1
|
Cheng R, Cheng X, Jiang D, Xiong J, Ding Y, Liu J, Zhao H, Feng H, Wu D, Zhang W. Spectrum-effect relationship of the cardiovascular-protective effect of with Chrysanthemi Flos by UPLC-MS/MS and component knock-out method. Food Chem Toxicol 2025; 200:115372. [PMID: 40054725 DOI: 10.1016/j.fct.2025.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Chrysanthemi Flos (CF), as one of the important 'dual-use' plants, possesses great pharmacological research and development potential. This work aimed to find the pharmacodynamic material basis of CF in cardiovascular-protection by spectrum-effect relationship and component knock-out method. The fingerprint was established by ultra-high performance liquid chromatography and 25 peaks were picked out as common peaks. The common peaks were identified by ultra-performance liquid chromatography-quadrupole-orbitrap-mass spectrometry including twelve flavonoids, nine phenylpropanoids, three organic acids, and one nucleoside. The cardiovascular-protective effect of CF was determined by angiotensin II-induced injury model of human umbilical vein endothelial cells. Grey relation analysis, partial least squares regression analysis and Pearson's correlation analysis were performed to assess the relationship between the cardiovascular-protective effect and ingredients. Spectrum-effect relationship and component knock-out method revealed that P11 (luteolin-7-O-β-D-glucoside), P14 (3,4-O-dicaffeoylquinic acid), P16 (1,5-O-dicaffeoylquinic acid), and P17 (3,5-O-dicaffeoylquinic acid) were the pharmacological material basis for the cardiovascular-protective effect of CF. This work preliminarily elucidated the pharmacodynamic material basis of cardiovascular-protective effect of CF, which could be used to considerable methods and insight for the fundamental research of the pharmacodynamic material basis of Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Ranran Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Xiang Cheng
- Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Dongliang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Junwei Xiong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Yangfei Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Juan Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hongsu Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hangmin Feng
- Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China.
| | - Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Hefei, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
2
|
Gao L, Zhong L, Feng T, Yue J, Lu Q, Li L, Wu A, Lin G, He Q, Liu K, Cao G, Meng Z, Nie L, Zang H. An AI-driven strategy for active compounds discovery and non-destructive quality control in traditional Chinese medicine: A case of Xuefu Zhuyu Oral Liquid. Talanta 2025; 287:127627. [PMID: 39889683 DOI: 10.1016/j.talanta.2025.127627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
The modernization and globalization of traditional Chinese medicine (TCM) face challenges such as unclear active compounds and inadequate quality control. Taking Xuefu Zhuyu Oral Liquid (XZOL) as an example, this study proposed an artificial intelligence (AI) -driven strategy for active compounds discovery and non-destructive quality control. Firstly, the multi-wavelength fusion high-performance liquid chromatography (HPLC) fingerprints were constructed to comprehensively characterize the chemical composition of XZOL. Secondly, the pro-angiogenesis effects of XZOL were evaluated in a PTK787-induced intersegmental vessels (ISVs) injury zebrafish model. Then, spectrum-effect relationship models, incorporating gray relational analysis (GRA), partial least squares regression (PLSR), backpropagation artificial neural networks (BP-ANN), and convolutional neural networks (CNN), discovered seven pro-angiogenesis active compounds (Hydroxysafflor Yellow A, Paeoniflorin, Ferulic Acid, Narirutin, Naringin, Hesperidin, and Neohesperidin). Furthermore, the efficacy of these compounds was further validated through network pharmacology, molecular docking, and zebrafish. Finally, a rapid and non-destructive quality control system based on near infrared spectroscopy (NIRS) was established. This system effectively distinguished expired and normal samples by combining Hotelling T2 and Distance to Model X (DModX) statistics of multivariate statistical process control (MSPC), and accurately predicted the content of above active compounds by CNN model integration with bidirectional long short-term memory (Bi-LSTM) and multi-head self-attention (MHSA) networks. This study underscores the potential of AI-driven strategy to enhance TCM standardization and global recognition by providing an active compounds-based holistic quality control strategy of TCM.
Collapse
Affiliation(s)
- Lele Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Liang Zhong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Tingting Feng
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jianan Yue
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qingqing Lu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guimei Lin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, 250103, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, 250103, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Wang X, Zhou T, Huang S, Zhou H, Ling Y, Chen T, Zhang S, Wang W, Wu C, Yin W. Screening and validation of active components in Rosa roxburghii Tratt for anti-pulmonary fibrosis based on a spectrum-effect relationship. Int Immunopharmacol 2025; 153:114536. [PMID: 40154178 DOI: 10.1016/j.intimp.2025.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Rosa roxburghii Tratt (RRT), a fruit with dual medicinal and nutritional applications, exhibits therapeutic potential against pulmonary fibrosis, yet the specific bioactive constituents underlying this effect remain uncharacterized. This study employed an integrated spectrum-effect relationship to systematically identify RRT's principal anti-pulmonary fibrosis components. Our findings demonstrate that five different polar extracts of RRT (RRTEs) differentially attenuated bleomycin-induced pulmonary fibrosis in murine models, with the ethyl acetate fraction (EAE) showing superior therapeutic efficacy. HPLC-Q-Exactive Orbitrap MS identified 56 compounds, and screened out four active ingredients related to anti-pulmonary fibrosis by spectrum-effect relationship. In vitro experiments revealed that ellagic acid, gallic acid and syringic acid inhibited fibroblast migration, attenuated intracellular ROS overproduction, and downregulated the expression levels of α-SMA and collagen I. In summary, we established for the first time a spectrum-effect relationship between RRT and pulmonary fibrosis, elucidated the key components, and provided a foundation for future clinical applications.
Collapse
Affiliation(s)
- Xiaomeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shaolin Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yihan Ling
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Chen
- Chengdu Institute of Product Quality Inspection Co., Ltd, Chengdu 610015, China
| | - Shuwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenxi Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chuan Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Ma J, Su Y, Xie J, Tao L, Zhao Y, Wang X, Kuang Z, Sheng X, Kang A, Aa J, Wang G. Chemometric-based analysis and bioassay guided identification of potent compounds with intestinal motility promoting effects from Dalitong Granules. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118777. [PMID: 39236779 DOI: 10.1016/j.jep.2024.118777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dalitong Granules (DLT), a potent Traditional Chinese Medicine known for its ability to promote gastrointestinal motility, is widely used in clinical practice for the treatment of Functional Dyspepsia (FD). Despite the remarkable clinical efficacy of DLT, the specific components responsible for its effectiveness remains unclear. AIM OF THE STUDY The study aimed to identify potential active ingredients of DLT for treating FD through spectrum-effect relationship analysis, multivariate statistical analysis and network pharmacology analysis. The efficacy of these identified compounds was subsequently validated using the zebrafish intestinal peristalsis model. MATERIALS AND METHODS The fingerprints of various solvent-extracted DLT were analyzed using high performance liquid chromatography coupled with tandem high-resolution mass spectrometry. The intestinal motility-promoting activities of DLT extracted by different solvents were evaluated through an intestinal propulsion test in mice. Potential therapeutic substances in DLT for treating FD were screened via chemometric analysis based on spectrum-effect relationship analysis. The correlation between the intensity of common peaks in the total ion chromatogram and the pharmacodynamic indices was assessed using multivariate statistical analysis. Additionally, given the complexity of Traditional Chinese Medicine, which comprises multiple components and targets, a network pharmacology analysis was performed to investigate the potential active ingredients in DLT. Finally, the pharmacological effects of these compounds in DLT were validated using a zebrafish intestinal motility model. RESULTS Through spectral-effect relationships analysis and network pharmacology analysis, it was determined that ten ingredients in DLT contribute to the promotion of intestinal motility. In a zebrafish intestinal motility model, it was observed that eight chemicals (excluding tetrahydropalmatine) demonstrate favorable activity of promoting gastrointestinal motility. These findings suggest that these ingredients may serve as potential therapeutic agents for improving gastric motility disorders. CONCLUSIONS This study employed spectral-effect relationship and network pharmacology analysis to identify the active ingredients in DLT. The findings were then validated using a zebrafish intestinal peristalsis model. These results provide a scientific foundation for the clinical application of DLT as a key traditional herbal formula for managing FD.
Collapse
Affiliation(s)
- Jiayi Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yan Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jingru Xie
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Tao
- Nanchang Hongyi Pharmaceutical Co., Ltd, Nanchang, 330006, China.
| | - Yan Zhao
- Nanchang Hongyi Pharmaceutical Co., Ltd, Nanchang, 330006, China.
| | - Xiaoxia Wang
- Nanchang Hongyi Pharmaceutical Co., Ltd, Nanchang, 330006, China.
| | - Zhenying Kuang
- Nanchang Hongyi Pharmaceutical Co., Ltd, Nanchang, 330006, China.
| | - Xianjie Sheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiye Aa
- Laboratory of Metabolomics, Jiangsu Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guangji Wang
- Laboratory of Metabolomics, Jiangsu Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Zhao A, Su J, Xu Q, Zhang J, Jiang J, Chen S, Cheng J, Chen C, Wang L, Di J, Liu X, Jiang L, Liu L, Liu Y, Liu A, Guo C. Elucidation of anti-pneumonia pharmacodynamic material basis and potential mechanisms of Xiebai San by combining spectrum-efficacy relationship and surface plasmon resonance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118609. [PMID: 39053707 DOI: 10.1016/j.jep.2024.118609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiebai San (XBS), a classic Chinese prescription, has been used for the clinical treatment of pneumonia-related diseases for thousands of years. However, the anti-pneumonia pharmacodynamic material basis of XBS and its underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to comprehensively investigate and verify the anti-pneumonia pharmacodynamic material basis and mechanisms of XBS. MATERIALS AND METHODS This study explored the anti-pneumonia activity and key pneumonia targets of XBS in lipopolysaccharide (LPS)-induced zebrafish and RAW264.7 cells in vivo and in vitro through transcriptomics, western blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The chemical fingerprint of XBS was established using high-performance liquid chromatography, and the similarities and areas of characteristic peaks of 15 batches of XBS were analyzed. Based on the spectrum-efficacy relationship, the potential anti-inflammatory components were screened according to their peak areas and efficacy using principal component analysis (PCA), bivariate correlation, and partial least squares regression analysis. Active components that bind to core targets were further screened based on surface plasmon resonance (SPR). The binding mode of proteins and components was simulated via molecular docking, which enabled the identification of the primary active components of XBS, thereby elucidating its anti-pneumonia properties. Finally, the anti-inflammatory activities of these components were verified in vitro. RESULTS XBS decreased neutrophil aggregation in zebrafish and nitric oxide (NO) secretion in RAW264.7 cells as well as suppressed the release of downstream inflammatory cytokines such as iNOS, TNF-α, IL-1β, IL-18, and CXCL10 related to TNF and JAK-STAT signaling pathways. The phosphorylation of IκBα, Akt, and Stat3 was alleviated after XBS in cells. The fingerprint similarities of 15 batches of XBS ranged from 0.381 to 0.994, with a large difference. A total of 15 characteristic peaks were identified, and the relative standard deviation of their peak areas ranged from 24.1% to 70.7%. The results of in vitro anti-inflammatory activities of 15 batches of XBS showed that all samples inhibited the expression levels of NO and nine inflammatory markers. The anti-inflammatory index of 15 batches of XBS was determined to be 0.69-0.96 based on transformation of the anti-inflammatory rate and composite index method via PCA. The spectrum-efficacy relationship model of 15 characteristic peak areas and the anti-inflammatory index showed that 7 main potential active components were related to the anti-inflammatory activity of XBS. Moreover, four components (mulberroside A, isoquercitrin, liquiritigenin, and glycyrrhizic acid) screened based on SPR had different affinities toward TNFR1, Akt1, and Stat3 proteins, and the binding modes were elucidated via molecular docking. Finally, in LPS-induced RAW264.7 cells, all four active components (at a concentration of 60 μM) significantly inhibited the expression levels of NO and inflammatory markers. CONCLUSIONS Based on the comprehensive strategy of spectrum-efficacy relationship and SPR, mulberroside A, isoquercitrin, liquiritigenin, and glycyrrhizic acid were identified as the primary pharmacodynamic active components involved in the anti-pneumonia activity of XBS and were found to intervene in TNF and JAK-STAT signaling pathways.
Collapse
Affiliation(s)
- Anyi Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiangmin Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingxia Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinzhu Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sha Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jintang Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lianmei Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jipeng Di
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianju Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Jiang
- Shandong Xianhe Pharmaceutical Co., Ltd, Shandong Dongying, 257237, China
| | - Li Liu
- Shandong Xianhe Pharmaceutical Co., Ltd, Shandong Dongying, 257237, China
| | - Yan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - An Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Cong Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Liu Z, Wang M, Ding X, Tian J, Sun D, Gao X, Jin C, Peng D, Gui S, Wang X. Exploration the effective components of Gastrodia elata in improving cerebral ischemia reperfusion injury based on "Spectrum-effect" correlation and zebrafish verification experiment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156211. [PMID: 39561661 DOI: 10.1016/j.phymed.2024.156211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Gastrodia elata (GE) has been widely used in clinical practice for many years with the functions of relieving stroke, suppressing liver Yang, dispelling wind and clearing collaterals. Our group's previous experimental studies have proved that GE has therapeutic effect on cerebral ischemia reperfusion injury (CIRI) (Ding et al., 2022). However, the active components of GE in treating CIRI remain unclear and require further research. PURPOSE The purpose of this paper was to explore the potential effective components of GE improving CIRI based on the "Spectrum-effect" correlation. Zebrafish model was used for verification in vivo experimental. MATERIALS AND METHODS First, the absorption components and metabolites of GE in rat serum were identified using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Second, pharmacodynamic indexes were determined by ELISA kit method, and the effect-time curve of each pharmacodynamic indexes was established. The potential compounds were screened using the statistical method of grey correlation between pharmacodynamic indicator and component response. Finally, the zebrafish CIRI model was successfully established, and the in vivo effect of the active components of GE was verified intuitively. RESULTS 45 chemical components were detected in GE. A total of 87 active components in serum of GE were identified including 25 prototype components and 62 metabolites. GE can improve CIRI by regulating the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), MDA levels and SOD levels. It was found that p‑hydroxy benzaldehyde (PHB), p-hydroxybenzyl alcohol (PHBA) and gastrodin (GA) of GE were the possibly main active components by grey correlation statistics. The in vivo experiments of zebrafish model showed that PHB, PHBA, and GA have the ability to ameliorate cerebral thrombosis by regulation of oxidative stress and apoptosis. CONCLUSIONS The potential active components of GE on CIRI were initially excavated using UHPLC-Q-TOF-MS/MS, pharmacodynamics, and in vivo experiments of zebrafish model. It makes up for the disadvantages of separate research on chemical components and pharmacodynamics, and reflects the material basis of pharmacodynamics more objectively. It has provided theoretical basis for further quality evaluation and scientific foundation for rational drug using of GE in clinical.
Collapse
Affiliation(s)
- Zilu Liu
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Mengting Wang
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Ximeng Ding
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Jing Tian
- Center for Automated and Innovative Drug Discovery, Northwest University, Xi'an 710069, PR China
| | - Dan Sun
- Center for Automated and Innovative Drug Discovery, Northwest University, Xi'an 710069, PR China
| | - Xinrui Gao
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Chuanshan Jin
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou, PR China
| | - Daiyin Peng
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Resources Protection and Development Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, PR China
| | - Shuangying Gui
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China; Resources Protection and Development Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, PR China.
| | - Xiaoli Wang
- School of pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, PR China; Resources Protection and Development Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, PR China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou, PR China.
| |
Collapse
|
7
|
Wen S, Luo Y, Liu L, Zhou L, Li L, Wang S, Song H, Xia S, Li W, Niu X. Spectrum-effect relationship between HPLC fingerprints and antioxidant activities of Bletilla striata. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124351. [PMID: 39547063 DOI: 10.1016/j.jchromb.2024.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Bletilla striata is a perennial herb that was first published in Shennong's Classic of the Materia Medica, pharmacological studies have shown that it has the activities of promoting wound healing, anti-inflammatory and antioxidant. However, the relationship between the antioxidant activity and the chemical composition of Bletilla striata is still unclear. In this paper, the chemometric method was used to construct the spectral effect relationship between the fingerprints of 20 batches of Bletilla striata extracts from different origins and their in vitro antioxidant activities. The results showed that the chemical composition of the samples from different sources varied significantly, while the samples from Shaanxi and Hubei provinces were of relatively better quality. Among the 10 common peaks, coelonin, gymnoside IX and dactylorhin A were considered to be significantly correlated with the antioxidant activity of Bletilla striata. The results of this study will provide a basis and further insights for the quality evaluation and quality control of Bletilla striata.
Collapse
Affiliation(s)
- Sha Wen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yuzhi Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lingyi Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lingli Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Songyuan Xia
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
8
|
Li Y, Zhao M, Tang R, Fang K, Ye Y, Zhu B, Chen L, Chen Y, Ge W, Du W. Study on quality control methods and pharmacodynamic material basis of different specifications of Corydalis Rhizoma produced in Zhejiang Province. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118375. [PMID: 38789094 DOI: 10.1016/j.jep.2024.118375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The quality control methods of different specifications of Corydalis Rhizoma in Zhejiang China (ZJ CR) are the same, so the quality of each specification couldnot be guaranteed. To clarify the quality control methods and pharmacodynamic material basis of ZJ CR with different specifications could provide reference for the quality control of ZJ CR. AIM OF THE STUDY The purpose of this study was to establish a quality control method for ZJ CR with different specifications and to screen out the pharmacodynamic material basis of ZJ CR with different specifications. MATERIALS AND METHODS Firstly, according to the existing grading standards, the medicinal materials were divided into specifications, and the character indexes of ZJ CR with different specifications were established. The quality indexes were established by HPLC, network pharmacology and literature retrieval. The correlation between the trait indexes and quality indexes of ZJ CR with different specifications was analyzed, and the best quality control method was established. Further combined with the pharmacodynamic indexes of ZJ CR with different specifications, the pharmacodynamic material basis of ZJ CR with different specifications was screened out by spectrum-effect analysis. The correlation between trait indexes and pharmacodynamic indexes was analyzed to verify the rationality of grade standard. RESULTS The three specifications of ZJ CR were CR (Diameter ≥1.1 cm), CR (Diameter <1.1 cm), and CR (No size distinction). Diameter, width, thickness, grain weight, volume and 50 g grain number could be used as the trait indexes of ZJ CR. Protopine (CR1), palmatine hydrochloride (CR2), berberine hydrochloride (CR3), dehydrocorydaline (CR4), tetrahydropalmatine (CR5), tetrahydroberberine (CR6), corydaline (CR7), stylopine (CR8) and isoimperatorin (CR9) were identified. Total components, core components (CR5, CR6, CR7 and CR8), alcohol-soluble extracts (ASE) could be used as quality indexes. The best quality control methods of the three specifications respectively were: the larger the diameter and grain weight, the smaller the number of 50 g grains; The larger the diameter, the smaller the volume, thickness, width and number of 50 g particles; The larger the grain weight and volume, the smaller the number of 50 g grains. The main analgesic components of the three specifications respectively were: CR1, CR2 and core components; CR2, CR4; CR8, CR9. The larger the diameter and the less the number of 50 g grains, the better the analgesic effect of ZJ CR, and the grade standard was reasonable. CONCLUSIONS This study showed that the quality control methods and pharmacodynamic material basis of ZJ CR with different specifications were different, which may be caused by the differences in traits and the contribution of main active ingredients. This study constructed an evaluation model combining external traits, internal quality and overall efficacy, and provided theoretical support for the rationality of ZJ CR grade standard.
Collapse
Affiliation(s)
- Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Yu Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Bing Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Lei Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Yutian Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
9
|
Chu C, Lv Y, Yao X, Ye H, Li C, Peng X, Gao Z, Mao K. Revealing quality chemicals of Tetrastigma hemsleyanum roots in different geographical origins using untargeted metabolomics and random-forest based spectrum-effect analysis. Food Chem 2024; 449:139207. [PMID: 38579655 DOI: 10.1016/j.foodchem.2024.139207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Tetrastigma hemsleyanum root is a popular functional food in China, and the price varies based on the origin of the product. The link between the origin, metabolic profile, and bioactivity of T. hemsleyanum must be investigated. This study compares the metabolic profiles of 254 samples collected from eight different areas with 49 potential key chemical markers using plant metabolomics. The metabolic pathways of the five critical flavonoid metabolites were annotated and enriched using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Moreover, a random forest model aiding the spectrum-effect relationship analysis was developed for the first time indicating catechin and darendoside B as potential quality markers of antioxidant activity. The findings of this study provide a comprehensive understanding of the chemical composition and bioactive compounds of T. hemsleyanum as well as valuable information on the evaluation of the quality of various samples and products in the market.
Collapse
Affiliation(s)
- Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yangbin Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xingda Yao
- College of Computer science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hongwei Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chenyue Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xin Peng
- Ningbo Research Institute of Traditional Chinese Medicine, Ningbo 315100, PR China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co.LTD, Hangzhou 311321, PR China
| | - Keji Mao
- College of Computer science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
10
|
Hu C, Chen W, Yang Y, Tao Y. An exploratory metabolomic study reveals the Dipsacus asper-Achyranthes bidentate herb pair against osteoarthritis by modulating imbalance in polyunsaturated fatty acids and energy metabolism. J Pharm Biomed Anal 2024; 245:116196. [PMID: 38723559 DOI: 10.1016/j.jpba.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease primarily affecting the cartilage. The therapeutic potential of the Dipsacus asper-Achyranthes bidentate herb pair for OA has been acknowledged, yet its precise mechanism remains elusive. In this study, we conducted a comprehensive analysis of metabolomic changes and therapeutic outcomes in osteoarthritic rats, employing a gas chromatography-mass spectrometry-based metabolomics approach in conjunction with histopathological and biochemical assessments. The rats were divided into six groups: control, model, positive control, Dipsacus asper treated, Achyranthes bidentata treated, and herb pair treated groups. Compared to the model group, significant reductions in levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and iNOS were observed in the treated groups. Multivariate statistical analyses were employed to investigate metabolite profile changes in serum samples and identify potential biomarkers, revealing 45 differential biomarkers, with eighteen validated using standard substances. These analytes exhibited excellent linearity across a wide concentration range (R2>0.9990), with intra- and inter-day precision RSD values below 4.69% and 4.83%, respectively. Recoveries of the eighteen analytes ranged from 93.97% to 106.59%, with RSD values under 5.72%, underscoring the method's reliability. Treatment with the herbal pair effectively restored levels of unsaturated fatty acids such as linoleic acid and arachidonic acid, along with glucogenic amino acids. Additionally, levels of phosphoric acid and citric acid were reversed, indicating restoration of energy metabolism. Collectively, these findings highlight the utility of metabolomic analysis in evaluating therapeutic efficacy and elucidating the underlying molecular mechanisms of herb pairs in OA treatment.
Collapse
Affiliation(s)
- Chengying Hu
- Orthopedics Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China
| | - Wei Chen
- Orthopedics Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China
| | - Ying Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
11
|
Li Y, Tang L, Zhao M, Tang R, Fang K, Ge W, Du W. Study on the active components and mechanism of Atractylodis Macrocephalae Rhizoma for invigorating the spleen and tonifying qi based on spectrum-effect relationship and network pharmacology. Biomed Chromatogr 2024; 38:e5870. [PMID: 38664069 DOI: 10.1002/bmc.5870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 06/20/2024]
Abstract
Spleen deficiency can lead to various abnormal physiological functions of the spleen. Atractylodis Macrocephalae Rhizoma (AMR) is a traditional Chinese medicine used to invigorate the spleen and tonify qi. The study aimed to identify the primary active components influencing the efficacy of AMR in strengthening the spleen and replenishing qi through spectrum-effect relationship and chemometrics. Network pharmacology was used to investigate the mechanism by which AMR strengthens the spleen and replenishes qi, with molecular docking utilized for validation purposes. The findings indicated that bran-fried AMR exhibited superior efficacy, with atractylenolides and atractylone identified as the primary active constituents. Atractylenolide II emerged as the most influential component impacting the effectiveness of AMR, while the key target was androgen receptor. Furthermore, crucial pathways implicated included the mitogen-activated protein cascade (MAPK) cascade, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, and RNA polymerase II sequence-specific DNA-binding transcription factor binding. In summary, our study has identified the primary active components associated with the efficacy of AMR and has provided an initial exploration of its mechanism of action. This offers a theoretical foundation for future investigations into the material basis and molecular mechanisms underlying the pharmacodynamics of AMR.
Collapse
Affiliation(s)
- Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lulu Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, China
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, China
| |
Collapse
|
12
|
Wubuli A, Abdulla R, Zhao J, Wu T, Aisa HA. Exploring anti-inflammatory and antioxidant-related quality markers of Artemisia absinthium L. based on spectrum-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1152-1173. [PMID: 38591190 DOI: 10.1002/pca.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Artemisia absinthium L. is a well-known medicinal, aromatic, and edible plant with important medicinal and economic properties and a long history of use in treating liver inflammation and other diseases; however, there has been insufficient progress in quality control. OBJECTIVE This study aimed to investigate the quality markers for the anti-inflammatory and antioxidant activities of A. absinthium based on spectrum-effect relationship analysis. MATERIALS AND METHODS Eighteen batches of A. absinthium from different origins were used. Chemical fingerprints were obtained by ultra-performance liquid chromatography (UPLC). The chemical compositions were identified by quadrupole-Orbitrap high-resolution mass spectrometry. Anti-inflammatory activity was assessed by inhibition of cyclooxygenase-2 and 15-lipoxygenase in vitro and inhibition of nitric oxide release in lipopolysaccharide-induced BV-2 cells. Antioxidant activity was assessed by DPPH and ABTS radical scavenging assays. The relationship between bioactivity and chemical fingerprints was then analyzed using chemometrics including gray relational analysis, bivariate correlation analysis, and orthogonal partial least squares analysis. RESULTS Different batches of A. absinthium extracts possessed significant anti-inflammatory and antioxidant activities to varying degrees. Eighty compounds were identified from A. absinthium, and 12 main common peaks were obtained from the UPLC fingerprints. P3 (chlorogenic acid), P5 (isochlorogenic acid A), and P6 (isochlorogenic acid C) were screened as the most promising active compounds by correlation analysis and further validated for their remarkable anti-inflammatory effects. CONCLUSION This is the first study to screen the quality markers of A. absinthium by establishing the spectrum-effect relationship, which can provide a reference for the development of quality standards and further research on A. absinthium.
Collapse
Affiliation(s)
- Ayixiamuguli Wubuli
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Tao Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Li Y, Zhao M, Tang R, Fang K, Zhang H, Kang X, Yang L, Ge W, Du W. Study on the quality of Corydalis Rhizoma in Zhejiang based on multidimensional evaluation method. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118047. [PMID: 38499258 DOI: 10.1016/j.jep.2024.118047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The quality requirements of Corydalis Rhizoma (CR) in different producing areas are uniform, resulting in uneven efficacy. As a genuine producing area, the effective quality control of CR in Zhejiang Province (ZJ) could provide a theoretical basis for the rational application of medicinal materials. AIM OF THE STUDY The purpose of this study was to effectively distinguish the CR inside and outside ZJ, and provided a theoretical basis for the quality control and material basis research of ZJ CR. MATERIALS AND METHODS The core components of ZJ CR could be identified by HPLC combined with chemometrics screening, and the quality of CR from different producing areas was evaluated by a genetic algorithm-back propagation (GA-BP) neural network. Chromaticity and near-infrared (NIR) spectroscopy were used to identify CR inside and outside ZJ, and rapid content prediction was realized. The analgesic effect of CR in different regions was compared by a zebrafish analgesic experiment. Analgesic experiments in rats and analysis of the research status of quality components were used to screen the quality control components of ZJ CR. RESULTS The contents of palmatine hydrochloride (YSBMT), dehydrocorydaline (TQZJJ), tetrahydropalmatine (YHSYS), tetrahydroberberine (SQXBJ), corydaline (YHSJS), stylopine (SQHLJ), and isoimperatorin (YOQHS) in ZJ CR were higher than those in CR from outside ZJ, but the content of protopine (YAPJ) and berberine hydrochloride (YSXBJ) was lower than that in CR from outside ZJ. YHSJS and SQHLJ could be used as the core components to identify ZJ CR. The GA-BP neural network showed that the relative importance of ZJ CR was the strongest. Chroma-content correlation analysis and the NIR qualitative model could effectively distinguish CR from inside and outside of ZJ, and the NIR quantitative model could quickly predict the content of CR from inside and outside of ZJ. Zebrafish experiments showed that ZJ, Shaanxi (SX), Henan (HN), and Sichuan (SC) CR had significant analgesic effects, while Hebei (HB) CR had no significant analgesic effect. Overall comparison, the analgesic effect of ZJ CR was better than that of CR outside ZJ. The comprehensive score of the grey correlation degree between YAPJ, YSBMT, YSXBJ, TQZJJ, YHSYS, YHSJS, SQXBJ, and SQHLJ were higher than 0.9, and the research frequency were extremely high. CONCLUSIONS The relative importance of the content and origin of most components of ZJ CR was higher than that of CR outside ZJ. The holistic analgesic effect of ZJ CR was better than that of CR outside ZJ, but slightly lower than that of SX CR. YHSJS and SQHLJ could be used as the core components to identify ZJ CR. YAPJ, YSBMT, YSXBJ, TQZJJ, YHSYS, SQXBJ, YHSJS, and SQHLJ could be used as the quality control components of ZJ CR. The multidimensional evaluation method used in this study provided a reference for the quality control and material basis research of ZJ CR.
Collapse
Affiliation(s)
- Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China
| | - Xianjie Kang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China
| | - Liu Yang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
14
|
Zhang XY, Jiang QW, Yang SH, Li P, Chang ZY, Li F. The chemometrics analysis and integrated pharmacology approach to decipher the effect and mechanism between raw and processed cistanche tubulosa. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118097. [PMID: 38531432 DOI: 10.1016/j.jep.2024.118097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche tubulosa (CT) is the dried fleshy stem with scaly leaves of Cistanche tubiflora (Schenk) Wight, which has the effects of tonifying the kidney-yang, benefiting the vital essence and blood, and moisturizing the intestines and laxatives. There are differences in the activity of CT before and after processing, but the mechanism of processing is not clear. AIM OF THE STUDY The study aimed to compare the strength of action of CT before and after yellow-wine processing in the treatment of constipation and kidney yang deficiency and to identify the active ingredients responsible for the differences in activity before and after yellow-wine processing. MATERIALS AND METHODS This study established the fingerprints of CT and PCT using HPLC to identify their shared components. Then efficacy of KYDS and FC were carried out to compare the differences between CT and PCT in terms of efficacy. Next, this study established the spectrum-effect relationship between the shared chemical components and the medical effects of CT and PCT using the gray correlation analysis and entropy methods. Ultimately, the activity of the analyzed chemical components was verified using the zebrafish model. RESULTS CT was more effective than PCT in promoting intestinal peristalsis, regulating gastrointestinal hormone levels, and thus treating FC. PCT was more effective than CT in improving the level of hormone indexes of the hypothalamus-pituitary-target gland axis, replenishing blood, and enhancing immunity. Through the analysis of the spectrum-effect relationship, it was finally found that 5, 6, 12 (tubuloside A), and 13 (isoacteoside) might be more closely related to the activity of tonifying kidney yang, and peaks 9, 10, and 11 (acteoside) are more closely associated with the treatment of constipation, and peaks 3 (salidroside), 4, 1, 2 (geniposidic acid), and 8 (echinacoside) were associated with both kidney yang tonic and treatment of constipation. At the same time, an activity verification experiment showed that echinacoside, geniposidic acid, and salidroside were effective in the treatment of FC and KYDS, while acteoside was very effective in the treatment of FC, and tubuloside A was significant in supplementing the blood, which validated the spectrum-effect relationship analysis. CONCLUSION This study proved that the raw CT had a better laxative effect, while the yellow-wine processed CT had a better kidney-yang tonic effect; moreover, spectrum-effect relationships were established to analyze the chemical components leading to changes in the activity of CT before and after yellow-wine processing.
Collapse
Affiliation(s)
- Xing-Yue Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Qi-Wu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Su-Han Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhi-Yong Chang
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, 210029, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
15
|
Liu C, Deng J. High-throughput sequencing-based analysis of the composition and diversity of the endophytic bacterial community in the roots of Dipsacus asperoides. 3 Biotech 2024; 14:149. [PMID: 38725865 PMCID: PMC11076436 DOI: 10.1007/s13205-024-03986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
This study employed Illumina high-throughput sequencing technology to investigate diversity and community structure of endophytic bacteria in wild D. asperoides growing in three distinct regions. The study analyzed the impact of region on endophytic bacteria, uncovered the core bacterial community, and furnished valuable insights for the screening of endophytic bacteria. This study identified 6,540 amplicon sequence variants (ASVs) coexisting with D. asperoides roots. These ASVs belong to 35 phyla, 84 classes, 204 orders, 365 families, and 708 genera. At the phylum level, the dominant phyla were Proteobacteria and Actinobacteria, while at the genus level, Acidothermus, Acidibacter, Bradyrhizobium, Frankia, and Pseudomonas emerged as the dominant genera. Furthermore, noticeable differences in endophytic bacterial communities were observed between the Yunnan and Guizhou regions. These findings can serve as a reference for the authentication of medicinal materials from various origins and the selection of active strains.
Collapse
Affiliation(s)
- Chao Liu
- Orthopedics Department of Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, 430034 China
| | - Jun Deng
- Health Management (Physical Examination) Department of Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, 430034 China
| |
Collapse
|
16
|
Zhang Y, Li WW, Wang Y, Fan YW, Wang QY, Liu C, Jiang S, Shang EX, Duan JA. Investigation of the material basis and mechanism of Lizhong decoction in ameliorating ulcerative colitis based on spectrum-effect relationship and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117666. [PMID: 38159822 DOI: 10.1016/j.jep.2023.117666] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lizhong decoction (LZD), a classical herbal prescription recorded by Zhang Zhongjing in Treatise on Febrile and Miscellaneous Diseases, has been extensively used to treat ulcerative colitis (UC) in clinical practice for thousands of years. However, its material basis and underlying mechanism are not yet clear. AIM OF THE STUDY This study aims to explore the material basis and potential mechanism of LZD against UC based on the spectrum-effect relationship and network pharmacology. MATERIALS AND METHODS First, LZD was extracted by a systematic solvent extraction method into four parts. Ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) technique was used to identify the compounds from different polar parts, and dextran sulfate sodium (DSS)-induced colitis model was used to evaluate the efficacy of each fraction. Then, the spectrum-effect analyses of compounds and efficacy indicators were established via grey relational analysis (GRA), bivariate correlation analysis (BCA) and partial least squares regression (PLSR). Finally, the potential mechanism of LZD for UC therapy was explored by network pharmacology, and the results were further verified by molecular docking and reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS 66 chemical components of LZD were identified by UPLC-Q-TOF-MS/MS technology. The pharmacodynamic results showed that extraction parts of LZD had different therapeutic effects on UC, among which ethyl acetate and n-butanol extracts had significant anti-colitis effects, which might be the main effective fractions of LZD. Furthermore, the spectrum-effect analyses indicated that 21 active ingredients such as liquiritin apioside, neolicuroside, formononetin, ginsenoside Rg1, 6-gingesulfonic acid, licoricesaponin A3, liquiritin, glycyrrhizic acid were the main material basis for LZD improving UC. Based on the above results, network pharmacology suggested that the amelioration of LZD on UC might be closely related to the PI3K-Akt signaling pathway. Additionally, molecular docking technology and RT-qPCR further verified that LZD could markedly inhibit the PI3K-Akt signaling pathway. CONCLUSION Overall, our study first identified the chemical compositions of LZD by using UPLC-Q-TOF-MS/MS. Furthermore, the material basis and potential mechanism of LZD in improving UC were comprehensively elucidated via spectrum-effect relationships, network pharmacology, molecular docking and experimental verification. The proposed strategy provided a systematic approach for exploring how herbal medicines worked. More importantly, it laid the solid foundation for further clinical application and rational development of LZD.
Collapse
Affiliation(s)
- Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wen-Wen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yu-Wen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Qu-Yi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
17
|
Xuan L, Yang S, Ren L, Liu H, Zhang W, Sun Y, Xu B, Gong L, Liu L. Akebia saponin D attenuates allergic airway inflammation through AMPK activation. J Nat Med 2024; 78:393-402. [PMID: 38175326 DOI: 10.1007/s11418-023-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Akebia saponin D (ASD) is a bioactive triterpenoid saponin extracted from Dipsacus asper Wall. ex DC.. This study aimed to investigate the effects of ASD on allergic airway inflammation. Human lung epithelial BEAS-2B cells and bone marrow-derived mast cells (BMMCs) were pretreated with ASD (50, 100 and 200 μΜ) and AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) (1 mM), and then stimulated with lipopolysaccharide (LPS) or IL-33. Pretreatment with ASD and AICAR significantly inhibited TNF-α and IL-6 production from BEAS-2B cells, and IL-13 production from BMMCs. Moreover, pretreatment with ASD and AICAR significantly increased p-AMPK expression in BEAS-2B cells. Inhibition of AMPK by siRNA and compound C partly abrogated the suppression effect of ASD on TNF-α, IL-6, and IL-13 production. Asthma murine model was induced by ovalbumin (OVA) challenge and treated with ASD (150 and 300 mg/kg) or AICAR (100 mg/kg). Infiltration of eosinophils, neutrophils, monocytes, and lymphocytes, and production of TNF-α, IL-6, IL-4, and IL-13 were attenuated in ASD and AICAR treated mice. Lung histopathological changes were also ameliorated after ASD and AICAR treatment. Additionally, it showed that treatment with ASD and AICAR increased p-AMPK expression in the lung tissues. In conclusion, ASD exhibited protective effects on allergic airway inflammation through the induction of AMPK activation.
Collapse
Affiliation(s)
- Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Wen Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| |
Collapse
|
18
|
Wu H, Lv Y, Zhao M, Tang R, Li Y, Fang K, Wei F, Ge W, Du W, Li C, Zhang Y. Study on the substance basis of the efficacy of eucommiae cortex before and after salt processing for the treatment of kidney-yang deficiency syndrome based on the spectrum-effect relationship. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116926. [PMID: 37479066 DOI: 10.1016/j.jep.2023.116926] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney-Yang deficiency syndrome (KYDS) is one of the common diseases of the elderly and closely related to the ageing of the body, it has a major impact on the quality of life of the patient. Eucommiae Cortex (EC) is the dried bark of Eucommia ulmoides Oliv. Which has the effect of tonifying the liver and kidneys, strengthening the muscles and bones. In Traditional Chinese Medicine clinics, EC is commonly used in the treatment of KYDS, but the material basis for the improvement of its efficacy in treating KYDS after salt processing remains unclear. AIM OF THE STUDY This study aimed to find the main active ingredients that could improve the treatment of KYDS efficacy of EC after salt processing. MATERIALS AND METHODS Firstly, the fingerprints of raw and salt-processed EC were established to determine the common components by using HPLC, and then an experimental study on the treatment of KYDS efficacy was carried out to compare the difference in the efficacy between raw and salt-processed EC. Thirdly, the spectrum-effect relationship of chemical components and pharmacodynamic indexes was established by using Grey Relational Analysis and Entropy Method. Finally, the network pharmacology and molecular docking technique was used to verify the kidney tonifying effect of the active ingredients of EC. RESULTS According to the results of the analysis of hormonal index levels on the hypothalamic-pituitary-target gland axis and the extent of renal lesions, the therapeutic effect of EC on KYDS was mainly reflected in the regulation of the Adrenocorticotropic hormone, Corticosterone in the hypothalamic-pituitary-adrenal axis and Tri-iodothyronine, Tetra-iodothyronine in the hypothalamic-pituitary-thyroid axis, moreover the therapeutic effect of salt-processed EC was stronger than that of raw EC. The pharmacologically active ingredients that improved its treatment of KYDS efficacy after salt processing were peak 1 (geniposidic acid), peak 2 (chlorogenic acid), peak 5 (geniposide), peak 6 (genipin), peak 7 (pinoresinol diglucoside) and peak 11 (hyperoside). Meanwhile, the results of network pharmacology and molecular docking showed that the 6 active ingredients could exert kidney tonic effects through multiple signaling pathways by acting on core targets such as AKT1 and PTGS2. CONCLUSION As far as we known, this was the first time to establish and compare the spectrum-effect relationship between raw and salt-processed EC, which laid the foundation for the pharmacokinetics studies of EC and provided a reference for future EC studies.
Collapse
Affiliation(s)
- Hangsha Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Yue Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Feiyang Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd, Hangzhou, 311401, PR China.
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Yefeng Zhang
- Ningbo Chinese Medicine Yinpian Co., Ltd, Ningbo, 315336, PR China
| |
Collapse
|
19
|
Li S, Huang X, Li Y, Ding R, Wu X, Li L, Li C, Gu R. Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives. Crit Rev Anal Chem 2023; 55:353-374. [PMID: 38127670 DOI: 10.1080/10408347.2023.2290056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Tao Y, Pan M, Zhu F, Wang P. Comprehensive metabolic profiles of Achyranthes bidentate in rat serum via ultra-high performance liquid chromatography time-of-flight mass spectrometry and their correlation with osteoinductive activity. J Pharm Biomed Anal 2023; 231:115418. [PMID: 37116317 DOI: 10.1016/j.jpba.2023.115418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
The osteoinductive effect of crude and salt-processed Achyranthes bidentata is associated with the serum metabolites. Grey relationship analysis between the serum metabolites and osteoinductive effect will help to clarify the bioactive serum metabolites. First, an ultra-high performance liquid chromatography time-of-flight mass spectrometry method was used to develop serum metabolic fingerprint of rats after oral administration of crude and salt-processed Achyranthes bidentata. The MS1 and MS2 data of serum metabolites were scanned in the range of m/z 100-1500 and 50-1200, respectively. The chemical structures of the metabolites were thoroughly elucidated. Two prototypes and twelve metabolites have been identified. Second, osteoblasts were cultured with the drug-containing serum at different time points. The osteoinductive effect of crude and salt-processed Achyranthes bidentata was evaluated by detecting the proliferation rate and alkaline phosphatase activity of osteoblasts. Third, grey correlation analysis was utilized to elucidate the spectral-effect relationship between serum metabolic fingerprints and osteoinductive effect. Finally, the correlation coefficients of ten metabolites, i.e., oleanolic acid, poststerone-M1, chikusetsusaponin V-M1, oleanolic acid-M2, oleanolic acid-M4, spinacoside D-M1, chikusetsusaponin I-M1, betavulgaroside IV-M2, chikusetsusaponin IVa and achyranthoside IV-M1 were above 0.7. Collectively, our work will provide helpful knowledge for the future research on Achyranthes bidentata.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Meiling Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|