anti-gout activity of PL. Molecular docking simulations further explored the interactions between PL compounds and proteins and characterized the properties of potential bioactive secondary metabolites. Mouse models of air pouch inflammation and hyperuricemia were further established, and the anti-gout mechanism of PL was confirmed by examining the expression of proteins related to the MAPK and PI3K-AKT pathways in the tissue. RESULTS Our analysis revealed 220 bioactive secondary metabolites within PL extracts. Network pharmacology and molecular docking results indicated that these metabolites primarily combat gout by modulating the PI3K-AKT and MAPK signaling pathways. In vivo experiments have also proven that PL at a dose of 100 mg/kg can optimally reduce acute inflammation of gout and kidney damage caused by high uric acid. The anti-gout mechanism involves the PI3K-AKT/MAPK signaling pathway and its downstream NF-κB pathway. CONCLUSION This study provides compelling evidence for PL's therapeutic potential in gout management by modulating key inflammatory pathways. The findings offer a strong foundation for future clinical exploration of PL as a gout treatment option.
Collapse
Affiliation(s)
- Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lijie Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shuhui Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zilu Bao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaoxiang Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Kaiqun Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Hui-Hong Gong
- School of Biomedical Engineering and Medical Imaging, Hubei University of Science and Technology, XianNing, Hubei Province, 437000, China.
| | - Wenjun Ma
- Arura Tibetan Medicine Co., Ltd., State Key Laboratory of Tibetan Medicine Research and Development, Xining, China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
9
|
Fan QQ, Zhai BT, Zhang D, Zhang XF, Cheng JX, Guo DY, Tian H. Study on the Underlying Mechanism of Yinhua Gout Granules in the Treatment of Gouty Arthritis by Integrating Transcriptomics and Network Pharmacology. Drug Des Devel Ther 2024; 18:3089-3112. [PMID: 39050804 PMCID: PMC11268870 DOI: 10.2147/dddt.s475442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Yinhua Gout Granules (YGG) is a traditional Chinese medicine preparation with a variety of pharmacological effects, and its clinical efficacy in the treatment of gouty arthritis (GA) has been fully confirmed. However, the pharmacodynamic basis of YGG and its anti-inflammatory mechanism of action in GA are unknown. The objective of this study was to identify the active components and molecular mechanisms of YGG in the treatment of GA. Methods Ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) and network pharmacology were used to identify and predict the potential active ingredients and related signaling pathways. Then, we revealed the anti-GA effects of YGG based on pharmacodynamic experiments in GA rats. Finally, we integrated transcriptomics and network pharmacology to elucidate the potential mechanism of action and verified the putative mechanism by molecular docking, immunohistochemical (IHC) and Western blot. Results We have identified 10 major active components of YGG that may have anti-GA effects, such as ferulic acid, rutin, luteolin, etc. Using molecular docking, we found that 10 major compounds could bind well to TNF, PTGS2, IL-6, IL1β, NOS2 and PTGS1, and the binding energies were all less than -5 kcal/mol. Animal studies have shown that YGG can improve joint inflammation and inflammatory cell infiltration, reduce serum UA, BUN and Cr levels (p<0.01), and decrease IL-1β, IL-6, TNF-α, COX-2 and PGE2 levels in synovial tissue (p<0.01), which are associated with the pathogenesis of GA. IHC and Western blot results showed that YGG could regulate TLR4/MYD88/NF-κB pathway to inhibit the inflammatory response induced by GA. Conclusion This study found that YGG could not only improve the disease of GA by inhibiting the production of UA in the body, but also target the regulation of TLR4/MYD88/NF-κB signaling pathway through a variety of active components to achieve effective therapeutic effects on GA.
Collapse
Affiliation(s)
- Qiang-qiang Fan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiang-xue Cheng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Huan Tian
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
10
|
Li Y, Zhang M, Liu X, Zhang X, Pan P, Tan R, Jiang H. Quality assessment and Q-markers discovery in Citri Sarcodactylis Fructus by integrating serum pharmacochemistry and network pharmacology. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1017-1035. [PMID: 38369680 DOI: 10.1002/pca.3337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Citri Sarcodactylis Fructus (CSF), a common fruit and traditional Chinese medicine (TCM), has been hindered in its further development and research owing to the lack of comprehensive and specific quality evaluation standards. OBJECTIVE This study aimed to establish clear TCM quality standards related to the therapeutic mechanisms of CSF and to provide a basis for subsequent research and development. METHODS Ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry (UPLC-Q-orbitrap HRMS) technology was used to comprehensively identify CSF components and explore their absorbance levels in rat serum. Network pharmacology research methods were employed to investigate the potential mechanisms of action of the identified components in the treatment of major clinical diseases. Subsequently, a combination of HPLC chromatographic fingerprinting for qualitative analysis and multi-index content determination was used to evaluate the detectability of the identified quality markers (Q-markers). RESULTS Twenty-six prototype components were tentatively characterized in rat serum. Network pharmacology analysis showed six effective components, namely 7-hydroxycoumarin, isoscopoletin, diosmin, hesperidin, 5,7-dimethoxycoumarin, and bergapten, which played important roles in the treatment of chronic gastritis, functional dyspepsia, peptic ulcer, and depression and were preliminarily identified as Q-markers. The results of content determination in 15 batches of CSF indicated significant differences in the content of medicinal materials from different origins. However, compared with the preliminarily determined Q-markers, all six components could be measured and were determined as Q-markers of CSF. CONCLUSION The chemical Q-markers obtained in this study could be used for effective quality control of CSF.
Collapse
Affiliation(s)
- Yuxin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xinyu Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiaobin Zhang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, China
| | - Pingchuan Pan
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
11
|
Cheung S, Zhong Y, Wu L, Jia X, He MQ, Ai Y, Jiao Q, Liang Q. Mechanism interpretation of Guhan Yangshengjing for protection against Alzheimer's disease by network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117976. [PMID: 38492794 DOI: 10.1016/j.jep.2024.117976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guhan Yangshengjing (GHYSJ) is an effective prescription for delaying progression of Alzheimer's disease (AD) based on the ancient Chinese medical classics excavated from Mawangdui Han Tomb. Comprising a combination of eleven traditional Chinese herbs, the precise protective mechanism through which GHYSJ acts on AD progression remains unclear and has significant implications for the development of new drugs to treat AD. AIM OF THE STUDY To investigate the mechanism of GHYSJ in the treatment of AD through network pharmacology and validate the results through in vitro experiments. MATERIALS AND METHODS Chemical composition-target-pathway network and protein-protein interaction network were constructed by network pharmacology to predict the potential targets of GHYSJ for the treatment of AD. The interaction relationship between active ingredients and targets was verified by molecular docking and molecular force. Furthermore, the chemical constituents of GHYSJ were analyzed by LC-MS and HPLC, the effects of GHYSJ on animal tissues were analyzed by H&E staining. An Aβ-induced SH-SY5Y cellular model was established to validate the core pathways and targets predicted by network pharmacology and molecular docking. RESULTS The results of the network pharmacology analysis revealed a total of 155 bioactive compounds capable of crossing the blood-brain barrier and interacting with 677 targets, among which 293 targets specifically associated with AD, which mainly participated in and regulated the amyloid aggregation pathway and PI3K/Akt signaling pathway, thereby treating AD. In addition, molecular docking analysis revealed a robust binding affinity between the principal bioactive constituents of GHYSJ and crucial targets implicated in AD. Our findings were further substantiated by in vitro experiments, which demonstrated that Liquiritigenin and Ginsenosides Rh4, crucial constituents of GHYSJ, as well as GHYSJ pharmaceutic serum, exhibited a significant down-regulation of BACE1 expression in Aβ-induced damaged SH-SY5Y cells. This study provides valuable data and theoretical underpinning for the potential therapeutic application of GHYSJ in the treatment of AD and secondary development of GHYSJ prescription. CONCLUSION Through network pharmacology, molecular docking, LC-MS, and cellular experiments, GHYSJ was initially confirmed to delay the progression of AD by regulating the expression of BACE1 in Amyloid aggregation pathway. Our observations provided valuable data and theoretical underpinning for the potential therapeutic application of GHYSJ in the treatment of AD.
Collapse
Affiliation(s)
- Suet Cheung
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | - Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaomeng Jia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, SATCM Key Laboratory of Traditional Chinese Medicine Chemistry, Institute of Traditional Chinese Medicine-X, Chinese Medicine Modernization Research Center, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Xu X, Yu D, Wang Y, Xu P, Jiang X, Lu F, Liu S. Integrating network pharmacology and renal metabonomics to reveal the protective mechanism of resveratrol on gouty nephropathy. Biomed Chromatogr 2024; 38:e5839. [PMID: 38402638 DOI: 10.1002/bmc.5839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 02/27/2024]
Abstract
Resveratrol (Res) has been demonstrated to have beneficial effects on gouty nephropathy (GN). However, the mechanisms of Res on GN remain unclear. This study aimed to investigate the mechanisms of Res on GN. In this study, network pharmacology technology was used to predict the Res targets in the prevention and treatment of GN. Renal metabonomics was used to identify differential metabolites in kidney tissue of GN model rats. Finally, molecular docking technology was used to verify the binding ability of Res to key targets. Metabonomics analysis showed that 24 potentially important metabolites were involved in the prevention and treatment of GN with Res. After exposure to Res, metabolite levels normalized. The network pharmacology analysis showed that 24 key targets were involved in the prevention and treatment of GN disease. According to the metabolite-gene network diagram, we identified two core genes, PTGS1 and PTGS2, and found that both were involved in the arachidonic acid metabolism pathway. Molecular docking further verified the affinity of Res binding to PTGS1 and PTGS2. In conclusion, the mechanism of Res against GN may be the regulation of arachidonic acid metabolism through the regulation of PTGS 1 and PTGS 2.
Collapse
Affiliation(s)
- Xiaomin Xu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Donghua Yu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Yu Wang
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Peng Xu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Xin Jiang
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Fang Lu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Shumin Liu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| |
Collapse
|