1
|
Ding P, Han Y, Sun Y, Chen X, Ge Q, Huang W, Zhang L, Li AJ, Hu G, Yu Y. Synergistic neurotoxicity of clothianidin and photoaged microplastics in zebrafish: Implications for neuroendocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125797. [PMID: 39909329 DOI: 10.1016/j.envpol.2025.125797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/07/2025]
Abstract
Microplastics (MPs), widely found in aquatic environments, pose a growing threat to environmental and biological health due to their complex interactions with pollutants and microorganisms. This study investigates the adsorption characteristics of clothianidin (CLO) on polystyrene (PS) and photoaged polystyrene (P-PS) and explores the neurotoxic effects of CLO combined with PS/P-PS in larval zebrafish (Danio rerio). Adsorption kinetics and isotherms showed that P-PS exhibited a higher adsorption capacity and faster equilibrium compared to PS, indicating the significant role of photoaging in enhancing CLO adsorption. Exposed to CLO combined with PS/P-PS resulted in reduced locomotor activity, particularly in the P-PS + CLO group, suggesting amplified neurotoxicity due to P-PS. Analysis of the hypothalamic-pituitary-interrenal (HPI) axis revealed elevated levels of adrenocorticotropic hormone (ACTH) and cortisol, along with downregulated expression of stress-related genes in co-exposed zebrafish, indicating disruption of neuroendocrine function. Neurotransmitter analysis showed significant changes in acetylcholine (ACh), dopamine (DA), serotonin (5-HT), and γ-aminobutyric acid (GABA) levels, further confirming the neurotoxic impact of co-exposure. The findings highlight the synergistic neurotoxicity of CLO and photoaged MPs, with potential implications for aquatic ecosystems. This study advances the field of environmental science by addressing critical knowledge gaps in pollutant-microplastic interactions, providing a foundation for developing targeted mitigation strategies and enhancing ecological risk management frameworks.
Collapse
Affiliation(s)
- Ping Ding
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510630, China
| | - Yajing Han
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yanan Sun
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - XiaoXia Chen
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qing Ge
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Wei Huang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Lijuan Zhang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510630, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510630, China.
| | - Guocheng Hu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
2
|
Turner LA, Easton AA, Ferguson MM, Danzmann RG. Differences in gene expression between high and low tolerance rainbow trout (Oncorhynchus mykiss) to acute thermal stress. PLoS One 2025; 20:e0312694. [PMID: 39775350 PMCID: PMC11709236 DOI: 10.1371/journal.pone.0312694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding the mechanisms that underlie the adaptive response of ectotherms to rising temperatures is key to mitigate the effects of climate change. We assessed the molecular and physiological processes that differentiate between rainbow trout (Oncorhynchus mykiss) with high and low tolerance to acute thermal stress. To achieve our goal, we used a critical thermal maximum trial in two strains of rainbow trout to elicit loss of equilibrium responses to identify high and low tolerance fish. We then compared the hepatic transcriptome profiles of high and low tolerance fish relative to untreated controls common to both strains to uncover patterns of differential gene expression and to gain a broad perspective on the interacting gene pathways and functional processes involved. We observed some of the classic responses to increased temperature (e.g., induction of heat shock proteins) but these responses were not the defining factors that differentiated high and low tolerance fish. Instead, high tolerance fish appeared to suppress growth-related functions, enhance certain autophagy components, better regulate neurodegenerative processes, and enhance stress-related protein synthesis, specifically spliceosomal complex activities, mRNA regulation, and protein processing through post-translational processes, relative to low tolerance fish. In contrast, low tolerance fish had higher transcript diversity and demonstrated elevated developmental, cytoskeletal, and morphogenic, as well as lipid and carbohydrate metabolic processes, relative to high tolerance fish. Our results suggest that high tolerance fish engaged in processes that supported the prevention of further damage by enhancing repair pathways, whereas low tolerance fish were more focused on replacing damaged cells and their structures.
Collapse
Affiliation(s)
- Leah A. Turner
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anne A. Easton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Ontario Aquaculture Research Centre, University of Guelph, Elora, Ontario, Canada
| | - Moira M. Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Roy G. Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
da Silveira FFCL, Porto VA, de Sousa BLC, de Souza EV, Lo Nostro FL, Rocha TL, de Jesus LWO. Bioaccumulation and ecotoxicity of parabens in aquatic organisms: Current status and trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125213. [PMID: 39477001 DOI: 10.1016/j.envpol.2024.125213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Parabens are preservatives widely used in personal care products, pharmaceuticals, and foodstuffs. However, they are still unregulated chemical compounds. Given their extensive use and presence in different environmental compartments, parabens can adversely affect animal health. Thus, the current study aimed to summarize and critically analyze the bioaccumulation and ecotoxicity of parabens in aquatic species. Studies have been mostly conducted in laboratory conditions (75%), using mainly fish and crustaceans. Field studies were carried out across 128 sampling sites in six countries. Paraben bioaccumulation was predominantly detected in fish muscle, liver, brain, gills, ovary, and testes. Among the parent parabens, methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) have been detected frequently and more abundantly in tissues of marine and freshwater specimens, as well as the metabolite 4-hydroxybenzoic acid (4-HB). Parabens can induce lethal and sublethal effects on aquatic organisms, such as oxidative stress, endocrine disruption, neurotoxicity, behavioral changes, reproductive impairment, and developmental abnormalities. The toxicity of parabens varied according to species, taxonomic group, developmental stage, exposure time, and concentrations tested. This study highlights the potential bioaccumulation and ecotoxicological impacts of parabens and their metabolites on aquatic invertebrates and vertebrates. Additionally, future research recommendations are provided to evaluate the environmental risks posed by paraben contamination more effectively.
Collapse
Affiliation(s)
- Felipe Félix Costa Lima da Silveira
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Viviane Amaral Porto
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Bianca Leite Carnib de Sousa
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Emilly Valentim de Souza
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Fabiana Laura Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, UBA-CONICET, Buenos Aires, Argentina
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
4
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Ge Y, Zhang H, Fu J, Guo Z, Dong Q, Yu J, Mo Z, Lai Y, Yang J, Lu S. Parabens, bisphenols, and triclosan in coral polyps, algae, and sediments from sanya, China: Occurrence, profiles, and environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124839. [PMID: 39209051 DOI: 10.1016/j.envpol.2024.124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Parabens, bisphenols (BPs), and triclosan (TCS) are common environmental phenols widely applied in industrial products, pharmaceuticals, and personal care products. They are endocrine disruptors and pervade the natural environment, causing significant detrimental impacts on ecosystems, including marine habitats. Therefore, in this study, 40 samples comprising coral polyps, algae, and sediments were collected from Sanya, Hainan Province, China, in which the presence and compositional profiles of parabens, BPs, and TCS were examined to identify their fate in the oceans. The results unveiled the ubiquitous occurrence of at least one paraben or bisphenol in all samples, with TCS detected in over 80% of cases. Notably, coral samples contained the most contaminants (median concentration: 9.42 ng/g dry weight-dw), followed by sediment samples (5.95 ng/g dw) and algal samples (3.58 ng/g dw). Attributed to their broadest application, methylparaben (MeP) and propylparaben (PrP) emerged as the primary paraben constituents. MeP displayed the highest median concentration in coral samples (4.42 ng/g dw), probably related to its high-water solubility and the filtration mechanism employed by the coral polyps during seawater intake. Intriguingly, bisphenol P (BPP) superseded bisphenol A (BPA) as the dominant bisphenol, especially in the algal samples, probably owing to the lipophilic character of BPP and the enhanced biodegradability of BPA within aquatic environments. The highest concentration of TCS (3.44 ng/g dw) was found in the sediment samples, associated with its long half-life in the sediments. Furthermore, the correlation between multiple parabens and TCS implies their co-use to augment antimicrobial efficacy. Future research should prioritize the examination of these phenols in diverse marine environmental media. Corresponding toxicological experiments should be conducted to visualize their transport dynamics, degradation byproducts, and toxicity to marine biota to gain insights into the risks they pose to the marine ecosystem.
Collapse
Affiliation(s)
- Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Han Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Qiulu Dong
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiaxin Yu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhiling Mo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yuxi Lai
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Song H, Zhou H, Yang S, He C. Combining mendelian randomization analysis and network toxicology strategy to identify causality and underlying mechanisms of environmental pollutants with glioblastoma: A study of Methyl-4-hydroxybenzoate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117311. [PMID: 39536568 DOI: 10.1016/j.ecoenv.2024.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND An increasing number of environmental pollutants are associated with human diseases. We explored the mechanisms by which an aromatic small molecule -- Methyl-4-hydroxybenzoate (MEP) contribute to the development of glioblastoma (GBM). METHODS The causality of MEP and GBM were identified via the Mendelian Randomization (MR) analysis. We identified the key targets by integrating the targets of GBM, differential expressed genes (DEGs) from GEO and target genes of MEP. The network of hub genes was obtained from STRING and Cytoscape tools and GO, KEGG enrichment analysis were conducted by clusterProfiler R package. These hub targets were executed molecular docking via Autodock software. RESULTS MEP had a causal association with GBM as risk factors (P < 0.05, OR > 1). 46 key targets were derived, in which CASP3, MMP2 and CDK4 were screened as the hub targets. MEP might play a role in the GBM by affecting the pathways of neuroactive ligand-receptor interaction, Molecular docking analysis showed a good binding ability of between MEP and CASP3, MMP2, CDK4, CASP8 and MCL1. CONCLUSIONS A causal relationship between MEP and GBM exists. CASP3, MMP2, CDK4, CASP8 and MCL1 have been identified as the crucial targets correlating with GBM. This discovery may provide an important insight into how environmental pollutants contribute to the development of GBM.
Collapse
Affiliation(s)
- Haimin Song
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Huaiyu Zhou
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China; The First Clinical Medical College of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Chunming He
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
7
|
Yoon Y, Lee Y, Cho M. Acute toxicity assessment and QSAR modeling of zebrafish embryos exposed to methyl paraben and its halogenated byproducts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122844. [PMID: 39405839 DOI: 10.1016/j.jenvman.2024.122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Halogenated methyl parabens are formed readily during water chlorination, with or without bromide ion presence. However, research gaps persist in in vivo toxicological assessments of vertebrates exposed to halo-MePs. To address this gap, this study evaluated acute toxicities at 24-96 h-post-fertilization in zebrafish embryos exposed to methyl paraben and its mono- or di-halogenated derivatives, using various apical endpoints. Significant enhanced toxic effects were confirmed for halo-MePs compared to MeP on embryo coagulation (3-19 fold), heartbeat rate decrement (11-80 fold), deformity rate increment (9-68 fold), and hatching failure (4-33 fold), with parentheses indicating the determined toxic potency ratios. Moreover, halo-MePs showed a significantly higher increase in biochemical levels of reactive oxygen species, catalase, superoxide dismutase, and malondialdehyde, while acetylcholinesterase activity was inhibited compared to NT and MeP. The experimental toxic potencies (log(1/EC50 or LC50)) were compared with the predicted ones (log(1/EC50 or LC50, baseline)) using the baseline toxicity Quantitative Structure-Activity Relationship previously established for zebrafish embryos. Halo-MePs were specific (or reactive) toxicants based on their toxic ratios of more than 10 for apical endpoints including heartbeat rate, deformity rate, and hatching rate, while MeP acted as a baseline toxicant. Overall, this study presents the comprehensive toxicological assessment of halo-MePs in zebrafish embryos, contributing to an essential in vivo toxicity database for halogenated phenolic contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Younggun Yoon
- GwangJu Institute, 55, Jingoksandanjungang-ro, Gwangsan-gu, Gwangju, 62465, Republic of Korea; Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, Republic of Korea; Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Min Cho
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
8
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
9
|
Yoon Y, Cho M. Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171448. [PMID: 38453088 DOI: 10.1016/j.scitotenv.2024.171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Collapse
Affiliation(s)
- Younggun Yoon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, South Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
10
|
Liu M, Deng P, Li G, Liu H, Zuo J, Cui W, Zhang H, Chen X, Yao J, Peng X, Peng L, Liu J, Zheng W, Yan W, Luan N. Neurotoxicity of Combined Exposure to the Heavy Metals (Pb and As) in Zebrafish ( Danio rerio). TOXICS 2024; 12:282. [PMID: 38668505 PMCID: PMC11054020 DOI: 10.3390/toxics12040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Lead (Pb) and arsenic (As) are commonly occurring heavy metals in the environment and produce detrimental impacts on the central nervous system. Although they have both been indicated to exhibit neurotoxic properties, it is not known if they have joint effects, and their mechanisms of action are likewise unknown. In this study, zebrafish were exposed to different concentrations of Pb (40 μg/L, 4 mg/L), As (32 μg/L, 3.2 mg/L) and their combinations (40 μg/L + 32 μg/L, 4 mg/L + 3.2 mg/L) for 30 days. The histopathological analyses showed significant brain damage characterized by glial scar formation and ventricular enlargement in all exposed groups. In addition, either Pb or As staining inhibited the swimming speed of zebrafish, which was enhanced by their high concentrations in a mixture. To elucidate the underlying mechanisms, we examined changes in acetylcholinesterase (AChE) activity, neurotransmitter (dopamine, 5-hydroxytryptamine) levels, HPI axis-related hormone (cortisol and epinephrine) contents and neurodevelopment-related gene expression in zebrafish brain. The observations suggest that combined exposure to Pb and As can cause abnormalities in swimming behavior and ultimately exacerbate neurotoxicity in zebrafish by interfering with the cholinergic system, dopamine and 5-hydroxytryptamine signaling, HPI axis function as well as neuronal development. This study provides an important theoretical basis for the mixed exposure of heavy metals and their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Ming Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (G.L.); (H.L.); (J.Z.); (W.Z.)
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430056, China;
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (G.L.); (H.L.); (J.Z.); (W.Z.)
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (G.L.); (H.L.); (J.Z.); (W.Z.)
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (G.L.); (H.L.); (J.Z.); (W.Z.)
| | - Wenwen Cui
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (W.C.); (H.Z.); (X.C.); (J.Y.); (X.P.); (L.P.); (J.L.)
| | - Huixian Zhang
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (W.C.); (H.Z.); (X.C.); (J.Y.); (X.P.); (L.P.); (J.L.)
| | - Xin Chen
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (W.C.); (H.Z.); (X.C.); (J.Y.); (X.P.); (L.P.); (J.L.)
| | - Jingjing Yao
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (W.C.); (H.Z.); (X.C.); (J.Y.); (X.P.); (L.P.); (J.L.)
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (W.C.); (H.Z.); (X.C.); (J.Y.); (X.P.); (L.P.); (J.L.)
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (W.C.); (H.Z.); (X.C.); (J.Y.); (X.P.); (L.P.); (J.L.)
| | - Jiao Liu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (W.C.); (H.Z.); (X.C.); (J.Y.); (X.P.); (L.P.); (J.L.)
| | - Wenting Zheng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (G.L.); (H.L.); (J.Z.); (W.Z.)
| | - Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (W.C.); (H.Z.); (X.C.); (J.Y.); (X.P.); (L.P.); (J.L.)
| | - Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (G.L.); (H.L.); (J.Z.); (W.Z.)
| |
Collapse
|
11
|
Du H, Li J, Wei X, Yang D, Zhang B, Fan X, Zhao M, Zhu R, Zhang Z, Zhang Y, Li X, Gu N. Methylparaben induces hepatic glycolipid metabolism disorder by activating the IRE1α-XBP1 signaling pathway in male mice. ENVIRONMENT INTERNATIONAL 2024; 184:108445. [PMID: 38262168 DOI: 10.1016/j.envint.2024.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Methylparaben (MP), a preservative widely used in daily supplies, exists in both the environment and the human body. However, the potential health risks posed by MP remain unclear. This study aimed to unravel the mechanisms by which MP disrupts glucose and lipid homeostasis. For this, we administered MP to mice and observed changes in glucose and lipid metabolism. MP exposure led to hyperglycemia, hyperlipidemia, visceral organ injury, and hepatic lipid accumulation. RNA sequencing results from mice livers indicated a close association between MP exposure and endoplasmic reticulum (ER) stress, inflammatory response, and glucose and lipid homeostasis. Western blotting and quantitative reverse transcription-polymerase chain reaction revealed that MP activated ER stress, particularly the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway, which further promoted the activation of the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. The activation of these pathways phosphorylated insulin receptor substrate-1 (IRS1) (ser 307), resulting in decreased phosphorylation of protein kinase B (Akt) (ser 473), leading to insulin resistance. Additionally, MP exposure promoted lipogenesis through ER stress. To explore potential remedies, we administered the ER stress inhibitor 4-phenylbutyric acid (4-PBA) and the IRE1α-XBP1 pathway inhibitor toyocamycin to mice, both of which protected against metabolic disorders and organ injury caused by MP. These findings suggest that MP induces disruptions in glucose and lipid metabolism through ER stress, primarily through the IRE1α-XBP1 pathway.
Collapse
Affiliation(s)
- Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jiaxin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Meimei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yuxia Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoyan Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150006, China.
| |
Collapse
|
12
|
Liang J, Yang X, Xiang T, Chen X, Ren Z, Wang X, Su J, Zhang Y, Liu QS, Qu G, Zhou Q, Jiang G. The perturbation of parabens on the neuroendocrine system in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163593. [PMID: 37087015 DOI: 10.1016/j.scitotenv.2023.163593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Parabens, as the synthetic preservatives, have caused universal environmental contamination and human exposure. Whether parabens could disturb neuroendocrine system was still ambiguous. In this study, the effects of four commonly-used parabens, i.e. methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP) and butyl paraben (BuP), were tested on the neuroendocrine system of zebrafish larvae by investigating the swimming behavior, the related hormones and biomarkers in the hypothalamic-pituitary-interrenal (HPI) axis. The results showed that all test chemicals significantly reduced the swimming distance and mean velocity of zebrafish larvae. The adrenocorticotropic hormone (ACTH) levels in zebrafish larvae were significantly increased, while the cortisol levels were obviously decreased by paraben exposure. The transcriptional analysis showed that the expressions of the target genes including gr, mr and crhr2 in the HPI axis were mostly down-regulated. The exploration of the initial molecular event showed that parabens could bind with the glucocorticoid receptor (GR) and trigger its transactivation, according to MDA-kb2 luciferase assay and molecular docking analysis. The interaction of parabens with the GR included the hydrogen bond and hydrophobic interaction. The findings herein revealed the potential deleterious effects of parabens on the neuroendocrine system of zebrafish larvae, thus accumulating the in vivo toxicological data on this kind of food preservatives.
Collapse
Affiliation(s)
- Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Science, Northeastern University, Shenyang 110004, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Yang Q, Deng P, Xing D, Liu H, Shi F, Hu L, Zou X, Nie H, Zuo J, Zhuang Z, Pan M, Chen J, Li G. Developmental Neurotoxicity of Difenoconazole in Zebrafish Embryos. TOXICS 2023; 11:353. [PMID: 37112580 PMCID: PMC10142703 DOI: 10.3390/toxics11040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zimeng Zhuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha 410000, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Medkova D, Hollerova A, Riesova B, Blahova J, Hodkovicova N, Marsalek P, Doubkova V, Weiserova Z, Mares J, Faldyna M, Tichy F, Svobodova Z, Lakdawala P. Pesticides and Parabens Contaminating Aquatic Environment: Acute and Sub-Chronic Toxicity towards Early-Life Stages of Freshwater Fish and Amphibians. TOXICS 2023; 11:333. [PMID: 37112561 PMCID: PMC10141211 DOI: 10.3390/toxics11040333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Pesticides and personal care products are two very important groups of contaminants posing a threat to the aquatic environment and the organisms living in it.. Therefore, this study aimed to describe the effects of widely used pesticides and parabens on aquatic non-target biota such as fish (using model organisms Danio rerio and Cyprinus carpio) and amphibians (using model organism Xenopus laevis) using a wide range of endpoints. The first part of the experiment was focused on the embryonal toxicity of three widely used pesticides (metazachlor, prochloraz, and 4-chloro-2-methyl phenoxy acetic acid) and three parabens (methylparaben, propylparaben, and butylparaben) with D. rerio, C. carpio, and X. laevis embryos. An emphasis was placed on using mostly sub-lethal concentrations that are partially relevant to the environmental concentrations of the substances studied. In the second part of the study, an embryo-larval toxicity test with C. carpio was carried out with prochloraz using concentrations 0.1, 1, 10, 100, and 1000 µg/L. The results of both parts of the study show that even the low, environmentally relevant concentrations of the chemicals tested are often able to affect the expression of genes that play either a prominent role in detoxification and sex hormone production or indicate cell stress or, in case of prochloraz, to induce genotoxicity.
Collapse
Affiliation(s)
- Denisa Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, 613 00 Brno, Czech Republic
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Aneta Hollerova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Barbora Riesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zuzana Weiserova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary medicine, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
15
|
Efficient Combination of Carbon Quantum Dots and BiVO4 for Significantly Enhanced Photocatalytic Activities. Catalysts 2023. [DOI: 10.3390/catal13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The development of highly efficient and stable photocatalysts is of critical importance for the removal of environmental pollutants, such as paraben preservatives. In this work, carbon quantum dots (CQDs) were used to modify bismuth vanadate (BiVO4) through a hydrothermal reaction. Regarding the as-formed CQDs/BiVO4 composite, TEM, XPS, and Raman spectra analysis demonstrated the strong interaction between CQDs and BiVO4, possibly leading to the elevated energy level of the composite. As compared to pristine BiVO4, CQDs/BiVO4 showed an increase in light harvesting, and significantly enhanced visible-light activities in degrading the typical paraben pollutant—benzyl paraben (BzP)—where the maximum 85.4% of BzP was degraded in 150 min. After four cycle reactions, the optimum sample 0.6%CQDs/BiVO4 still degraded 78.2% of BzP, indicating the good stability and reusability of the composite. The notably higher photocurrent and smaller arc in Nyquist plot were measured by CQDs/BiVO4, unveiling the improved photocharge separation and lowered interfacial charge transfer resistance by CQDs modification. Meanwhile, due to the promoted energy level, CQDs/BiVO4 practically produced •O2− species and thereby contributed to the BzP degradation, while they had no ability to produce •OH. This was contrary to the BiVO4 system, where •OH and h+ played the dominant roles.
Collapse
|
16
|
Hu C, Bai Y, Li J, Sun B, Chen L. Endocrine disruption and reproductive impairment of methylparaben in adult zebrafish. Food Chem Toxicol 2022; 171:113545. [PMID: 36470324 DOI: 10.1016/j.fct.2022.113545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Methylparaben (MeP) is one of the most frequently used preservatives in our daily products. However, it is becoming an aquatic pollutant of emerging concern. To reveal the endocrine disruption mechanism and reproductive impairment of MeP, the present study exposed adult zebrafish to 0, 1, 3, and 10 μg/L (0, 6.6, 19.7, and 65.7 nM) of MeP for 28 days. The results showed that subchronic exposure to 10 μg/L of MeP significantly increased the gonadosomatic index in zebrafish. Spermatogenesis and oogenesis were blocked by MeP at concentrations as low as 1 μg/L. Furthermore, parental exposure to MeP induced developmental deficits in offspring larvae, by increasing mortality, stimulating precocious hatching, and elevating heart rate. Blood concentrations of estradiol, testosterone, and 11-keto-testosterone were consistently lowered in MeP exposure groups. Transcriptional results evidenced that the disturbance in steroidogenesis and feedback regulation mechanisms along the hypothalamic-pituitary-gonadal axis underlay the imbalance of sex hormones. In line with the low estradiol level, hepatic production of vitellogenin (VTG) was significantly down-regulated, subsequently leading to a deficiency of VTG supply during oogenesis. To our knowledge, this is the first study to provide systemic insight about the antiestrogenic activity and reproductive toxicity of MeP.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|