1
|
Gao Q, Li Y, Zhong Y, Zhang SX, Yu CY, Chen G. Chemical profiling and anti-inflammatory effect of phenolic extract of Gentiana rigescens Franch. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119115. [PMID: 39551278 DOI: 10.1016/j.jep.2024.119115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiana rigescens Franch. (G. rigescens), known as "Dian Long Dan" in Southern Yunnan Herbal, has a long history in traditional Chinese medicine for treating hepatitis, allergies, postherpetic neuralgia, cholecystitis and rheumatism. AIM OF THE STUDY This study aims to comprehensively analyze the phenolic composition of G. rigescens, evaluate its potential anti-inflammatory effects, elucidate underlying mechanisms, and identify its in vivo bioactive phenolic constituents. MATERIALS AND METHODS The extraction of G. rigescens phenolic compounds (GRP) was optimized using the Box-Behnken response surface method, with four phenolic compounds (mangiferin, esculetin, ferulic acid and kaempferol) used as quality index markers. GRP's phytochemical composition was subsequently profiled via UPLC-Q-TOF-MS/MS analysis. Anti-inflammatory activity and mechanisms were assessed in LPS-stimulated RAW264.7 cells and murine models, utilizing NO production assays, ELISA, qRT-PCR, Western blotting and histopathological analysis. Bioactive phenolic compounds in blood were identified post-oral administration for in vivo activity prediction. RESULTS The optimal extraction conditions for GRP were determined as follows: Soxhlet extraction using acetone with hydrochloric acid 0.06 mol/L, at a liquid-to-solid ratio of 132: l. for 6.6 h. Seventy-one of phenolic compounds were identified in GRP using UPLC-Q-TOF-MS/MS. GRP significantly inhibited LPS-induced NO production in RAW 264.7 macrophages and reduced pro-inflammatory cytokines IL-6, IL-1β, and TNF-α while increasing anti-inflammatory IL-10. In the carrageenan-induced inflammatory model, GRP exhibited a 69.81% inhibition rate of toe swelling at high doses (1 g/kg), along with protective effects against joint injury, as observed in histological assessments. Mechanistically, GRP downregulated mRNA levels of inflammatory cytokines and reduced the expression of inflammatory proteins iNOS, COX-2, p65, p-p65 and P-IκB as shown by Western blotting. Twenty-five of phenolic compounds, including mangiferin, swertianolin, acacetin, umbelliferone and caffeic acid, were identified in vivo in the blood, indicating potential bioactive roles. CONCLUSIONS This study provides the first comprehensive profile of the phenolic composition of G. rigescen, alongside a detailed investigation of its anti-inflammatory activity, mechanisms, and in vivo bioactive components. These findings highlight the therapeutic potential of Dian Long Dan's phenolic constituents and support further research on G. rigescens.
Collapse
Affiliation(s)
- Qiao Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yi Li
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yao Zhong
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shu-Xian Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Chang-Yuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Guang Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
2
|
Yang Z, Ji P, Li C, Wu F, Hua Y, Wei Y, Cao Y. Research Progress on the Chemical Constituents and Pharmacological Effects of Houttuynia cordata Thunb and a Predictive Analysis of Quality Markers. Curr Issues Mol Biol 2024; 47:18. [PMID: 39852133 PMCID: PMC11763989 DOI: 10.3390/cimb47010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Houttuynia cordata (H. cordata) is widely used in respiratory disease control as an important heat-clearing and detoxifying traditional Chinese medicine. It effectively clears away heat and toxins, eliminates carbuncles, and drains pus, and it is diuretic and detoxicating. The aim of this study is to review the botany, chemical composition, pharmacological effects, and quality control of H. cordata to establish a better-quality evaluation system. Google Scholar, Baidu Scholar, PubMed, ScienceDirect, Web of Science, and multiple databases, including China National Knowledge Infrastructure (CNKI) and Wanfang Data, were searched. A structural diagram of the compound was drawn using ChemDraw software. H. cordata contains volatile oils, flavonoids, and alkaloids. It has antibacterial, anti-inflammatory, antiviral, antioxidant, antitumor, and immunity-enhancing pharmacological effects. By analyzing the literature, it was predicted that Houttuynia sodium, methyl nonyl ketone, quercetin, and quercitrin could be used as the quality markers (Q-marker) of H. cordata. This provides a basis for further research into the applications of H. cordata.
Collapse
Affiliation(s)
- Zhuo Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (C.L.); (Y.H.); (Y.W.); (Y.C.)
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (C.L.); (Y.H.); (Y.W.); (Y.C.)
| | - Chenchen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (C.L.); (Y.H.); (Y.W.); (Y.C.)
| | - Fanlin Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Science, Lanzhou 730070, China;
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (C.L.); (Y.H.); (Y.W.); (Y.C.)
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (C.L.); (Y.H.); (Y.W.); (Y.C.)
| | - Yuxia Cao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (C.L.); (Y.H.); (Y.W.); (Y.C.)
| |
Collapse
|
3
|
Li JH, Xu J, Huang C, Hu JX, Xu HM, Guo X, Zhang Y, Xu JK, Peng Y, Zhang Y, Zhu MZ, Zhou YL, Nie YQ. Houttuynia cordata-Derived Exosome-Like Nanoparticles Mitigate Colitis in Mice via Inhibition of the NLRP3 Signaling Pathway and Modulation of the Gut Microbiota. Int J Nanomedicine 2024; 19:13991-14018. [PMID: 39742094 PMCID: PMC11687308 DOI: 10.2147/ijn.s493434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Plant-derived exosome-like nanoparticles (PELNs) have received widespread attention in treating ulcerative colitis (UC). However, the role of Houttuynia cordata-derived exosome-like nanoparticles (HELNs) in UC remains unclear. This study aims to evaluate the efficacy of HELNs in treating colitis in mice and investigate its potential mechanisms. METHODS HELNs were isolated from H. cordata for characterization, and their safety and stability were evaluated. A dextran sulfate sodium (DSS)-induced colitis mouse model was utilized to assess the therapeutic potential of HELNs in UC. In vivo, imaging and flow cytometry were utilized to investigate the targeting effect of HELNs on inflamed colonic sites and their modulation of the immune environment. RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by HELNs. Guided by transcriptomic findings, NLRP3-/- mice were used in conjunction with Western blotting, qPCR, immunofluorescence, and other techniques to verify that HELNs alleviated DSS-induced colitis by inhibiting NLRP3/NOD-like receptor signaling pathways. Lastly, the impact of HELNs on the gut microbiota was investigated through 16S rRNA sequencing. RESULTS HELNs significantly reduced the severity of DSS-induced colitis in mice, alleviating colitis symptoms and histopathological damage. Furthermore, HELNs can specifically target inflamed colon tissue, regulate the immune environment, and decrease inflammation. RNA-seq analysis, coupled with the use of NLRP3-/- mice, demonstrated that HELNs inhibited the NLRP3/NOD-like receptor signaling pathways. Lastly, HELNs balanced the gut microbiota composition in mice with colitis, decreasing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria in the intestinal tract of these mice. CONCLUSION In summary, HELNs exhibit the potential to protect the colon from DSS-induced damage by inhibiting the NLRP3/NOD-like receptor signaling pathway and modulating the gut microbiota, presenting a promising therapeutic option for the management of UC.
Collapse
Affiliation(s)
- Jian-Hong Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jin-Xia Hu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yan Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jing-Kui Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Shenzhen General Hospital, Shenzhen, People’s Republic of China
| | - Yong Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Wang S, Li L, Chen Y, Liu Q, Zhou S, Li N, Wu Y, Yuan J. Houttuynia cordata thunb. alleviates inflammatory bowel disease by modulating intestinal microenvironment: a research review. Front Immunol 2023; 14:1306375. [PMID: 38077358 PMCID: PMC10702737 DOI: 10.3389/fimmu.2023.1306375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex group of chronic intestinal diseases, the cause of which has not yet been clarified, but it is widely believed that the disorder of the intestinal microenvironment and its related functional changes are key factors in the development of the disease. Houttuynia cordata thunb. is a traditional plant with abundant resources and long history of utilization in China, which has attracted widespread attention in recent years due to its potential in the treatment of IBD. However, its development and utilization are limited owing to the aristolochic acid alkaloids contained in it. Therefore, based on the relationship between the intestinal microenvironment and IBD, this article summarizes the potential mechanisms by which the main active ingredients of Houttuynia cordata thunb., such as volatile oils, polysaccharides, and flavonoids, and related traditional Chinese medicine preparations, such as Xiezhuo Jiedu Formula, alleviate IBD by regulating the intestinal microenvironment. At the same time, combined with current reports, the medicinal and edible safety of Houttuynia cordata thunb. is explained for providing ideas for further research and development of Houttuynia chordate thunb. in IBD disease, more treatment options for IBD patients, and more insights into the therapeutic potential of plants with homology of medicine and food in intestinal diseases, and even more diseases.
Collapse
Affiliation(s)
- Si Wang
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lei Li
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhan Chen
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qian Liu
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shengyu Zhou
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yueying Wu
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|