1
|
Bai M, Wang B, Zhao W, Qiu H, Su S, Wang Y, Qin Y, Wang C, Zhao Z, Gao Z, Yang C. Novel anammox-enhanced A-B wastewater treatment process based on carbon capture concept. BIORESOURCE TECHNOLOGY 2025; 427:132431. [PMID: 40118224 DOI: 10.1016/j.biortech.2025.132431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
The high energy consumption and high carbon footprint of sewage treatment are technical shortcomings of the conventional activated sludge process. To address the emergency issue, this research demonstrated the viability of a pre-anammox enhanced A-B process to treat municipal wastewater while achieving an energy-efficient operation. In the proposed A-B process, an anaerobic moving bed biofilm reactor (A-MBBR) functions as the A-stage for COD capture, while a nitrification MBBR functions as the B-stage. The results show that during the 210-days of operation, 83.3 % of the influent COD was converted in the A-stage, and 93.1 % NH4+-N removal was achieved, resulting in an effluent NH4+-N concentration of 0.9 mg/L. The metagenomic sequencing results show that, in the B-stage MBBR, Nitrosomonas was the main ammonia-oxidizing bacterium (4.9 % relative abundance) and Nitrospira was the main nitrite-oxidizing bacterium (18.0 % relative abundance). In the A-stage MBBR, Thauera was the dominant denitrification bacterium (9.2 % relative abundance) and Candidatus Brocadia was the dominant anammox bacterium. Finally, hdh and hzs were key anammox genes detected in this system. This study clearly demonstrates a novel pre-anammox enhanced A-B process with an energy-efficient operation.
Collapse
Affiliation(s)
- Meng Bai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Weihua Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China.
| | - Haojie Qiu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Shaoqing Su
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Yanyan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Yingying Qin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Chao Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Zhisheng Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Zhongxiu Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Chuanxi Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| |
Collapse
|
2
|
Yang T, Gong X, Xu A, Wang B, Huang Z, Wang C, Gao D. Integrated evaluation for advanced removal of nitrate using novel solid carbon biochar/corncob/PHBV composite: Insight into electron transfer and metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138549. [PMID: 40359745 DOI: 10.1016/j.jhazmat.2025.138549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
This study developed a novel Biochar/Corncob/PHBV (BCP) composite material, integrating the electron transfer capability of biochar, the cost-effectiveness of corncob, and the sustained carbon release performance of PHBV. The BCP system achieved a maximum nitrate removal efficiency of 97.3 %, significantly outperforming the single PHBV system (91.05 %), while effectively reducing nitrous oxide and other greenhouse gas emissions. It also demonstrated stable carbon release and enhanced electron transfer capabilities, contributing to a more sustainable denitrification process. The physical and chemical characterization of BCP confirmed that its superior performance is attributed to the uniformly distributed functional groups (e.g., CO and -COOH) on the surface and its porous structure, which facilitated electron transfer and microbial adhesion. Metagenomic and microbial analyses further revealed that BCP enriched functional genera such as Cellulomonas and Chryseobacterium and significantly increased the abundance of key functional genes related to nitrate reduction (e.g., NaR and NiR), enhancing organic matter decomposition and microbial nitrogen transformation. Beyond improving nitrate removal efficiency compared to PHBV, the BCP material offers practical engineering value by addressing carbon source limitations in long-term wastewater treatment applications. Its enhanced electron transfer and microbial enrichment suggest strong potential for application in constructed wetlands, biofilters, and other decentralized wastewater treatment systems. The study demonstrates that the BCP composite is not only a viable alternative to traditional PHBV but also a cost-effective and environmentally friendly material with broad applicability in nitrogen pollution control.
Collapse
Affiliation(s)
- Tianfu Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Boyuan Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zheng Huang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chuchu Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
3
|
Liu C, Yang Z, Cao X, Wang C, Yue L, Li X, Wang Z, Xing B. Distribution and Biological Response of Nanoplastics in Constructed Wetland Microcosms: Mechanistic Insights into the Role of Photoaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2732-2744. [PMID: 39878141 DOI: 10.1021/acs.est.4c09635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Concern over nanoplastic contamination of wetland ecosystems has been increasing. However, little is known about the effect of photoaging on the distribution and biological response of the nanoplastics. Here, palladium-labeled polystyrene nanoplastics (PS-Pd NPs) at 0.05-50 mg/L were exposed to constructed wetland microcosms containing floating (Eichhornia crassipes) and submerged (Vallisneria natans) macrophytes. Results demonstrate that PS-Pd NPs' concentration in surface water after 2-4 weeks of exposure was decreased by over 98.4% as compared with that in the 1st week. Photoaging enhanced the surface charge and colloidal stability of PS-Pd NPs, with a subsequent increase of the content of PS-Pd NPs in surface and middle layer water by 264.6 and 207.4%, respectively. Additionally, photoaging significantly enhanced the accumulation of PS-Pd NPs in E. crassipes roots by 6.9-65.0% and significantly decreased it in V. natans shoots by 59.7-123.0%. PS-Pd NPs inhibited the growth of V. natans by 43.8% at 50 mg/L. Mechanistically, PS-Pd NPs induced oxidative stress in V. natans, leading to the disruption of the metabolic pathway. Interestingly, PS-Pd NP exposure inhibited nitrification in wetland ecosystems due to the alteration of the related bacterial community (Ellin6067 decreased by 13.19%). These findings deepen our understanding of the environmental fate and risk of plastic particles in wetland ecosystems.
Collapse
Affiliation(s)
- Cai Liu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zehui Yang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Kim S, Chairattanawat C, Kim E, Lee D, Hwang S. Changes in bacterial diversity of full-scale anaerobic digesters treating secondary sludge. BIORESOURCE TECHNOLOGY 2025; 418:131894. [PMID: 39615761 DOI: 10.1016/j.biortech.2024.131894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
Anaerobic digestion (AD) of secondary sludge (2S) presents challenges because of its high microbial content and complex cell wall structures. The purpose of this study was to investigate the effects of spatiotemporally-variable factors such as water temperature and dietary habits on the 2S bacterial community and its migration into digesters. Bacterial communities and functions were analyzed using high-throughput pyrosequencing. Spatiotemporal variations in bacterial populations were identified, with genera such as Zoogloea and Dechloromonas migrating into digesters and influencing organic degradation. Notably, Zoogloea was negatively correlated with VS removal, potentially due to cell floc formation, whereas Dechloromonas was positively correlated, suggesting its role in acetate metabolism anaerobically. This study emphasizes the importance of microbial migration from 2S to digesters, highlighting the need to monitor microbial communities along with conventional parameters to increase AD performance. These findings provide practical insights into optimizing sludge management and improving biogas production in AD plants.
Collapse
Affiliation(s)
- Sangmin Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Chayanee Chairattanawat
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Eunji Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Donggyu Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| |
Collapse
|
5
|
Chen B, Dong K, Xu Y, Jiang M, Zheng J, Zeng H, Zhang X, Chen Y, Li H. Biodegradation of nitrate and p-bromophenol using hydrogen-based membrane biofilm reactors in parallel. ENVIRONMENTAL TECHNOLOGY 2024; 45:4550-4564. [PMID: 37729639 DOI: 10.1080/09593330.2023.2259091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 09/22/2023]
Abstract
ABSTRACTP-bromophenol (4-BP) is a toxic halogenated phenolic organic compound. The conventional treatment processes for 4-BP elimination are costly and inefficient, with complete mineralization remaining a challenge for water treatment. To overcome these limitations, we investigated the treatment of 4-BP in a membrane biofilm reactor (MBfR) using hydrogen as an electron donor. The pathway of 4-BP degradation within the H2-MBfR was investigated through long-term operational experiments by considering the effect of nitrate and 4-BP concentrations, hydrogen partial pressure, static experiments, and microbial community diversity, which was studied using 16S rRNA. The results showed that H2-MBfR could quickly remove approximately 100% of 4-BP (up to 20 mg/L), with minimal intermediate product accumulation and 10 mg/L of nitrate continuously reduced. The microbial community structure showed that the presence of H2 created an anaerobic environment, and Thauera was the dominant functional genus involved in the degradation of 4-BP. The genes encoding related enzymes were further enhanced. This study provides an economically viable and environmentally friendly bioremediation technique for water bodies that contain 4-BP and nitrates.
Collapse
Affiliation(s)
- Bo Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, People's Republic of China
| | - Minmin Jiang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Junjian Zheng
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Yuchao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, People's Republic of China
| |
Collapse
|
6
|
Zhang G, Hao Q, Xu S, Li Y, Zhang W, Liang Z, Jiang C. Mitigating nitrous oxide emissions from low carbon to nitrogen ratio wastewater treatment: Utilizing sugarcane bagasse fermentation liquid for constructed wetlands. BIORESOURCE TECHNOLOGY 2024; 406:131088. [PMID: 38981553 DOI: 10.1016/j.biortech.2024.131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Sugarcane bagasse was recycled to produce fermentation liquid (FL) as a supplementary carbon source that was added to constructed wetlands (CWs) for regulating influent carbon to nitrogen ratio (C/N), and then being applied to investigate nitrogen transformations and greenhouse gas emissions. Results showed that this FL achieved faster NO3--N removal and lower N2O fluxes than sucrose did, and the lowest N2O flux (67.6 μg m-2h-1) was achieved when FL was added to CWs in a C/N of 3. In contrast, CH4 emissions were higher by the FL addition than by the sucrose addition, although the fluxes under both additions were in a lower range of 0.06-0.17 mg m-2h-1. The utilization of FL also induced significant variations in microbial communities and increased the abundance of denitrification genes. Results showed the application of FL from sugarcane bagasse can be an effective strategy for improving nitrogen removal and mitigating N2O emissions in CWs.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shiwen Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanxun Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wenxiao Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Zheng Z, Liao C, Chen Y, Ming T, Jiao L, Kong F, Su X, Xu J. Revealing the functional potential of microbial community of activated sludge for treating tuna processing wastewater through metagenomic analysis. Front Microbiol 2024; 15:1430199. [PMID: 39101040 PMCID: PMC11294940 DOI: 10.3389/fmicb.2024.1430199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Reports regarding the composition and functions of microorganisms in activated sludge from wastewater treatment plants for treating tuna processing wastewater remains scarce, with prevailing studies focusing on municipal and industrial wastewater. This study delves into the efficiency and biological dynamics of activated sludge from tuna processing wastewater, particularly under conditions of high lipid content, for pollutant removal. Through metagenomic analysis, we dissected the structure of microbial community, and its relevant biological functions as well as pathways of nitrogen and lipid metabolism in activated sludge. The findings revealed the presence of 19 phyla, 1,880 genera, and 7,974 species, with Proteobacteria emerging as the predominant phylum. The study assessed the relative abundance of the core microorganisms involved in nitrogen removal, including Thauera sp. MZ1T and Alicycliphilus denitrificans K601, among others. Moreover, the results also suggested that a diverse array of fatty acid-degrading microbes, such as Thauera aminoaromatica and Cupriavidus necator H16, could thrive under lipid-rich conditions. This research can provide some referable information for insights into optimizing the operations of wastewater treatment and identify some potential microbial agents for nitrogen and fatty acid degradation.
Collapse
Affiliation(s)
- Zhangyi Zheng
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Changyu Liao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yubin Chen
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Tinghong Ming
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Lefei Jiao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Fei Kong
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| | - Jiajie Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
- Microbial Development and Metabolic Engineering Laboratory, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Bai M, Zhao W, Wang Y, Bi X, Su S, Qiu H, Gao Z. Towards low carbon demand and highly efficient nutrient removal: Establishing denitrifying phosphorus removal in anaerobic/anoxic/oxic + nitrification system. BIORESOURCE TECHNOLOGY 2024; 395:130385. [PMID: 38281549 DOI: 10.1016/j.biortech.2024.130385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
A two-sludge anaerobic/anoxic/oxic + nitrification system with simultaneous nitrogen and phosphorus removal was studied for enhanced low-strength wastewater treatment. After 158 days of operation, excellent NH4+-N, chemical oxygen demand (COD) and PO43--P removal (99.0 %, 90.0 % and 92.0 %, respectively) were attained under a low carbon/nitrogen ratio of 5, resulting in effluent NH4+-N, COD and PO43--P concentrations of 0.3, 30.0 and 0.5 mg/L, respectively. The results demonstrate that the anaerobic/anoxic/oxic sequencing batch reactor (A2-SBR) and nitrification sequencing batch reactor (N-SBR) had favorable denitrifying phosphorus removal and nitrification performance, respectively. High-throughput sequencing results indicate that the phosphate-accumulating organisms Dechloromonas (1.1 %) and Tetrasphaera (1.2 %) were enriched in the A2-SBR, while the ammonia-oxidizing bacteria Nitrosomonas (7.8 %) and the nitrite-oxidizing bacteria Nitrospira (18.1 %) showed excellent accumulation in the N-SBR. Further analysis via functional prediction revealed that denitrification is the primary pathway of nitrogen metabolism throughout the system. Overall, the system achieved low carbon and high efficiency nutrient removal.
Collapse
Affiliation(s)
- Meng Bai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Weihua Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China.
| | - Yanyan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Shaoqing Su
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Haojie Qiu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| | - Zhongxiu Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, PR China
| |
Collapse
|
9
|
Guo B, Li G, Xu H, Fang Y, Gao Z, Zhao Y, Zhang J. Enhanced denitrification performance in iron-carbon wetlands through biomass addition: Impact on nitrate and ammonia transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169913. [PMID: 38185167 DOI: 10.1016/j.scitotenv.2024.169913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This study investigated the influence of biomass addition on the denitrification performance of iron-carbon wetlands. During long-time operation, the effluent NO3--N concentration of CW-BFe was observed to be the lowest, registering at 0.418 ± 0.167 mg/L, outperforming that of CW-Fe, which recorded 1.467 ± 0.467 mg/L. However, the effluent NH4+-N for CW-BFe increased to 1.465 ± 0.121 mg/L, surpassing CW-Fe's 0.889 ± 0.224 mg/L. Within a typical cycle, when establishing first-order reaction kinetics based on NO3--N concentrations, the introduction of biomass was found to amplify the kinetic constants across various stages in the iron-carbon wetland, ranging between 2.4 and 5.4 times that of CW-Fe. A metagenomic analysis indicated that biomass augments the reduction of NO3--N and NO2--N nitrogen and significantly bolsters the dissimilation nitrate reduction to ammonia pathway. Conversely, it impedes the reduction of N2O, leading to a heightened proportion of 2.715 % in CW-BFe's nitrogen mass balance, a stark contrast to CW-Fe's 0.379 %.
Collapse
Affiliation(s)
- Baolei Guo
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Guoqiang Li
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Hongbin Xu
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Yingke Fang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Zhao Gao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Yuxin Zhao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Jingyi Zhang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| |
Collapse
|
10
|
Zhang C, Zhang L, Liu J, Li X, Zhang Q, Peng Y. Achieving ultra-high nitrogen and phosphorus removal from real municipal wastewater in a novel continuous-flow anaerobic/aerobic/anoxic process via partial nitrification, endogenous denitrification and nitrite-type denitrifying phosphorus removal. WATER RESEARCH 2024; 250:121046. [PMID: 38159538 DOI: 10.1016/j.watres.2023.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Achieving economic and efficient removal of nutrients in mainstream wastewater treatment plants (WWTPs) continues to be a challenging research topic. In this study, a continuous-flow anaerobic/aerobic/anoxic system with sludge double recirculation (AOA-SDR), which integrated partial nitrification (PN), endogenous denitrification (ED) and nitrite-type denitrifying phosphorus removal (nDNPR), was constructed to treat real carbon-limited municipal wastewater. The average effluent concentrations of total inorganic nitrogen (TIN) and PO43--P during the stable operation period were 1.8 and 0.3 mg/L, respectively. PN was achieved with an average nitrite accumulation ratio of 90.4 % by combined strategies. Adequate storage of polyhydroxyalkanoates and glycogen in the anaerobic zone promoted the subsequent nitrogen removal capacity. In the anoxic zone, nitrite served as the main electron acceptor for the denitrifying phosphorus removal process. Mass balance analysis revealed that nDNPR contributed to 23.6 % of TIN removal and 44.7 % of PO43--P removal. The enrichment of Nitrosomonas (0.45 %) and Ellin 6067 (1.31 %), along with the washout of Nitrospira (0.15 %) provided the bacterial basis for the successful implementation of PN. Other dominant endogenous heterotrophic bacteria, such as Dechlormonas (10.81 %) and Candidatus Accumulibacter (2.96 %), ensured simultaneous nitrogen and phosphorus removal performance. The successful validation of integrating PN, ED and nDNPR for advanced nutrient removal in the AOA-SDR process provides a transformative technology for WWTPs.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
11
|
Zhou P, Tian L, Siddique MS, Song S, Graham NJD, Zhu YG, Yu W. Divergent Fate and Roles of Dissolved Organic Matter from Spatially Varied Grassland Soils in China During Long-Term Biogeochemical Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1164-1176. [PMID: 38164759 DOI: 10.1021/acs.est.3c08046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Terrestrial dissolved organic matter (DOM) is critical to global carbon and nutrient cycling, climate change, and human health. However, how the spatial and compositional differences of soil DOM affect its dynamics and fate in water during the carbon cycle is largely unclear. Herein, the biodegradation of DOM from 14 spatially distributed grassland soils in China with diverse organic composition was investigated by 165 days of incubation experiments. The results showed that although the high humified fraction (high-HS) regions were featured by high humic-like fractions of 4-25 kDa molecular weight, especially the abundant condensed aromatics and tannins, they unexpectedly displayed greater DOM degradation during 45-165 days. In contrast, the unique proteinaceous and 25-100 kDa fractions enriched in the low humified fraction (low-HS) regions were drastically depleted and improved the decay of bulk DOM but only during 0-45 days. Together, DOM from the high-HS regions would cause lower CO2 outgassing to the atmosphere but higher organic loads for drinking water production in the short term than that from the low-HS regions. However, this would be reversed for the two regions during the long-term transformation processes. These findings highlight the importance of spatial and temporal variability of DOM biogeochemistry to mitigate the negative impacts of grassland soil DOM on climate, waters, and humans.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shian Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Liu Y, Wang F, Wang Z, Xiang L, Fu Y, Zhao Z, Kengara FO, Mei Z, He C, Bian Y, Naidu R, Jiang X. Soil properties and organochlorine compounds co-shape the microbial community structure: A case study of an obsolete site. ENVIRONMENTAL RESEARCH 2024; 240:117589. [PMID: 37926227 DOI: 10.1016/j.envres.2023.117589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Organochlorine compounds (OCs) such as chlorobenzenes (CB) are persistent organic pollutants that are ubiquitous in soils at organochlorine pesticides (OCP) production sites. Long-term contamination with OCs might alter the soil microbial structure and further affect soil functions. However, the effects of OCs regarding the shaping of microbial community structures in the soils of OCs-contaminated sites remain obscure, especially in the vertical soil profile where pollutants are highly concealed. Hence this paper explored the status and causes of OCs pollution (CB, hexachlorocyclohexane (HCH), and dichlorodiphenyltrichloroethane (DDT)) in an obsolete site, and its combined effects with soil properties (pH, available phosphorus (AP), dissolved organic carbon (DOC), etc) on microbial community structure. The mean total concentration of OCs in the subsoils was up to 996 times higher than that in the topsoils, with CB constituting over 90% of OCs in the subsoil. Historical causes, anthropogenic effects, soil texture, and the nature of OCs contributed to the differences in the spatial distribution of OCs. Redundancy analysis revealed that both the soil properties and OCs were important factors in shaping microbial composition and diversity. Variation partitioning analysis further indicated that soil properties had a greater impact on microbial community structure than OCs. Significant differences in microbial composition between topsoils and subsoils were observed through linear discriminant analysis effect size (LEfSe) analysis, primarily driven by different pollutant conditions. Additionally, co-occurrence network analysis indicated that heavily contaminated subsoils exhibited closer and more intricate bacterial community interactions compared to lightly contaminated topsoils. This work reveals the impact of environmental factors in co-shaping the structure of soil microbial communities. These findings advance our understanding of the intricate interplay among organochlorine pollutants, soil properties, and microbial communities, and provides valuable insights into devising effective management strategies in OCs-contaminated soils.
Collapse
Affiliation(s)
- Yu Liu
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Leilei Xiang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Zhao
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhi Mei
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongrong Bian
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xin Jiang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Sun X, Tong W, Wu G, Yang G, Zhou J, Feng L. A collaborative effect of solid-phase denitrification and algae on secondary effluent purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119393. [PMID: 37925989 DOI: 10.1016/j.jenvman.2023.119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
This study explored the collaborative effect on nutrients removal performance and microbial community in solid-phase denitrification based bacteria-algae symbiosis system. Three biodegradable carriers (apple wood, poplar wood and corncob) and two algae species (Chlorella vulgaris and Chlorella pyrenoidosa) were selected in these bacteria-algae symbiosis systems. Results demonstrated that corncob as the carrier exhibited the highest average removal efficiencies of total nitrogen (83.7%-85.1%) and phosphorus removal (38.1%-49.1%) in comparison with apple wood (65.8%-71.5%, 25.5%-32.7%) and poplar wood (42.5%-49.1%, 14.2%-20.7%), which was mainly attributed to the highest organics availability of corncob. The addition of Chlorella acquired approximately 3%-5% of promotion rates for nitrated removal among three biodegradable carriers, but only corncob reactor acquired significant promotions by 3%-11% for phosphorous removal. Metagenomics sequencing analysis further indicated that Proteobacteria was the largest phylum in all wood reactors (77.1%-93.3%) and corncob reactor without Chlorella (85.8%), while Chlorobi became the most dominant phylum instead of Proteobacteria (20.5%-41.3%) in the corncob with addition of Chlorella vulgaris (54.5%) and Chlorella pyrenoidosa (76.3%). Thus, the higher organics availability stimulated the growth of algae, and promoted the performance of bacteria-algae symbiosis system based biodegradable carriers.
Collapse
Affiliation(s)
- Xiaoran Sun
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Weibing Tong
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guiyang Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jiaheng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
14
|
Xing X, Yuan X, Zhang Y, Men C, Zhang Z, Zheng X, Ni D, Xi H, Zuo J. Enhanced denitrification of the AO-MBBR system used for expressway service area sewage treatment: A new perspective on decentralized wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118763. [PMID: 37683385 DOI: 10.1016/j.jenvman.2023.118763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Decentralized wastewater treatment warrants considerable development in numerous countries and regions. Owing to the unique characteristics of high ammonia nitrogen concentrations and low carbon/nitrogen ratio, nitrogen removal is a key challenge in treating expressway service area sewage. In this study, an anoxic/oxic-moving bed biofilm reactor (A/O-MBBR) and a traditional A/O bioreactor were continuously operated for 115 days and their outcomes were compared to investigate the enhancement effect of carriers on the total nitrogen removal (TN) for expressway service area sewage. Results revealed that A/O-MBBR required lower dissolved oxygen, exhibited higher tolerance toward harsh conditions, and demonstrated better shock load resistance than traditional A/O bioreactor. The TN removal load of A/O-MBBR reached 181.5 g‧N/(m3‧d), which was 15.24% higher than that of the A/O bioreactor. Furthermore, under load shock resistance, the TN removal load of A/O-MBBR still reached 327.0 g‧N/(m3‧d), with a TN removal efficiency of above 80%. Moreover, kinetics demonstrated that the denitrification rate of the A/O-MBBR was 121.9% higher than that of the A/O bioreactor, with the anoxic tank biofilm contributing 60.9% of the total denitrification rate. Community analysis results revealed that the genera OLB8, uncultured_f_Saprospiraceae and OLB12 were the dominant in biofilm loaded on carriers, and OLB8 was the key for enhanced denitrification. FAPROTAX and PICRUSt2 analyses confirmed that more bacteria associated with nitrogen metabolism were enriched by the A/O-MBBR carriers through full denitrification metabolic pathway and dissimilatory nitrate reduction pathway. This study offers a perspective into the development of cost-effective and high-efficiency treatment solutions for expressway service area sewage.
Collapse
Affiliation(s)
- Xin Xing
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xin Yuan
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yu Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Cong Men
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zhuowei Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xiaoying Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Dong Ni
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China.
| | - Huatian Xi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Cheng X, Feng H, Liang Y, Li L, Yao Y, Jin M, Li J. Filtration columns containing waste iron shavings, loofah, and plastic shavings for further removal of nitrate and phosphate from wastewater effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162799. [PMID: 36914123 DOI: 10.1016/j.scitotenv.2023.162799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
A novel pilot-scale advanced treatment system combining waste products as fillers is proposed and established to enhance the removal of nitrate (NO3--N) and phosphate (PO43--P) from secondary treated effluent. The system consists of four modular filter columns, one containing iron shavings (R1), two containing loofahs (R2 and R3), and one containing plastic shavings (R4). The monthly average concentration of total nitrogen (TN) and total phosphorus (TP) decreased from 8.87 to 2.52 mg/L and 0.607 to 0.299 mg/L, respectively. Micro-electrolysis of iron shavings produces Fe2+ and Fe3+ to remove PO43--P, while oxygen (O2) consumption creates anoxic conditions for subsequent denitrification. Gallionellaceae, iron-autotrophic Microorganisms, enriched the surface of iron shavings. The loofah served as a carbon source to remove NO3--N, and its porous mesh structure facilitated the attachment of biofilm. The plastic shavings intercepted suspended solids and degraded excess carbon sources. This system can be scaled up and installed at wastewater plants to improve the water quality of effluent cost-effectively.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Hongbo Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Liang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lincong Li
- Yuhang Chengxi Water Purification Co., Ltd., Hangzhou 311121, China
| | - Yunbo Yao
- Yuhang Chengxi Water Purification Co., Ltd., Hangzhou 311121, China
| | - Minghui Jin
- Yuhang Chengxi Water Purification Co., Ltd., Hangzhou 311121, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
16
|
Chen Z, Zuo Q, Liu C, Li L, Deliz Quiñones KY, He Q. Insights into solid phase denitrification in wastewater tertiary treatment: the role of solid carbon source in carbon biodegradation and heterotrophic denitrification. BIORESOURCE TECHNOLOGY 2023; 376:128838. [PMID: 36898568 DOI: 10.1016/j.biortech.2023.128838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The practical application of solid phase denitrification (SPD) was hindered by either poor water quality from natural plant-like materials or high cost of pure synthetic biodegradable polymers. In this study, by combining polycaprolactone (PCL) with new natural materials (peanut shell, sugarcane bagasse), two novel economical solid carbon sources (SCSs) named as PCL/PS and PCL/SB were developed. Pure PCL and PCL/TPS (PCL with thermal plastic starch) were supplied as controls. During the 162-day operation, especially in the shortest HRT (2 h), higher NO3--N removal was achieved by PCL/PS (87.60%±0.06%) and PCL/SB (87.93%±0.05%) compared to PCL (83.28%±0.07%) and PCL/TPS (81.83%±0.05%). The predicted abundance of functional enzymes revealed the potential metabolism pathways of major components of SCSs. The natural components entered the glycolytic cycle by enzymatical generation of intermediates, while biopolymers being converted into small molecule products under specific enzyme activities (i.e., carboxylesterase, aldehyde dehydrogenase), together providing electrons and energy for denitrification.
Collapse
Affiliation(s)
- Ziwei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Qingyang Zuo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| | - Lin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Katherine Y Deliz Quiñones
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
17
|
Cui Y, Zhao B, Zhang X, Ma X, Zhou A, Wang S, Yue X, Li J, Meng J. Denitrification performance and in-situ fermentation mechanism of the wastepaper-flora slow-release carbon source. BIORESOURCE TECHNOLOGY 2023; 380:129074. [PMID: 37088430 DOI: 10.1016/j.biortech.2023.129074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Using wastepaper as external carbon sources is an optional way to achieve total nitrogen removal faced with low carbon to nitrogen ratio municipal sewage. Most of studies have primarily focused on using cellulose-rich wastes establishing the separate denitrification units to achieve in-situ fermentation, which can cause blockages and prolong the process chain. In response, a novel in-situ fermentation wastepaper-flora slow-release carbon source (IF-WF) was proposed using in the original denitrification unit. IF-WF could be efficiently utilized in situ and the denitrification rate increased with the increase of nitrate nitrogen. The fermentation products were highly available, but internal acidification of IF-WF inhibited fermentation. Moreover, IF-WF limited the growth of polysaccharides in the extracellular polymeric substances of denitrified sludge. IF-WF finally formed the structure dominated by nitrate-reduction bacteria outside and cellulose-degrading bacteria inside. These results provide guidance for understanding the mechanism of IF-WF for in-situ fermentation to promote nitrogen removal.
Collapse
Affiliation(s)
- Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao Ma
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China.
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
18
|
Paniguel Oliveira E, Giordani A, Kawanishi J, Syrto Octavio de Souza T, Okada DY, Brucha G, Brito de Moura R. Biofilm stratification and autotrophic-heterotrophic interactions in a structured bed reactor (SBRIA) for carbon and nitrogen removal. BIORESOURCE TECHNOLOGY 2023; 372:128639. [PMID: 36681348 DOI: 10.1016/j.biortech.2023.128639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The structured-bed reactor with intermittent aeration (SBRIA) is a promising technology for simultaneous carbon and nitrogen removal from wastewater. An in depth understanding of the microbiological in the reactor is crucial for its optimization. In this research, biofilm samples from the aerobic and anoxic zones of an SBRIA were analyzed through 16S rRNA sequencing to evaluate the bacterial community shift with variations in the airflow and aeration time. The control of the airflow and aeration time were essential to guarantee reactor performances to nitrogen removal close to 80%, as it interfered in nitrifying and denitrifying communities. The aeration time of 1.75 h led to establishment of different nitrogen removal pathways by syntrophic relationships between nitrifier, denitrifier and anammox species. Additionally, the predominance of these different species in the internal and external parts of the biofilm varied according to the airflow.
Collapse
Affiliation(s)
- Eduardo Paniguel Oliveira
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | - Alessandra Giordani
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil; Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo, São Paulo, Brazil.
| | - Juliana Kawanishi
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | - Theo Syrto Octavio de Souza
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo, São Paulo, Brazil
| | | | - Gunther Brucha
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | - Rafael Brito de Moura
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| |
Collapse
|
19
|
De Carluccio M, Sabatino R, Eckert EM, Di Cesare A, Corno G, Rizzo L. Co-treatment of landfill leachate with urban wastewater by chemical, physical and biological processes: Fenton oxidation preserves autochthonous bacterial community in the activated sludge process. CHEMOSPHERE 2023; 313:137578. [PMID: 36529163 DOI: 10.1016/j.chemosphere.2022.137578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The impact of Fenton oxidation (FO) and Air stripping (AS) pre-treatments on the bacterial community of a biological activated sludge (B-AS) process for the co-treatment of mature landfill leachate (MLL) and urban wastewater (UWW) was assessed. In this work high-throughput sequencing was used to identify changes in the composition of the bacterial communities when exposed to different landfill leachate's pre-treatments. The combination of FO and AS to increase biodegradability (BOD5/COD) and reduce ammonia concentration (NH3) respectively, allowed to successfully operate the B-AS and effectively treat MLL. In particular, BOD5/COD resulted to be the key factor for bacterial community shifting. The microbiological community of the B-AS, mainly composed by the phylum Bacteroidota (Saprospiraceae, PHOS-HE51, Chitinophagaceae) after FO pre-treatment, shifted to Pseudomonadota (Caulobacteraceae and Hyphomicrobiaceae) when FO was not used. At the same time a drastic reduction in BOD5 removal was observed (90%-58%). On the other hand, high NH3 concentration affected the abundance of the family Saprospiraceae, known to play a key role in the degradation of complex organic compounds in B-AS. The results obtained suggest that a suitable combination of pre-treatments can reduce the negative effect of MLL on the B-AS process, reducing the pressure on autochthonous bacteria and therefore the acclimatization time of the biological process.
Collapse
Affiliation(s)
- Marco De Carluccio
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano SA, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Ester M Eckert
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano SA, Italy.
| |
Collapse
|
20
|
Ma T, Cheng C, Xing L, Sun Y, Wu G. Quorum sensing responses of r-/K-strategists Nitrospira in continuous flow and sequencing batch nitrifying biofilm reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159328. [PMID: 36240916 DOI: 10.1016/j.scitotenv.2022.159328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
A better understanding of r-/K-strategists nitrifiers will help to balance the design and operation of bioprocesses for efficient pollution removal from wastewater. The objectives of study were to investigate the nitrite oxidation biokinetics, biofilm property, microbial community and quorum sensing (QS) of nitrifying biofilm in a continuously flow reactor (CFR) and a sequencing batch reactor (SBR). Results showed that nitrite-oxidizing bacteria were estimated to have a nitrite half saturation constant of 76.23 and 224.73 μM in CFR and SBR, respectively. High-throughput and metagenomic sequencing results showed that Nitrospira and Candidatus Nitrospira defluvii were the dominated nitrite-oxidizing taxa performing nitrite oxidation in both reactors. Nitrifying biofilm developed in CFR and SBR showed obviously different properties. Biofilm in SBR had an obviously higher ratio of polysaccharide and protein in extracellular polymeric substances, and higher thickness than in CFR. Metagenomics and chemical analysis revealed various types of acyl-homoserine lactone (AHL) circuit genes (e.g., luxI, lasI, hdtS) and four types of AHL signaling substances (e.g., C6-HSL, C8-HSL, C10-HSL and 3-oxo-C10-HSL) in nitrifying biofilm. The concentrations of these AHLs in biomass and water phases were obviously higher in SBR than that in CFR. Together, AHLs-based QS might affect the formation of nitrifying biofilm and thus contribute to the different biokinetics of Nitrospira in CFR and SBR. Our insights may reveal the molecular mechanism of Nitrospira for different biokinetics, and indicate the AHL association with Nitrospira adaptation to various conditions.
Collapse
Affiliation(s)
- Tianli Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; Environmental Engineering Co., Ltd. of Shandong Academy of Environmental Sciences, Jinan 250014, China
| | - Cheng Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Lizhen Xing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Yuepeng Sun
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92507, United States.
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland
| |
Collapse
|
21
|
Fan X, Ji M, Sun K, Li Q. Microbial and phage communities as well as their interaction in PO saponification wastewater treatment systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:354-365. [PMID: 36706286 DOI: 10.2166/wst.2022.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses or phages were considered affecting microbial community composition, metabolic process, and biogeochemical cycles. However, phage communities and their potential associations with microbial community are not well understood in the activated sludge (AS) of wastewater treatment plants (WWTPs). In this study, we explored the interactions between phages and microbial community by using propylene oxide (PO) saponification WWTPs as an example. Bacterial, eukaryal and archaeal communities were investigated and 34 phage contigs (>10 kb) were recovered from PO saponification WWTPs. At least 3 complete phage genomes were assembled. In all 34 phages, 21 of them have been predicted to their host. The association network analysis showed that abundant phages were associated with abundant microorganisms. This result conformed to Kill-the-Winner model. Notably, 45 auxiliary metabolic genes (AMGs) were identified from phage genomes (including small contig fragments). They influenced bacterial metabolism through facilitating phages replication and avoiding host death. Collectively, our results suggested that phage community affect microbial community and metabolic pathways by killing their hosts and AMGs transfer in AS of PO saponification WWTPs.
Collapse
Affiliation(s)
- Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China E-mail:
| | - Mengzhi Ji
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China E-mail:
| | - Kaili Sun
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China E-mail:
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China E-mail:
| |
Collapse
|
22
|
Shukla R, Ahammad SZ. Performance evaluation and microbial community structure of a modified trickling filter and conventional activated sludge process in treating urban sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158331. [PMID: 36041611 DOI: 10.1016/j.scitotenv.2022.158331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study compares the performance and microbial composition of a conventional activated sludge process (ASP) with a modified trickling filter (MTF) for urban sewage treatment. MTF (2 h HRT with effluent recycling) and ASP (8 h HRT) showed >60 % removal efficiency for COD, NH3-N and PO43--P. MTF outperformed ASP in denitrification and 5 mg/L of NO3--N was detected in the effluent of MTF. The widespread distribution of nitrogen removal functional genes (amoA, nirK, nirS, napA, narG and nosZ) in MTF indicates simultaneous nitrification and denitrification (SND) as a key process controlling nitrogen removal. In addition, Miseq sequencing was used to examine the microbial community composition in MTF and ASP. The sequencing result revealed that Proteobacteria, Planctomycetes, Chloroflexi and Actinobacteriota were the dominant phyla in both MTF and ASP. Moreover, the co-occurrence of various nitrifiers, denitrifiers, aerobic denitrifiers, and ANAMMOX bacteria in MTF suggested their role in nitrogen removal.
Collapse
Affiliation(s)
- Rishabh Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
23
|
Zhao W, Bi X, Peng Y, Bai M. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: Metabolic mechanisms, applications and influencing factors. CHEMOSPHERE 2022; 307:135675. [PMID: 35842039 DOI: 10.1016/j.chemosphere.2022.135675] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus-accumulating organisms (PAOs), which harbor metabolic mechanisms for phosphorus removal, are widely applied in wastewater treatment. Recently, novel PAOs and phosphorus removal metabolic pathways have been identified and studied. Specifically, Dechloromonas and Tetrasphaera can remove phosphorus via the denitrifying phosphorus removal and fermentation phosphorus removal pathways, respectively. As the main PAOs in biological phosphorus removal systems, the conventional PAO Candidatus Accumulibacter and the novel PAOs Dechloromonas and Tetrasphaera are thoroughly discussed in this paper, with a specific focus on their phosphorus removal metabolic mechanisms, process applications, community abundance and influencing factors. Dechloromonas can achieve simultaneous nitrogen and phosphorus removal in an anoxic environment through the denitrifying phosphorus removal metabolic pathway, which can further reduce carbon source requirements and aeration energy consumption. The metabolic pathways of Tetrasphaera are diverse, with phosphorus removal occurring in conjunction with macromolecular organics degradation through anaerobic fermentation. A collaborative oxic phosphorus removal pathway between Tetrasphaera and Ca. Accumulibacter, or a collaborative anoxic denitrifying phosphorus removal pathway between Tetrasphaera and Dechloromonas are future development directions for biological phosphorus removal technologies, which can further reduce carbon source and energy consumption while achieving enhanced phosphorus removal.
Collapse
Affiliation(s)
- Weihua Zhao
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Xuejun Bi
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| | - Meng Bai
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, PR China
| |
Collapse
|
24
|
Wang F, Liu W, Liu W, Xiao L, Ai S, Sun X, Bian D. Simultaneous removal of organic matter and nitrogen by heterotrophic nitrification-aerobic denitrification bacteria in an air-lift multi-stage circulating integrated bioreactor. BIORESOURCE TECHNOLOGY 2022; 363:127888. [PMID: 36070812 DOI: 10.1016/j.biortech.2022.127888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to propose a novel air-lift multi-stage circulating integrated bioreactor (AMCIB) to treat urban sewage. The AMCIB combined the reaction zone and sedimentation zone, the alternating circulation of activated sludge in separate aerobic and anaerobic environments facilitates the enrichment of HN-AD bacteria. The preliminary study showed that AMCIB had high removal efficiencies for COD, NH4+-N, TN and TP under high dissolved oxygen (DO) concentration conditions, with average removal rates of 93.21 %, 96.04 %, 75.06 % and 94.30 %, respectively. IlluminaMiSeq sequencing results showed that the system successfully cultured heterotrophic nitrification-aerobic denitrification (HN-AD) functional bacteria (Pseudomonas, Acinetobacter, Aeromonas) that played a crucial role in sewage treatment, and Tetrasphaera was the central phosphorus removing bacteria in the system. Functional gene predictions showed that the HN-AD played a dominant role in the system.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Wanqi Liu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Wenai Liu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Letian Xiao
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Xuejian Sun
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Dejun Bian
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
25
|
Zhou X, Bi X, Fan X, Yang T, Wang X, Chen S, Cheng L, Zhang Y, Zhao W, Zhao F, Nie S, Deng X. Performance and bacterial community analysis of a two-stage A/O-MBBR system with multiple chambers for biological nitrogen removal. CHEMOSPHERE 2022; 303:135195. [PMID: 35667503 DOI: 10.1016/j.chemosphere.2022.135195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
A two-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR) system with multiple chambers was established for municipal wastewater treatment. At the total hydraulic retention time (HRT) of 11.2 h and nitrate recycling ratio of 1, the removal efficiencies reached 83.8%, 82.5%, and 77.8% for soluble chemical oxygen demand (SCOD), 98.0%, 97.5%, and 94.9% for ammonia nitrogen (NH4+-N), and 91.8%, 92.0%, and 87.7% for total inorganic nitrogen (TIN) in summer, autumn and winter, respectively. Biofilms with functional bacterial populations were formed in the pre-anoxic reactors, the pre-oxic reactors, the post-anoxic reactors and the post-oxic reactors of the two-stage A/O-MBBR system. The highest nitrification potential was found in the last oxic reactor of the first A/O-MBBR subsystem with the highest relative abundances of the functional genes including [EC:1.14.99.39] and [EC:1.7.2.6]). The highest denitrification potential was found in the post-anoxic reactors with the highest relative abundances of the functional genes including [EC:1.7.2.1], [EC:1.7.2.5] and [EC:1.7.2.4]. This work constructed an efficient municipal biological nitrogen removal technology to achieve high effluent nitrogen standards in winter, and investigated its working mechanism to provide a basis for its design and optimization.
Collapse
Affiliation(s)
- Xiaolin Zhou
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuejun Bi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xing Fan
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Tang Yang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xiaodong Wang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Shanshan Chen
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Lihua Cheng
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Yuan Zhang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Weihua Zhao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Fangchao Zhao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd, Heze, 274000, PR China.
| | - Xiaoyu Deng
- Hynar Water Group Co, Ltd., Shenzhen, 518000, PR China.
| |
Collapse
|
26
|
Wang S, Niu Q, Zhu P, Huang Y, Li K, Li Q. Metagenomics analysis unraveled the influence of sulfate radical-mediated compost nitrogen transformation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115436. [PMID: 35653842 DOI: 10.1016/j.jenvman.2022.115436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The mechanism of nitrogen transformation of sulfate radical (SO- 4⋅) in the process of composting is unclear. The objectives of this study were to investigate the influence of SO- 4⋅ on nitrogen biotransformation during composting and to compare the differences in physicochemical parameters and metagenomics analysis between CK (fresh dairy manure and bagasse pith) and PS (the composting raw materials added with potassium persulfate). The results indicated that SO-4⋅ guides electron transfer in the conversion of NH+4-N to NO- 3-N and breaches the extracellular polysaccharide (EPS) structure to promote nitrogen removal. Aminomonooxygenase (AMO) and nitrate reductase (NR) levels displayed an interactive relationship between microorganisms and substrates. Metagenomics analysis revealed distinct microbial community compositions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between nitrification and denitrification. Correlation analysis indicated that Methanobrevibacter, Bacillus and Pseudomonas were closely related to these processes. This work demonstrates the effect of SO- 4⋅ on nitrogen cycling and retention, and possible mechanisms of nitrification and denitrification during composting.
Collapse
Affiliation(s)
- Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
27
|
Zong Y, Hao K, Lu G, Li Y, Huang D. Characteristics of the colony structure of A 2O processes under different ultraviolet conditions in plateau areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67941-67952. [PMID: 35524846 DOI: 10.1007/s11356-022-19579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In this text, a laboratory-scale A2O was performed in Linzhi City at a 3000-m altitude. During the test operation, the UV irradiation was carried out in oxic tank for 0, 5, 10, 30, and 180 min. The 16SrRNA gene sequencing was performed on the activated sludge in anaerobic, anoxic, and oxic tanks, and the colony structure characteristics of phyla, genera, and species classification levels in the sludge were analyzed. There were significant differences in the numbers of genera and species (p ≤ 0.05). The community richness, uniformity, diversity, and other indicators differed to some degree compared with those of other regions. The analysis of composition of bacterial colonies revealed different levels. The significance test of the difference between the groups, the significance of the dominant species, and the mechanism of UV was analyzed. A CCA diagram was used to verify that UV is an important factor in the colony structure composition, and the correlation heatmap diagram was used to analyze the microorganisms that are significantly related to UV. A sample hierarchical cluster analysis showed that the time of UV exposure can be divided into two categories, and the effects of UV exposure increase sequentially as the time of exposure increases. A comprehensive analysis found that the enhancing and inhibitory effects of UV affect the composition of the colony structure in the sample, and the time of irradiation will affect the enhancing or inhibitory effect, that is, the colony structure from the samples that were irradiated for different amounts of time differs greatly.
Collapse
Affiliation(s)
- Yongchen Zong
- Res. Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
| | - Kaiyue Hao
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
| | - Guanghua Lu
- Res. Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China.
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China.
| | - Yuanwei Li
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
| | - Decai Huang
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
| |
Collapse
|
28
|
Zhang SZ, Chen S, Jiang H. A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes. WATER RESEARCH 2022; 222:118908. [PMID: 35917670 DOI: 10.1016/j.watres.2022.118908] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Accurately predicting the water quality of treated water from a water treatment plant (WWTP) based on the obtained operating database is of great significance. However, it is difficult for common mechanistic models to work well. In this study, a back propagation artificial neural network (BPANN) model with high accuracy was developed to predict the denitrification efficiency based on a 1-year operating database. Standardized principal component analysis (PCA) methods were used to address the data, and the PCA processed data exhibited the best accuracy. In three WWTPs adopting the anaerobic/anoxic/oxic (A2O) process, the ammonia nitrogen removal efficiency of WWTPs was successfully predicted by using five variables: inlet flow rate, pH value, original ammonia nitrogen concentration, Chemical oxygen demand (COD) concentration, and total phosphorus concentration. Importantly, the obtained BPANN model can be effectively used for other widely used treatment processes, such as oxidation ditch (OD), sequencing batch reactor activated sludge process (SBR), membrane bioreactor (MBR), and cyclic activated sludge technology (CAST), by simply optimizing the training data ratios between 50/50 and 90/10. This is the first trial to set up a universal model for predicting the denitrification efficiency of WWTPs adopting common biological processes. The model could be used to choose the optimum treatment process in the new WWTP design or take action in advance to avoid the risk of excessive emissions when the already built WWTPs are subjected to sudden shocks.
Collapse
Affiliation(s)
- Shu-Zhe Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shuo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
29
|
Xu P, Xie Z, Shi L, Yan X, Fu Z, Ma J, Zhang W, Wang H, Xu B, He Q. Distinct responses of aerobic granular sludge sequencing batch reactors to nitrogen and phosphorus deficient conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155369. [PMID: 35461925 DOI: 10.1016/j.scitotenv.2022.155369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The nutrients availability determines efficiency of biological treatment systems, along with the structure and metabolism of microbiota. Herein nutrients deficiencies on aerobic granular sludge were comparatively evaluated, treating wastewater with mass ratios of chemical oxygen demand : nitrogen : phosphorus being 200:20:4, 200:2:4, and 200:20:0.4 (deemed as nutrient-balanced, nitrogen-deficient, and phosphorus-deficient), respectively. Results revealed that both nitrogen and phosphorus deficiencies significantly raised the effluent qualities especially nitrogen removal. However, nitrogen deficiency aroused considerable growth of filamentous bacteria, while granules kept compact structure under phosphorus deficient condition. Extracellular polymeric substances (EPS) also varied in contents and structures in response to different wastewaters. Microbial community structure analysis demonstrated that nitrogen deficiency led to lower richness and higher diversity, while the reverse was observed under phosphorus deficient condition. Nitrogen deficiency mainly induced decrease of nitrifying bacteria, while similarly phosphorus deficiency led to loss of phosphorus accumulating organisms. Dramatic enrichment Candidatus_Competibacter and filamentous Thiothrix were found under nutrients deficiencies, in which the latter explained and indicated filamentous bulking potential especially under nitrogen limited condition. Bacterial metabolism patterns verified the functions of microbial community responding to nutrients via PICRUSt2 prediction mainly by up-regulating cell motility, and cellular processes and signaling. This study could aid understanding of long-term stability of aerobic granular sludge for low-strength wastewater treatment.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhiyi Xie
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Liangsheng Shi
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Xiaohui Yan
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhidong Fu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jingwei Ma
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Baokun Xu
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China; Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
30
|
Zhang M, Tashiro Y, Ishida N, Sakai K. Application of autothermal thermophilic aerobic digestion as a sustainable recycling process of organic liquid waste: Recent advances and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154187. [PMID: 35240167 DOI: 10.1016/j.scitotenv.2022.154187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) has been used to stabilize organic waste since the 1960s and is considered sustainable technology. ATAD has several advantages, including high biodegradation efficiency, pathogen inactivation, and ease of operation. Although ATAD research has a long history, the number of studies on ATAD is much lower than those on similar aerobic processes, particularly composting. Previous review articles addressed the origin, design, operational experiences, metabolism, and the microorganisms at the thermophilic stage of ATAD. This article reviews the digestion systems, applications, and characteristics of ATAD; compares system performance and microbial community structure of ATAD with those of other biological processes such as composting, activated sludge, and anaerobic digestion; and discusses the physicochemical properties and factors of ATAD. The challenges, opportunities, and prospects for the application of ATAD are also discussed. This review suggests that ATAD is feasible for treating organic liquid waste (1-6% total solid content) in small-sized towns and can help establish a sustainable society.
Collapse
Affiliation(s)
- Min Zhang
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| | - Natsumi Ishida
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
31
|
Faris AM, Zwain HM, Hosseinzadeh M, Siadatmousavi SM. Modeling of novel processes for eliminating sidestreams impacts on full-scale sewage treatment plant using GPS-X7. Sci Rep 2022; 12:2986. [PMID: 35194134 PMCID: PMC8863777 DOI: 10.1038/s41598-022-07071-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
The novel process consisted of two steps was established by combining all sidestreams lines (supernatant gravity thickener, underflow mechanical thickener, and centrate), treating them together away from the mainstream treatment plant, and returning treated sidestreams effluents to the plant outfall instead of plant head. The two steps novelty treatment combined degradation, nitrification, and dilution processes. To treat combined sidestreams, a novel pilot extended nutrient moving bed biofilm reactor was developed. The effects of sidestream elimination on a full-scale anaerobic/anoxic/oxic system were simulated using GPS-X7. The statistical results of R values greater than 0.8 and NMSE values near zero proved the calibrated model's validation. The novel system successfully removed 98, 93, 100, 85, 98, 100, and 98% of BOD, COD, NH4, NO3, TSS, H2S, and PO4-P from sidestreams, respectively. Furthermore, the simulation results showed that eliminating sidestreams has reduced volumes of full-scale A2/O facilities, controlled hydraulic and pollutants shocks, and minimized cost and energy. The novel process proved successful in treating combined sidestreams and eliminating their impacts on the A/O2 system.
Collapse
Affiliation(s)
- Ahmed M Faris
- School of Civil Engineering, Iran University of Science and Technology, Narmak, 1684613114, Tehran, Iran.,Kerbala Sewerage Directorate, 56001, Kerbala, Iraq
| | - Haider M Zwain
- College of Engineering, Al-Qasim Green University, Al-Qasim Province, 51001, Babylon, Iraq
| | - Majid Hosseinzadeh
- School of Civil Engineering, Iran University of Science and Technology, Narmak, 1684613114, Tehran, Iran.
| | | |
Collapse
|
32
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
33
|
Liu D, Yang Y, Ai J, Li Y, Xing Y, Li J. Research on microbial structures, functions and metabolic pathways in an advanced denitrification system coupled with aerobic methane oxidation based on metagenomics. BIORESOURCE TECHNOLOGY 2021; 332:125047. [PMID: 33839509 DOI: 10.1016/j.biortech.2021.125047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Methanotrophs can oxidize methane as the sole carbon and energy, and the resulting intermediate products can be simultaneously utilized by coexistent denitrifying bacteria to remove the nitrogen, which named Aerobic Methane Oxidation Coupled to Denitrification (AME-D). In this paper, an AME-D system was built in an improved denitrification bio-filter, to analyze the nitrogen removal efficiency and mechanism. The maximum TN removal rate reached 95.05%. As shown in Raman spectroscopy, in the effluent wave crests generated by the symmetric expansion and contraction of NO3- disappeared, and the distortion of olefin CH2 and C-OH stretching of alcohols appeared. Metagenomics revealed Methylotenera and Methylobacter were the dominated methanotrophs. There was a completed methane and nitrogen metabolism pathway with the synergism of nxrAB, narGHI, nasAB, pmo-amoABC and mmo genes. Dissimilatory reduction pathway was the primary nitrate removal pathway. Moreover, Bradyrhizobium could participate in methane and nitrogen metabolism simultaneously.
Collapse
Affiliation(s)
- Dengping Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yanan Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Sinopec Great Wall Energy and Chemical (Guizhou) Co., LTD, Zhijin, Guizhou 552100, China
| | - Jia Ai
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Yi Xing
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
34
|
The Tolerance of Anoxic-Oxic (A/O) Process for the Changing of Refractory Organics in Electroplating Wastewater: Performance, Optimization and Microbial Characteristics. Processes (Basel) 2021. [DOI: 10.3390/pr9060962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to investigate the tolerance of an anoxic-oxic (A/O) process for the changing of refractory organics in electroplating wastewater, optimize the technological parameters, and reveal the microbial characteristics, a pilot-scale A/O process was carried out and the microbial community composition was analyzed by high-throughput sequencing. The results indicated that a better tolerance was achieved for sodium dodecyl benzene sulfonate, and the removal efficiencies of organic matter, ammonia nitrogen (NH4+-N), and total nitrogen (TN) were 82.87%, 66.47%, and 53.28% with the optimum hydraulic retention time (HRT), internal circulation and dissolved oxygen (DO) was 12 h, 200% and 2–3 mg/L, respectively. Additionally, high-throughput sequencing results demonstrated that Proteobacteria and Bacteroidetes were the dominant bacteria phylum, and the diversity of the microbial community in the stable-state period was richer than that in the start-up period.
Collapse
|
35
|
Huang Z, Wei Z, Tang M, Yu S, Jiao H. Biological treatments of mercury and nitrogen oxides in flue gas: biochemical foundations, technological potentials, and recent advances. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:133-168. [PMID: 34353503 DOI: 10.1016/bs.aambs.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitrogen oxides (NOx) and mercury (Hg) are commonly found coexistent pollutants in combustion flue gas. Ever-increasing emission of atmospheric Hg and NOx has caused considerable environmental risks. Traditional flue gas demercuration and denitration techniques have many socioeconomic, technological and environmental drawbacks. Biotechnologies can be a promising and prospective alternative strategy. This article discusses theoretical foundation (biochemistry and genomic basis) and technical potentials (Hg0 bio-oxidation coupled to denitrification) of bioremoval of Hg and NOx in flue gas and summarized recent experimental and technological advances. Finally, several specific technical perspectives have been put forward to better guide future researches.
Collapse
Affiliation(s)
- Zhenshan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Zaishan Wei
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.
| | - Meiru Tang
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Shan Yu
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Huaiyong Jiao
- School of Environmental Science and Engineering, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| |
Collapse
|
36
|
Yang Z, Zhou Q, Sun H, Jia L, Zhao L, Wu W. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: A pilot-scale study. WATER RESEARCH 2021; 196:117067. [PMID: 33773452 DOI: 10.1016/j.watres.2021.117067] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The pilot-scale solid-phase denitrification systems supporting with poly(3-hydroxybutyrateco-3-hydroxyvalerate) (PHBV) and PHBV-sawdust were constructed for advanced nitrogen removal from wastewater treatment plants (WWTPs) effluent, and the impacts of biomass blended carbon source on microbial community structure, functions and metabolic pathways were analyzed by metagenomic sequencing. PHBV-sawdust system achieved the optimal denitrification performance with higher NO3--N removal efficiency (96.58%), less DOC release (9.00 ± 4.16 mg L - 1) and NH4+-N accumulation (0.37 ± 0.32 mg L - 1) than PHBV system. Metagenomic analyses verified the significant differences in the structure of microbial community between systems and the presence of four anaerobic anammox bacteria. Compared with PHBV, the utilization of PHBV-sawdust declined the relative abundance of genes encoding enzymes for NH4+-N generation and increased the relative abundance of genes encoding enzymes involved in anammox, which contributed to the reduction of NH4+-N in effluent. What's more, the encoding gene for electrons generation in glycolysis metabolism obtained higher relative abundance in PHBV-sawdust system. A variety of lignocellulase encoding genes were significantly enriched in PHBV-sawdust system, which guaranteed the stable carbon supply and continuous operation of system. The results of this study are expected to provide theoretical basis and data support for the promotion of solid-phase denitrification.
Collapse
Affiliation(s)
- Zhongchen Yang
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; Department of Agricultural Resources and Environment, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China
| | - Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Liu Zhao
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
37
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
38
|
Zhang W, Zhang Q, Li M, Wang H, Li Y, Peng H, Feng J. Microbial community and function evaluation in the start-up period of bioaugmented SBR fed with aniline wastewater. BIORESOURCE TECHNOLOGY 2021; 319:124148. [PMID: 32987279 DOI: 10.1016/j.biortech.2020.124148] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
An enhanced sequencing batch reactor (SBR) system was developed to treat synthetic wastewater rich in 600 mg/L aniline. The aniline degradation efficiency was almost 100%, and the total nitrogen (TN) removal rate was more than 50%. Metagenomics technology revealed the community structure, functional genes and metabolic mechanism during the start-up of the enhanced reactor. Sequencing results showed that Proteobacteria, Bacteroidetes, Chloroflexi and Actinobacteria were dominant phylum. The proportion of degradation of aromatic compounds function increased gradually, but the proportion of nitrogen metabolism function changed little. Functional genes involved in aniline degradation including benA-xylX and dmpB/xylE were detected. The functional genes of nitrogen metabolism were involved in complete nitrification, traditional denitrification, assimilation nitrate reduction and dissimilation nitrate reduction. The functional contribution analysis and network analysis showed that the cooperation and competition of Thauera, Delftia, Diaphorobacter, Micavibrio and Azoarcus ensured the effective removal of aniline and nitrogen.
Collapse
Affiliation(s)
- Wenli Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Yao Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haojin Peng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
39
|
Zhang D, Zhang W, Liang Y. Bacterial community in a freshwater pond responding to the presence of perfluorooctanoic acid (PFOA). ENVIRONMENTAL TECHNOLOGY 2020; 41:3646-3656. [PMID: 31071274 DOI: 10.1080/09593330.2019.1616828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Microbial community is an essential component of freshwater, providing valuable self-purification ecosystem service. Poly-and perfluoroalkyl substances (PFAS) have attracted increasing concerns in light of their potential ecotoxicological effects and ubiquitous occurrence in the aquatic environment. Knowledge about their influences on the microbial community, however, remains largely unknown. In the present study, Illumina high-throughput sequencing of 16S ribosomal DNA was applied to explore the changes in the dynamic and composition of the bacterial community upon exposure to perfluorooctanoic acid (PFOA) at different concentrations, i.e. 0.45 µg L-1, 130 µg L-1 and 5.0 mg L-1. Principal component analysis (PCA) revealed variations of 57.2% for Principal Component 1 and 16.0% for Principal Component 2 of the total community. This clearly demonstrated changes in the bacterial community structure between the controls and PFOA-amended water samples. At the phylum level, the predominant bacteria in the original pond water included Proteobacteria (64.47%), Armatimonadetes (11.87%), Actinobacteria (10.81%), Bacteroidetes (6.36%), Chloroflexi (1.44%), Verrucomicrobia (0.61%) and Firmicutes (0.14%). The relative abundance of Actinobacteria, Bacteroidetes, and Verrucomicrobia decreased 26.5-38.8%, 40.5-70.7%, and 47.4-87.5%, respectively, upon PFOA exposure. By contrast, PFOA led to an obvious increase of Proteobacteria, by 12.5-18.6% and Chloroflexi by 19.1-74.4%. Results from this study provided the needed evidence that PFAS at high concentrations could affect the microbial community in a freshwater ecosystem. Principle Component Analysis (PCA) results suggest clear distinctions of bacterial community structure between the original pond water and the water samples spiked with PFOA based on pyrosequencing of 16S rRNA gene.
Collapse
Affiliation(s)
- Dongqing Zhang
- Environmental and Sustainable Engineering, College of Engineering and Applied Science, University at Albany, Albany, NY, USA
| | - Weilan Zhang
- Environmental and Sustainable Engineering, College of Engineering and Applied Science, University at Albany, Albany, NY, USA
| | - Yanna Liang
- Environmental and Sustainable Engineering, College of Engineering and Applied Science, University at Albany, Albany, NY, USA
| |
Collapse
|
40
|
Ji B, Wang S, Guo D, Pang H. Comparative and comprehensive analysis on bacterial communities of two full-scale wastewater treatment plants by second and third-generation sequencing. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Dasgupta S, Podder A, Goel R. Response of an aerobic granular and conventional flocculated reactors against changing feed composition from simple composition to more complex. CHEMOSPHERE 2020; 253:126694. [PMID: 32298910 DOI: 10.1016/j.chemosphere.2020.126694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
This research evaluated the effect of changing feed composition on the performances of a conventional activated sludge (CAS) and an aerobic granular sludge (AGS) reactor operated simultaneously. Both reactors were initially fed with 100% synthetic feed. In a stepwise manner, the feed composition was slowly changed to real primary effluent collected from a local wastewater treatment plant. After an initial stabilization period, both reactors could achieve more than 90% NH4+-N removal. However, PO43--P removal eventually reached to a maximum of 92% in the AGS and 88% in the CAS. COD removal in both reactors was least affected, with the lowest percent removal of 81 ± 3% achieved in AGS and 62 ± 4% in CAS respectively when fed with 100% real wastewater. Despite granule breakage the AGS reactor was able to remove the pollutants (COD, N, P). The abundance of Candidatus Accumulibacter, a polyphosphate accumulating organism, in the AGS system increased over the operational phases: II (6.2%), III (10.32%), and IV (11.9%). While in CAS, it increased from phase I to phase II (12.6%), but decreased in phase III to 9.9%. Genus-based classification revealed a successive increase in the relative abundance of Nitrospira to 11.05% during Phase III and 10.3% during Phase IV in the AGS. In contrast with its presence in the CAS, which was, 3.4% during Phase III and 9.5% during Phase IV.
Collapse
Affiliation(s)
- Sunayna Dasgupta
- Department of Civil and Environmental Engineering, 110 S Central Campus Drive, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aditi Podder
- Department of Civil and Environmental Engineering, 110 S Central Campus Drive, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, 110 S Central Campus Drive, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
42
|
Arbour TJ, Gilbert B, Banfield JF. Diverse Microorganisms in Sediment and Groundwater Are Implicated in Extracellular Redox Processes Based on Genomic Analysis of Bioanode Communities. Front Microbiol 2020; 11:1694. [PMID: 32849356 PMCID: PMC7399161 DOI: 10.3389/fmicb.2020.01694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Extracellular electron transfer (EET) between microbes and iron minerals, and syntrophically between species, is a widespread process affecting biogeochemical cycles and microbial ecology. The distribution of this capacity among microbial taxa, and the thermodynamic controls on EET in complex microbial communities, are not fully known. Microbial electrochemical cells (MXCs), in which electrodes serve as the electron acceptor or donor, provide a powerful approach to enrich for organisms capable of EET and to study their metabolism. We used MXCs coupled with genome-resolved metagenomics to investigate the capacity for EET in microorganisms present in a well-studied aquifer near Rifle, CO. Electroactive biofilms were established and maintained for almost 4 years on anodes poised mostly at −0.2 to −0.25 V vs. SHE, a range that mimics the redox potential of iron-oxide minerals, using acetate as the sole carbon source. Here we report the metagenomic characterization of anode-biofilm and planktonic microbial communities from samples collected at timepoints across the study period. From two biofilm and 26 planktonic samples we reconstructed draft-quality and near-complete genomes for 84 bacteria and 2 archaea that represent the majority of organisms present. A novel Geobacter sp. with at least 72 putative multiheme c-type cytochromes (MHCs) was the dominant electrode-attached organism. However, a diverse range of other electrode-associated organisms also harbored putative MHCs with at least 10 heme-binding motifs, as well as porin-cytochrome complexes and e-pili, including Actinobacteria, Ignavibacteria, Chloroflexi, Acidobacteria, Firmicutes, Beta- and Gammaproteobacteria. Our results identify a small subset of the thousands of organisms previously detected in the Rifle aquifer that may have the potential to mediate mineral redox transformations.
Collapse
Affiliation(s)
- Tyler J Arbour
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin Gilbert
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.,Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.,Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
43
|
Zhang Y, Jiang Q, Gong L, Liu H, Cui M, Zhang J. In-situ mineral CO 2 sequestration in a methane producing microbial electrolysis cell treating sludge hydrolysate. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122519. [PMID: 32200240 DOI: 10.1016/j.jhazmat.2020.122519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Microbial electrolysis cell (MEC) has excellent CH4 production performance, however, CO2 still remains in the produced biogas at high content. For achieving in-situ CO2 sequestration and thus upgrading biogas, mineral carbonation was integrated into a MEC treating sludge hydrolysate. With 19 g/L wollastonite addition, in-situ mineral CO2 sequestration was achieved by formation of calcite precipitates. CH4 content in the biogas was increased by 5.1 % and reached 95.9 %, with CH4 production improved by 16.9 %. In addition, the removals of polysaccharide, protein, and chemical oxygen demand (COD) of the MEC were increased by 4.4 %, 6.7 %, and 8.4 %, respectively. The generated precipitates rarely accumulated on bio-cathode, and did not significantly affect the morphology of cathode biofilm. However, integrating mineral carbonation resulted in a higher relative abundance of Methanosarcina on anode and slightly decreased the ratio of Methanobacterium to Methanosaeta on cathode, which should be noticed. In conclusion, integrating mineral carbonation is an attractive way to improve the performance of MEC by achieving in-situ CO2 sequestration, accompanied with CH4 production enhancement.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Qianqian Jiang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Linlin Gong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Minhua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Jie Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Li M, Wei D, Yan L, Yang Q, Liu L, Xu W, Du B, Wang Q, Hou H. Aerobic biodegradation of p-nitrophenol in a nitrifying sludge bioreactor: System performance, sludge property and microbial community shift. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110542. [PMID: 32275249 DOI: 10.1016/j.jenvman.2020.110542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/22/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The system performance, sludge property and microbial community shift were evaluated in a nitrifying sludge (NS) bioreactor for simultaneous treating p-Nitrophenol (PNP) and high ammonia wastewater. After long-term acclimation for 80 days, the removal efficiencies of PNP and NH4+-N reached to 99.9% and 99.5%, respectively. Meanwhile, the effluent PNP gradually decreased from 7.9 to 0.1 mg/L by acclimation of sludge. The particle size of NS increased from 115.2 μm to 226.3 μm accompanied by the decreased zeta potential as a self-protection strategy. The presence of PNP exposure altered the effluent soluble microbial products (SMP) fluorescent components and molecular composition. The increase in the relative abundance of Thauera, Nitrospiraceae and Nitrosomonas indicated the nitrification and denitrification capacities of NS increased, which maybe the PNP cometabolic biodegradation effect. Moreover, Ignavibacteria and Aeromonas were responsible as the dominant bacteria for degrading PNP in the nitrifying system.
Collapse
Affiliation(s)
- Mingrun Li
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China; Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei, 230088, PR China.
| | - Liangguo Yan
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qingwei Yang
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Lulu Liu
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Hongxun Hou
- Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei, 230088, PR China
| |
Collapse
|
45
|
Krishnaswamy VG, Aishwarya S, Kathawala TM. Extrication of the Microbial Interactions of Activated Sludge Used in the Textile Effluent Treatment of Anaerobic Reactor Through Metagenomic Profiling. Curr Microbiol 2020; 77:2496-2509. [DOI: 10.1007/s00284-020-02020-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
|
46
|
Digital Proxy of a Bio-Reactor (DIYBOT) combines sensor data and data analytics to improve greywater treatment and wastewater management systems. Sci Rep 2020; 10:8015. [PMID: 32415099 PMCID: PMC7229150 DOI: 10.1038/s41598-020-64789-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 02/01/2023] Open
Abstract
Technologies to treat wastewater in decentralized systems are critical for sustainable development. Bioreactors are suitable for low-energy removal of inorganic and organic compounds, particularly for non-potable applications where a small footprint is required. One of the main problems associated with bioreactor use is sporadic spikes of chemical toxins, including nanoparticles. Here, we describe the development of DIYBOT (Digital Proxy of a Bio-Reactor), which enables remote monitoring of bioreactors and uses the data to inform decisions related to systems management. To test DIYBOT, a household-scale membrane aerated bioreactor with real-time water quality sensors was used to treat household greywater simulant. After reaching steady-state, silver nanoparticles (AgNP) representative of the mixture found in laundry wastewater were injected into the system to represent a chemical contamination. Measurements of carbon metabolism, effluent water quality, biofilm sloughing rate, and microbial diversity were characterized after nanoparticle exposure. Real-time sensor data were analyzed to reconstruct phase-space dynamics and extrapolate a phenomenological digital proxy to evaluate system performance. The management implication of the stable-focus dynamics, reconstructed from observed data, is that the bioreactor self-corrects in response to contamination spikes at AgNP levels below 2.0 mg/L. DIYBOT may help reduce the frequency of human-in-the-loop corrective management actions for wastewater processing.
Collapse
|
47
|
Huang W, Gong B, He L, Wang Y, Zhou J. Intensified nutrients removal in a modified sequencing batch reactor at low temperature: Metagenomic approach reveals the microbial community structure and mechanisms. CHEMOSPHERE 2020; 244:125513. [PMID: 32050330 DOI: 10.1016/j.chemosphere.2019.125513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
To achieve efficient biological nutrients removal at low temperature, a modified sequencing batch reactor (SBR) was developed at 10 °C by extending sludge retention time (SRT), shortening aerobic stage and compensating anoxic stage. The average removal rates of ammonium (NH4+-N), total nitrogen (TN) and total phosphorus (TP) were 98.82%, 94.12% and 96.04%, respectively. Variation of carbon source in a typical cycle demonstrated the maximum synthesis of poly-β-hydroxybutyrate (PHB) (60 mg/L) occurred after feast period. Furthermore, the TP in sludge reached 50.4 mg/g mixed liquor suspended solids (MLSS) (78.4% was inorganic phosphorus and 21.6% was organic phosphorus) after 120 days of operation, indicating an excellent P-accumulating capacity was achieved in this system. Ammonia oxidizing bacteria (AOB) activity inhibition test verified both AOB and ammonia oxidizing archaea (AOA) were involved in ammonia-oxidizing process and the latter accounted for 17%-19%. Metagenomic-based taxonomy revealed the dominant genera were Candidatus Accumulibacter (12.18%), Dechloromonas (7.54%), Haliangium (6.69%) and Candidatus Contendobacter (3.40%). As described from the denitrifying genes perspective, with the exception of nitrite reduction (performed by denitrifiers), denitrifying phosphorus-accumulating organisms (DPAOs) played a leading role in denitrification pathway, showing that poly-β-hydroxyalkanoates (PHA)-driven nutrients removal was the dominate process.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Benzhou Gong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
48
|
Huang X, Dong W, Wang H, Feng Y, Sun F, Zhou T. Sludge alkaline fermentation enhanced anaerobic- multistage anaerobic/oxic (A-MAO) process to treat low C/N municipal wastewater: Nutrients removal and microbial metabolic characteristics. BIORESOURCE TECHNOLOGY 2020; 302:122583. [PMID: 32014734 DOI: 10.1016/j.biortech.2019.122583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to present a strategy that utilizing semi-continuous flow primary sludge fermentation liquor as carbon source for anaerobic- multistage anaerobic/oxic (A-MAO) process to treat low chemical oxygen demand (COD) and total nitrogen (TN) (C/N) ratio municipal wastewater. The results showed that adding fermentation liquor resulted in average TN and total phosphorus (TP) concentration in effluent decreased from 33 and 2.80 mg L-1 to 9.2 and 0.23 mg L-1, respectively, which met wastewater discharge standard. High-throughput sequencing results indicated that bacterial richness increased and diversity decreased with fermentation liquor adding, and the dominant genera varied from Methylophilaceae and Methylotenera to unclassified_f_Rhodocyclaceae, noran k_f__env.OPS_17, and Azospira. Meanwhile, the abundance of metabolism and organismal systems in A-MAO process rose from 48.42% and 0.74% to 49.52% and 0.78%. The improvement of nitrogen and phosphorus removal with fermentation adding was based on the increment of enzyme coding genes in nitrogen and phosphorus pathway.
Collapse
Affiliation(s)
- Xiao Huang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hongjie Wang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yangyang Feng
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fieyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ting Zhou
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
49
|
Pang H, Chen Y, He J, Guo D, Pan X, Ma Y, Qu F, Nan J. Cation exchange resin-induced hydrolysis for improving biodegradability of waste activated sludge: Characterization of dissolved organic matters and microbial community. BIORESOURCE TECHNOLOGY 2020; 302:122870. [PMID: 32004809 DOI: 10.1016/j.biortech.2020.122870] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
This study reported an efficient and green approach towards facilitating hydrolysis of waste activated sludge (WAS) using cation exchange resin (CER) as a recyclable additive. Through CER-mediated removal of multivalent cations, WAS flocs were disintegrated into small particles with extracellular polymeric substance (EPS) solubilization. At CER dosage of 1.75 g/g SS, SCOD increased to 2579 mg/L (SCOD/TCOD = 15.9%) after 8-h hydrolysis. Afterwards, CER displayed further sludge hydrolysis performance lasting 2 days, i.e. SCOD/TCOD = 34.2%. Meanwhile, proteins, carbohydrates and other organics in dissolved organic matters (DOMs) were major contributors for volatile fatty acids (VFAs) accumulation, with composition percentage: VFAs (58.9%) > proteins (21.8%) > other organics (8.8%) > humic acids (5.9%) > carbohydrates (4.4%). The biodegradable tryptophan-like and tyrosine-like proteins were major proteins, while other organics included amino acids, aliphatic and metabolic intermediates. More than 85.2% of DOMs were easily biodegradable. Moreover, CER-induced hydrolysis modified microbial community structure through inhibiting VFAs-utilizing microbes, while hydrolytic-acidogenic bacteria were enriched, responsible for DOMs biodegradation.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yiwen Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
50
|
Ahn J, Moon H, Shin J, Ryu J. Social benefits of improving water infrastructure in South Korea: upgrading sewage treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11202-11212. [PMID: 31960243 DOI: 10.1007/s11356-020-07733-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
A sewage treatment plant is considered an undesirable facility because of public concerns about odor, hygiene, and lowered house prices in the neighborhood. In South Korea, many aging sewage treatment plants need to be upgraded because they show inadequate performance on the removal of major pollutants. However, issues involved in such upgrades include social conflicts between the local government and residents, and economic feasibility. Examinations of social acceptability that include economic analyses are needed in order to fulfill social demand for upgrading the sewage treatment plants while simultaneously guaranteeing efficiency and minimizing social costs. This study investigates the social benefits of expanding and modernizing sewage treatment plants in South Korea using the contingent valuation method. Results show that Korean households, on average, are willing to pay 36,340 KRW (33.25 USD) per year for upgrading sewage treatment plants. About 47.73% of the project costs can be covered by the social benefits the Korean households enjoy. This study suggests that the Korean government needs to consider estimated social benefits in determining the scale and timeline of upgrade projects. The results of this study may help with stable implementation of upgrade projects for sewage treatment plants.
Collapse
Affiliation(s)
- Joongha Ahn
- Samsung Economic Research Institute, 29th Fl, Samsung Life Insurance Seocho Tower, 1321-15, Seocho 2-dong Seocho-gu, Seoul, 137-955, South Korea
| | - HyungBin Moon
- Technology Management, Economics and Policy Program∙Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| | - Jungwoo Shin
- Department of Industrial and Management Systems Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi, 17104, South Korea
| | - Jaena Ryu
- Water and Land Research Group, Korea Environment Institute, 370 Sicheong-daero, Sejong-si, 30147, South Korea
| |
Collapse
|