1
|
Simonsen D, Livania V, Cwiertny DM, Samuelson RJ, Sivey JD, Lehmler HJ. A systematic review of herbicide safener toxicity. Crit Rev Toxicol 2024; 54:805-855. [PMID: 39351770 DOI: 10.1080/10408444.2024.2391431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 12/24/2024]
Abstract
Herbicide safeners are agrochemicals added to herbicide formulations to protect crops from herbicide damage without reducing the effectiveness of the herbicide against weeds. While safeners are typically structurally similar to their co-formulated herbicides, they are classified as "inert" in the United States, meaning they are not held to the same regulatory standards as the herbicides. This review systematically examines the toxicity of safeners, which is important given their large-scale global use and potential for exposure to wildlife, livestock, and humans. A systematic review of peer-reviewed literature identified only seven studies examining safener toxicity. Regulatory toxicity data, compiled from the European Chemicals Agency (ECHA) database, included data for 9 of the 18 commercial safeners. Most safeners have low acute ecotoxicity and mammalian toxicity; however, chronic effects and the underlying mechanism are less clear. Benoxacor showed enantioselective metabolism and depletion by drug-metabolizing enzymes. In conclusion, despite the widespread use of safeners, significant knowledge gaps exist regarding their toxicity. More research is needed to fully characterize the potential risks of safeners to human health and the environment. Regulatory agencies should consider reclassifying safeners as active ingredients to ensure adequate toxicity testing and risk assessment.
Collapse
Affiliation(s)
- Derek Simonsen
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Vanessa Livania
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
| | - David M Cwiertny
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa, USA
| | | | - John D Sivey
- Department of Chemistry, Towson University, Towson, Maryland, USA
- Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Wang C, Yang H, Liu Z, Bai L, Wang L, Zhou S. Multiomics Analysis of the Mechanism by Which Gibberellin Alleviates S-Metolachlor Toxicity in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2517. [PMID: 39274001 PMCID: PMC11396835 DOI: 10.3390/plants13172517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
S-metolachlor is a selective pre-emergence herbicide used in dryland. However, it is challenging to employ in paddy fields due to its phytotoxic effects on rice. As a common phytohormone, Gibberellin-3 (GA3) is inferred to have the ability to alleviate herbicide phytotoxicity. This study first quantitatively verified the phytotoxicity of s-metolachlor to rice and then demonstrated the mitigative effect of GA3 on these adverse reactions. Furthermore, a transcriptome of rice seedlings subjected to different treatments was constructed to assemble the reference genes, followed by comparative metabolomics and proteomics analyses. Metabolomics revealed an enrichment of flavonoid metabolites in the group of adding GA3, and these flavonoids can eliminate ROS in plants. Proteomics analysis indicated that differential proteins were enriched in the phenylpropanoid biosynthesis pathway responsible for the synthesis of flavonoids and that the functions of most differential proteins are associated with peroxidase. The proteome, combined with the transcriptome, revealed that the expressions of proteins and genes was related to the POD activity in the group of adding GA3. It was speculated that the elimination of ROS is key to alleviating the stress of s-metolachlor on rice growth. It was inferred that the mechanism of GA3 in alleviating the phytotoxicity of the substance s-metolachlor is by increasing the activity of the POD and influencing the growth of rice seedlings through the restoration of flavonoid synthesis. In this study, we screened GA3 as a safener to alleviate the phytotoxicity of s-metolachlor on rice. On this basis, the mechanism of alleviating phytotoxicity was studied. The application range of s-metolachlor might be expanded, providing a new supplementary method for weed control and herbicide resistance management.
Collapse
Affiliation(s)
- Cong Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lianyang Bai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lifeng Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shangfeng Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
3
|
Femi-Oloye OP, Oloye FF, Jones PD, Giesy JP. Sorption behaviour and toxicity of an herbicide safener "cyprosulfamide". THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160077. [PMID: 36372173 DOI: 10.1016/j.scitotenv.2022.160077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Cyprosulfamide is a herbicide safener that works against the injurious effects of herbicides such as isoxaflutole, dicamba, nicosulfuron, tembotrione, thiencarbazone-methyl. However, its sorption behaviour in soils and toxicity to aquatic organisms are yet to be thoroughly examined. This study determined the octanol-water partition coefficient, sorption properties, acute and chronic toxic effects, and potency of cyprosulfamide to the cladoceran water flea (Daphnia magna). The influence of soil properties such as organic carbon content, cation exchange capacity, pH, and field capacity on adsorption and desorption properties were also examined. The Log Kow (0.55) of cyprosulfamide was less than that of some other safeners, such as benoxacor or furilazole, found in aquatic environments. The sorption of cyprosulfamide to the soil was driven by pH, so sorption decreased with an increase in pH. Other characteristics, such as cation exchange capacity (CEC), organic carbon content, and field capacity, do not directly correlate with the distribution coefficient. Cyprosulfamide generally has a low affinity for soil and is thus mobile and prone to transport to surrounding surface waters. No lethality was observed at the highest concentration (120 mg/L) tested for acute toxicity to D. magna; hence the LC50 will be >120 mg/L. During chronic exposures, cyprosulfamide caused adverse effects at a concentration of 120 mg/L on the number of neonates and brood size. The death rate for the chronic study was a function of concentration and increased with days of exposure. Cyprosulfamide is unlikely to cause lethality to D. magna at relevant environmental concentrations.
Collapse
Affiliation(s)
- O P Femi-Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - F F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - P D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - J P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Integrative Biology, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA; Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
4
|
McFadden M, Reber KP, Sivey JD, Cwiertny DM, LeFevre GH. Microbial Biotransformation Products and Pathways of Dichloroacetamide Herbicide Safeners. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:72-78. [PMID: 37091899 PMCID: PMC10111411 DOI: 10.1021/acs.estlett.2c00862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 05/03/2023]
Abstract
Dichloroacetamide safeners are common ingredients in commercial herbicide formulations. We previously investigated the environmental fate of dichloroacetamides via photolysis and hydrolysis, but other potentially important, environmentally relevant fate processes remain uncharacterized and may yield products of concern. Here, we examined microbial biotransformation of two dichloroacetamide safeners, benoxacor and dichlormid, to identify products and elucidate pathways. Using aerobic microcosms inoculated with river sediment, we demonstrated that microbial biotransformations of benoxacor and dichlormid proceed primarily, if not exclusively, via cometabolism. Benoxacor was transformed by both hydrolysis and microbial biotransformation processes; in most cases, biotransformation rates were faster than hydrolysis rates. We identified multiple novel products of benoxacor and dichlormid not previously observed for microbial processes, with several products similar to those reported for structurally related chloroacetamide herbicides, thus indicating potential for conserved biotransformation mechanisms across both chemical classes. Observed products include monochlorinated species such as the banned herbicide CDAA (from dichlormid), glutathione conjugates, and sulfur-containing species. We propose a transformation pathway wherein benoxacor and dichlormid are first dechlorinated, likely via microbial hydrolysis, and subsequently conjugated with glutathione. This is the first study reporting biological dechlorination of dichloroacetamides to yield monochlorinated products in aerobic environments.
Collapse
Affiliation(s)
- Monica
E. McFadden
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Keith P. Reber
- Department
of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - John D. Sivey
- Department
of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - David M. Cwiertny
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
- Center
for Health Effects of Environmental Contamination (CHEEC), University of Iowa, 251 North Capitol St., Chemistry Building, Room W195, Iowa City, Iowa 52242, United States
- Public
Policy Center, University of Iowa, 310 South Grand Ave., 209 South
Quadrangle, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
5
|
Zhang Y, Liu Q, Su W, Sun L, Xu H, Xue F, Lu C, Wu R. The mechanism of exogenous gibberellin A 3 protecting sorghum shoots from S-metolachlor Phytotoxicity. PEST MANAGEMENT SCIENCE 2022; 78:4497-4506. [PMID: 35797427 DOI: 10.1002/ps.7068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND S-metolachlor (MET) was used to prevent weed infestation in sorghum fields, but inappropriate application could result in phytotoxicity on sorghum. Exogenous gibberellin A3 (GA3 ) has been applied for alleviating the phytotoxicity of MET. However, its detoxification mechanism is still not well known. RESULTS Leaf deformity of sorghum caused by 200 mg/L MET was alleviated by treating sorghum shoots with 800 mg/L GA3 , and the injury recovery rate of growth index was over 73%. More importantly, GA3 could not accelerate the metabolic rate of MET in sorghum. The result of phytohormone metabolomics showed that endogenous GA3 content in sorghum decreased by 78.10% with MET treatment, while abscisic acid (ABA) content increased by 120.2%, resulting in 10.3-fold increase of ABA/GA3 ratio. Content of ABA and GA3 increased by 11.9- and 21.1-fold with MET and GA3 treatment, respectively, leading to ABA/GA3 ratio restoration. Moreover, MET inhibited the expression of genes encoding key enzymes related to GA synthesis including CPS1, KO2, KAO, GA20ox1D and ABA8ox gene related to ABA metabolism. The transcription levels of GA metabolism-related genes CYP714D1 and GA2ox were up-regulated by 11.2- and 7.2-fold, while ABA synthesis-related genes NCED and ZEP were up-regulated by 8.0- and 3.0-fold, respectively, with MET and GA3 treatment. CONCLUSION In this study, exogenous GA3 protecting sorghum shoots from MET phytotoxicity was due to supplement the MET-induced GA3 deficiency by absorbing exogenous GA3 , and restore homeostasis of ABA and GA3 by promoting ABA synthesis, which provides novel insights for mechanism of GA3 alleviating MET phytotoxicity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Zhang
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Qinghao Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Wangcang Su
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Lanlan Sun
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Hongle Xu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Fei Xue
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultura Sciences, ZhengZhou, China
| |
Collapse
|
6
|
Yi X, Wei Y, Zhai W, Wang P, Liu D, Zhou Z. Effects of three surfactants on the degradation and environmental risk of metolachlor in aquatic environment. CHEMOSPHERE 2022; 300:134295. [PMID: 35283146 DOI: 10.1016/j.chemosphere.2022.134295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Surfactants and pesticides can be simultaneously detected in the environment by the reason of their widespread use and large amounts of emissions. Due to the special amphipathicity of surfactants, it may have special effects on the environmental behaviors and toxic effects of other substances in the environment. There are few relevant studies at present. In this study, the effects of three surfactants on the degradation of the amide pesticide metolachlor in water-sediment system were investigated. The study found that the three surfactants had no significant effect on the degradation of metolachlor in the system at environmental concentrations. However, at critical micelle concentration, cationic surfactant octadecyl trimethyl ammonium bromide and nonionic surfactant nonylphenol polyoxyethylene ether promoted the degradation of metolachlor in water-sediment system. Anionic surfactant odium dodecylbenzene sulfonate (SDBS) prolonged the degradation half-life of metolachlor. The presence of surfactants not only affected the environmental behavior of pesticides. When they coexisted with pesticides, the joint toxicity to aquatic organisms cannot be ignored. This study found that the combined effects of three surfactants and metolachlor on the acute developmental toxicity of zebrafish embryos were all synergistic effects. The combined effects of two ionic surfactants and metolachlor on the acute toxicity of adult zebrafish were synergistic effects. Further study showed that co-exposure of SDBS and metolachlor increased the absorption of metolachlor by zebrafish. Combined exposure of SDBS and metolachlor caused oxidative stress in brain, gill and liver of zebrafish. The results showed that the simultaneous presence of anionic surfactants and pesticides in the environment may increase the environmental risk of pesticides.
Collapse
Affiliation(s)
- Xiaotong Yi
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Yimu Wei
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
7
|
Xu X, Gujarati PD, Okwor N, Sivey JD, Reber KP, Xu W. Reactivity of chloroacetamides toward sulfide + black carbon: Insights from structural analogues and dynamic NMR spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150064. [PMID: 34525700 DOI: 10.1016/j.scitotenv.2021.150064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Chloroacetamides are commonly used in herbicide formulations, and their occurrence has been reported in soils and groundwater. However, how their chemical structures affect transformation kinetics and pathways in the presence of environmental reagents such as hydrogen sulfide species and black carbon has not been investigated. In this work, we assessed the impact of increasing Cl substituents on reaction kinetics and pathways of six chloroacetamides. The contribution of individual pathways (reductive dechlorination vs. nucleophilic substitution) to the overall decay of selected chloroacetamides was differentiated using various experimental setups; both the transformation rates and product distributions were characterized. Our results suggest that the number of Cl substituents affected reaction pathways and kinetics: trichloroacetamides predominantly underwent reductive dechlorination whereas mono- and dichloroacetamides transformed via nucleophilic substitution. Furthermore, we synthesized eight dichloroacetamide analogs (Cl2CHC(=O)NRR') with differing R groups and characterized their transformation kinetics. Dynamic NMR spectroscopy was employed to quantify the rotational energy barriers of dichloroacetamides. Our results suggest that adsorption of dichloroacetamides on black carbon constrained R groups from approaching the dichloromethyl carbon and subsequently favored nucleophilic attack. This study provides new insights to better predict the fate of chloroacetamides in subsurface environments by linking their structural characteristics to transformation kinetics and pathways.
Collapse
Affiliation(s)
- Xiaolei Xu
- Department of Civil and Environmental Engineering, Villanova University, Villanova, PA 19085, USA
| | | | - Neechi Okwor
- Department of Chemistry, Towson University, Towson, MD 21252, USA
| | - John D Sivey
- Department of Chemistry, Towson University, Towson, MD 21252, USA
| | - Keith P Reber
- Department of Chemistry, Towson University, Towson, MD 21252, USA
| | - Wenqing Xu
- Department of Civil and Environmental Engineering, Villanova University, Villanova, PA 19085, USA.
| |
Collapse
|
8
|
McFadden M, Patterson EV, Reber KP, Gilbert IW, Sivey JD, LeFevre GH, Cwiertny DM. Acid- and Base-Mediated Hydrolysis of Dichloroacetamide Herbicide Safeners. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:325-334. [PMID: 34920670 PMCID: PMC8733929 DOI: 10.1021/acs.est.1c05958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Safeners are used extensively in commercial herbicide formulations. Although safeners are regulated as inert ingredients, some of their transformation products have enhanced biological activity. Here, to fill gaps in our understanding of safener environmental fate, we determined rate constants and transformation products associated with the acid- and base-mediated hydrolysis of dichloroacetamide safeners AD-67, benoxacor, dichlormid, and furilazole. Second-order rate constants for acid- (HCl) and base-mediated (NaOH) dichloroacetamide hydrolysis (2.8 × 10-3 to 0.46 and 0.3-500 M-1 h-1, respectively) were, in many cases (5 of 8), greater than those reported for their chloroacetamide herbicide co-formulants. In particular, the rate constant for base-mediated hydrolysis of benoxacor was 2 orders of magnitude greater than that of its active ingredient co-formulant, S-metolachlor. At circumneutral pH, only benoxacor underwent appreciable hydrolysis (5.3 × 10-4 h-1), and under high-pH conditions representative of lime-soda softening, benoxacor's half-life was 13 h─a timescale consistent with partial transformation during water treatment. Based on Orbitrap LC-MS/MS analysis of dichloroacetamide hydrolysis product mixtures, we propose structures for major products and three distinct mechanistic pathways that depend on the system pH and compound structure. These include base-mediated amide cleavage, acid-mediated amide cleavage, and acid-mediated oxazolidine ring opening. Collectively, this work will help to identify systems in which hydrolysis contributes to the transformation of dichloroacetamides, while also highlighting important differences in the reactivity of dichloroacetamides and their active chloroacetamide co-formulants.
Collapse
Affiliation(s)
- Monica
E. McFadden
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Eric V. Patterson
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, 104 Chemistry, Stony Brook, New York 11790, United States
| | - Keith P. Reber
- Department
of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Ian W. Gilbert
- Department
of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - John D. Sivey
- Department
of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - David M. Cwiertny
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
- Center
for Health Effects of Environmental Contamination (CHEEC), University of Iowa, 251 North Capitol Street, Chemistry Building—Room
W195, Iowa City, Iowa 52242, United States
- Department
of Chemistry, University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
- . Phone: (319) 335-1401
| |
Collapse
|
9
|
Chi Y, Chen C, Zhang G, Ye Z, Su X, Ren X, Wu Z. Fabrication of magnetic-responsive controlled-release herbicide by a palygorskite-based nanocomposite. Colloids Surf B Biointerfaces 2021; 208:112115. [PMID: 34555655 DOI: 10.1016/j.colsurfb.2021.112115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/15/2022]
Abstract
In this work, a type of magnetic-responsive controlled-release herbicide (MCRH) was developed using a nanocomposite including palygorskite (Pal), ferroferric oxide (Fe3O4), glyphosate (Gly), and amino silicon oil (ASO). In this system, Pal with the structure of micro/nanonetworks can bind a large quantity of Gly and Fe3O4. The movement of Fe3O4 particles can be driven by a magnetic field to ensure the controlled release of pesticides. Gly, which is a type of nonselective herbicide, is widely used for weed control. In addition, ASO was selected as the coating agent to prevent Gly from rapidly releasing. In this work, the effects of the magnetic field, temperature, and coexisting ions on the release ratio of pesticides were investigated, and the results suggest that MCRH could effectively improve the utilization efficiency (UE) of Gly. In addition, zebrafish experiments indicate that MCRH has better biosafety than Gly.
Collapse
Affiliation(s)
- Yu Chi
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, People's Republic of China
| | - Guilong Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Zhenghe Ye
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, People's Republic of China
| | - Xianyan Su
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, People's Republic of China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, People's Republic of China.
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, People's Republic of China.
| |
Collapse
|
10
|
Ji J, Huang W, Wang L, Chen L, Wei Y, Liu R, Cheng J, Wu H. Synthetic Iowaite Can Effectively Remove Inorganic Arsenic from Marine Extract. Molecules 2021; 26:molecules26103052. [PMID: 34065389 PMCID: PMC8160602 DOI: 10.3390/molecules26103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
For the removal of arsenic from marine products, iowaite was prepared and investigated to determine the optimal adsorption process of arsenic. Different chemical forms of arsenic (As(III), As(V)) with varying concentrations (0.15, 1.5, 5, 10, 15, and 20 mg/L) under various conditions including pH (3, 5, 7, 9, 11) and contact time (1, 2, 5, 10, 15, 30, 60, 120, 180 min) were exposed to iowaite. Adsorption isotherms and metal ions kinetic modeling onto the adsorbent were determined based on Langmuir, Freundlich, first- and second-order kinetic models. The adsorption onto iowaite varied depending on the conditions. The adsorption rates of standard solution, As(III) and As(V) exceeded 95% under proper conditions, while high complexity was noted with marine samples. As(III) and As(V) from Mactra veneriformis extraction all decreased when exposed to iowaite. The inclusion morphology and interconversion of organic arsenic limit adsorption. Iowaite can be efficiently used for inorganic arsenic removal from wastewater and different marine food products, which maybe other adsorbent or further performance of iowaite needs to be investigated for organic arsenic.
Collapse
Affiliation(s)
- Jing Ji
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Wenwen Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
| | - Lingchong Wang
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
| | - Lu Chen
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
| | - Yuanqing Wei
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Rui Liu
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Jianming Cheng
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
- Correspondence: (J.C.); (H.W.)
| | - Hao Wu
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
- Correspondence: (J.C.); (H.W.)
| |
Collapse
|
11
|
Cheng G, Liu H, Dong T, Li Q, Sun M, Lou L. Assessment and prediction of the effect of ageing on the adsorption of nonylphenol in black carbon-sediment systems. J Environ Sci (China) 2021; 102:216-225. [PMID: 33637246 DOI: 10.1016/j.jes.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Black carbon (BC) is a promising sediment amendment, as proven by its considerable adsorption capacity for hydrophobic organic pollutants and accessibility, but its reliability when used for the removal of pollutants in natural sediments still needs to be evaluated. For example, the ageing process, resulting in changing of surface physicochemical properties of BC, will decrease the adsorption capacity and performance of BC when applied to sediment pollution control. In this study, how the ageing process and BC proportion affect the adsorption capacity of BC-sediment systems was modelled and quantitatively investigated to predict their adsorption capacity under different ageing times and BC additions. The results showed that the ageing process decreased the adsorption capacity of both BC-sediment systems, due to the blockage of the non-linear adsorption sites of BC. The adsorption capacity of rice straw black carbon (RC)-sediment systems was higher than that of fly ash black carbon (FC)-sediment systems, indicating that RC is more efficient than FC for nonylphenol (NP) pollution control in sediment. The newly established model for the prediction of adsorption capacity fits the experimental data appropriately and yields acceptable predictions, especially when based on parameters from the Freundlich model. However, to fully reflect the influence of the ageing process on BC-sediment systems and make more precise predictions, it is recommended that future work considering more factors and conditions, such as modelling of the correlation between the adsorption capacity and the pore volume or specific surface area of BC, be applied to build an accurate and sound model.
Collapse
Affiliation(s)
- Guanghuan Cheng
- Environmental Science, College of Engineering, China Pharmaceutical University, Nanjing 211198, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Han Liu
- Environmental Science, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tailu Dong
- Environmental Science, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuyu Li
- Environmental Science, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Mingyang Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
12
|
Oloye FF, Femi-Oloye OP, Challis JK, Jones PD, Giesy JP. Dissipation, Fate, and Toxicity of Crop Protection Chemical Safeners in Aquatic Environments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:27-53. [PMID: 34529146 DOI: 10.1007/398_2021_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Safeners are a group of chemicals applied with herbicides to protect crop plants from potential adverse effects of agricultural products used to kill weeds in monocotyledonous crops. Various routes of dissipation of safeners from their point of applications were evaluated. Despite the large numbers of safeners (over 18) commercially available and the relatively large quantities (~2 × 106 kg/year) used, there is little information on their mobility and fate in the environment and occurrence in various environmental matrices. The only class of safeners for which a significant amount of information is available is dichloroacetamide safeners, which have been observed in some rivers in the USA at concentrations ranging from 42 to 190 ng/L. Given this gap in the literature, there is a clear need to determine the occurrence, fate, and bioavailability of other classes of safeners. Furthermore, since safeners are typically used in commercial formulations, it is useful to study them in relation to their corresponding herbicides. Common routes of dissipation for herbicides and applied safeners are surface run off (erosion), hydrolysis, photolysis, sorption, leaching, volatilization, and microbial degradation. Toxic potencies of safeners vary among organisms and safener compounds, ranging from as low as the LC50 for fish (Oncorhynchus mykiss) for isoxadifen-ethyl, which was 0.34 mg/L, to as high as the LC50 for Daphnia magna from dichlormid, which was 161 mg/L. Solubilities and octanol-water partition coefficients seem to be the principal driving force in understanding safener mobilities. This paper provides an up-to-date literature review regarding the occurrence, behaviour, and toxic potency of herbicide safeners and identifies important knowledge gaps in our understanding of these compounds and the potential risks posed to potentially impacted ecosystems.
Collapse
Affiliation(s)
- Femi F Oloye
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
| | - Oluwabunmi P Femi-Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biomedical Veterinary Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Ricko AN, Psoras AW, Sivey JD. Reductive transformations of dichloroacetamide safeners: effects of agrochemical co-formulants and iron oxide + manganese oxide binary-mineral systems. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2104-2116. [PMID: 32959852 DOI: 10.1039/d0em00331j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The toxic effects of herbicides are often incompletely selective and can harm crops. Safeners are "inert" ingredients commonly added to herbicide formulations to protect crops from herbicide-induced injury. Dichloroacetamide safeners have been previously shown to undergo reductive dechlorination in anaerobic abiotic systems containing an iron (hydr)oxide mineral (goethite or hematite) amended with Fe(ii). Manganese oxides (e.g., birnessite) are important redox-active species that frequently co-occur with iron (hydr)oxides, yet studies examining the effects of more than one mineral on transformations of environmental contaminants are rare. Herein, we investigate the reactivity of dichloroacetamide safeners benoxacor, furilazole, and dichlormid in binary-mineral, anaerobic systems containing Fe(ii)-amended hematite and birnessite. As the molar ratio of Fe(ii)-to-Mn(iv) oxide increased, the transformation rate of benoxacor and furilazole increased. The safener dichlormid did not transform appreciably over the sampling period (6 hours). The concentration of pH buffer ([MOPS] = 10-50 mM), ionic strength ([NaCl] = 10-200 mM), and order of solute addition (e.g., safener followed by Fe(ii) or vice versa) do not appreciably affect transformation rates of the examined dichloroacetamide safeners in Fe(ii) + hematite slurries. The presence of agrochemical co-formulants, including the herbicide S-metolachlor and three surfactants, in solutions containing Cr(H2O)62+ (as a model homogeneous reductant) also did not substantially influence rates of safener transformation. This study is among the first to examine laboratory systems of intermediate complexity (e.g., systems containing mixtures of agrochemical co-formulants or mineral phases) when assessing the environmental fate of emerging contaminants such as dichloroacetamide safeners.
Collapse
Affiliation(s)
- Allison N Ricko
- Environmental Science & Studies Program, Towson University, Towson, Maryland, USA.
| | | | | |
Collapse
|
14
|
Simonsen D, Cwiertny DM, Lehmler HJ. Benoxacor is enantioselectively metabolized by rat liver subcellular fractions. Chem Biol Interact 2020; 330:109247. [PMID: 32866466 DOI: 10.1016/j.cbi.2020.109247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
This study investigated the enantioselective metabolism of benoxacor, an ingredient of herbicide formulations, in microsomes or cytosol prepared from female or male rat livers. Benoxacor was incubated for ≤30 min with microsomes or cytosol, and its enantioselective depletion was measured using gas chromatographic methods. Benoxacor was depleted in incubations with active microsomes in the presence and absence of NADPH, suggesting its metabolism by hepatic cytochrome P450 enzymes (CYPs) and microsomal carboxylesterases (CESs). Benoxacor was depleted in cytosolic incubations in the presence of glutathione, consistent with its metabolism by glutathione S-transferases (GSTs). The depletion of benoxacor was faster in incubations with cytosol from male than female rats, whereas no statistically significant sex differences were observed in microsomal incubations. The consumption of benoxacor was inhibited by the CYP inhibitor 1-aminobenzotriazole, the CES inhibitor benzil, and the GST inhibitor ethacrynic acid. Estimates of the intrinsic clearance of benoxacor suggest that CYPs are the primary metabolic enzyme responsible for benoxacor metabolism in rats. Microsomal incubations showed an enrichment of the first eluting benoxacor enantiomer (E1-benoxacor). A greater enrichment occurred in incubations with microsomes from female (EF = 0.67 ± 0.01) than male rats (EF = 0.60 ± 0.01). Cytosolic incubations from female rats resulted in enrichment of E1-benoxacor (EF = 0.54 ± 0.01), while cytosolic incubations from male rats displayed enrichment of the second eluting enantiomer (E2-benoxacor; EF = 0.43 ± 0.01). Sex-dependent differences in the metabolism of benoxacor in rats could significantly impact ecological risks and mammalian toxicity. Moreover, changes in the enantiomeric enrichment of benoxacor may be a powerful tool for environmental fate and transport studies.
Collapse
Affiliation(s)
- Derek Simonsen
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, 52242, United States; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, United States; IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, United States
| | - David M Cwiertny
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, United States; Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA, 52242, United States; Center for Health Effects of Environmental Contamination, The University of Iowa, Iowa City, 52242, Iowa, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, 52242, United States; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, United States; IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, United States.
| |
Collapse
|
15
|
Gomis-Berenguer A, Laidin I, Renoncial S, Cagnon B. Study of enantioselective metolachlor adsorption by activated carbons. RSC Adv 2020; 10:40321-40328. [PMID: 35520874 PMCID: PMC9057506 DOI: 10.1039/d0ra07745c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022] Open
Abstract
Enantioselective adsorption of metolachlor. The adsorption ofS-enantiomer is favored in certain activated carbons.
Collapse
Affiliation(s)
- Alicia Gomis-Berenguer
- Interfaces, Confinement, Matériaux et Nanostructures-ICMN
- UMR 7374-CNRS
- Université d'Orléans
- 45071 Orléans Cedex 2
- France
| | | | | | - Benoît Cagnon
- Interfaces, Confinement, Matériaux et Nanostructures-ICMN
- UMR 7374-CNRS
- Université d'Orléans
- 45071 Orléans Cedex 2
- France
| |
Collapse
|