1
|
Li W, Xu S, Chen L, Tan W, Deng N, Li Y, Zhang W, Deng C. Astragali Radix-Angelicae Sinensis Radix inhibits the activation of vascular adventitial fibroblasts and vascular intimal proliferation by regulating the TGF-β1/Smad2/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119302. [PMID: 39743186 DOI: 10.1016/j.jep.2024.119302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia. AIM OF THE STUDY A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis. Furthermore, an in vitro rat VAF activation model was used. The effects of the main active ingredients of Astragali Radix-Angelicae Sinensis Radix on the proliferation, migration and ECM synthesis of VAF were observed. The mechanism of its action was investigated by focusing on TGF-β1/Smads signaling pathway. MATERIALS AND METHODS Male ApoE-/- mice were used to establish an AS model. Observe the morphological changes of blood vessels, the expression of Vimentin, α-SMA, ECM-related factors and TGF-β1/Smads signaling pathway-related proteins. Ang Ⅱ was used to induce the VAF activation model. The cell activity, cell proliferation, cell migration, cell phenotypic markers, ECM-related factors, cell cycle regulation-related proteins and TGF-β1/Smads signaling pathway-related proteins were determined. On this basis, TGF-β1/Smads signaling pathway agonists and inhibitors were used to study the effects of the compatibility of six active components on TGF-β1/Smads signaling pathway. RESULTS Astragali Radix-Angelicae Sinensis Radix can reduce aortic intimal hyperplasia, inhibit the expression of aortic α-SMA, Vimentin, ECM components, TGF-β1, p-Samd2 and p-Samd3. Cell experiments showed that the six active ingredients could inhibit the proliferation and migration of VAF to varying degrees, inhibit the expression of α-SMA, cell cycle promoters, ECM components, up-regulate the expression of Vimentin, P21, MMP2 and MMP9. The above effects were enhanced after the combination of the six components. The 6 components and their combinations could inhibit the expression of TGF-β1/Smads signaling pathway-related proteins and up-regulate the expression of Samd7 to varying degrees. The above effects were enhanced after the combination of the 6 components. TGF-β1/Smads signaling pathway inhibitor LY2157299 showed similar effects with the six components. The inhibitory effects of the six active ingredients on TGF-β1/Smads signaling pathway-related proteins and the promotion of Smad7 expression were attenuated when agonists were added into the six active ingredient combinations. However, adding TGFβ1/Smads signaling pathway inhibitor EGF to the six active ingredient combinations had no effect on the above effects. CONCLUSION Astragali Radix-Angelicae Sinensis Radix can inhibit intimal hyperplasia, VAF activation, and ECM synthesis in atherosclerosis. The six active ingredients may be the main pharmacological substances of Astragali Radix-Angelicae Sinensis Radix to inhibit the activation of VAF, and the combination of six ingredients can enhance their effects, which may be mediated by inhibiting the activation of the TGF-β1/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Wanyu Li
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China.
| | - Shunzhou Xu
- The First Affiliated Hospital of Hunan Junior College of Traditional Chinese Medicine, No.571, Renmin Middle Road, Lusong District, 412008, Zhuzhou City, Hunan Province, China.
| | - Lingbo Chen
- Hunan Academy of Chinese Medicine, 142 Yuehua Road, Yuelu District, 410013, Changsha City, Hunan Province, China.
| | - Wei Tan
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China.
| | - Nujiao Deng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, 410208, Changsha City, Hunan Province, China.
| | - Yanling Li
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China.
| | - Wei Zhang
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China.
| | - Changqing Deng
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China.
| |
Collapse
|
2
|
Xie M, Li X, Chen L, Zhang Y, Chen L, Hua H, Qi J. The crosstalks between vascular endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts in vascular remodeling. Life Sci 2025; 361:123319. [PMID: 39701178 DOI: 10.1016/j.lfs.2024.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Pathological vascular remodeling (VR) is characterized by structural and functional alterations in the vascular wall resulting from injury, which significantly contribute to the development of cardiovascular diseases (CVDs). The vascular wall consists primarily of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs), whose interactions are crucial for both the formation of the vascular system and the maintenance of mature blood vessels. Disruptions in the communication between these cell types have been implicated in the progression of VR. This review examines the complex interactions between ECs, VSMCs, and AFs in the context of CVD development, emphasizing a relatively underexplored yet potentially critical mechanism. This interaction framework likely extends to the broader cellular dialogue in the pathogenesis of CVDs, suggesting novel therapeutic strategies for intervention.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China
| | - Xiandeng Li
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lun Chen
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yufeng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shangdong 271000, China; Postdoctoral Workstation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shangdong 250117, China; Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China
| | - Long Chen
- Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, Jiangsu 225316, China; International Centre for Genetic Engineering and Biotechnology, Taizhou, Jiangsu 225300, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China.
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
3
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|