1
|
Kanakaraju D, Glass BD, Goh PS. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review of recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36547-5. [PMID: 40434594 DOI: 10.1007/s11356-025-36547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Pharmaceutical compounds have raised significant environmental concerns, due to their persistent and non-biodegradable nature. Addressing their presence in the environment has become a priority, leading to the application of various removal treatment techniques. Advanced oxidation processes (AOPs) undoubtedly have emerged as highly effective removal techniques, as evidenced by the growing body of work in this area. This review offers an overview of the recent advances in the development of AOPs for treating pharmaceuticals and their by-products. Current trends and discoveries reported in diverse AOP studies have been scrutinized and are presented. Furthermore, emphasis is placed on the use of TiO2-mediated photocatalysis, which stands out as one of the most explored AOPs for pharmaceutical remediation. Performance aspects of TiO2 photocatalytic treatment are explored and discussed encompassing both commercially available and synthesized TiO2, as well as engineered TiO2-based materials (e.g. activated carbon, polymers, metals and non-metals), all aimed at removal of pharmaceutical compounds from the environment. The review concludes by summarizing key findings and offers insights into directions for future research.
Collapse
Affiliation(s)
- Devagi Kanakaraju
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Beverley D Glass
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Qld, 4811, Australia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Gyraitė G, Kataržytė M, Espinosa RP, Kalvaitienė G, Lastauskienė E. Microbiome and Resistome Studies of the Lithuanian Baltic Sea Coast and the Curonian Lagoon Waters and Sediments. Antibiotics (Basel) 2024; 13:1013. [PMID: 39596708 PMCID: PMC11591088 DOI: 10.3390/antibiotics13111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND the widespread use of antibiotics in human and veterinary medicine has contributed to the global challenge of antimicrobial resistance, posing significant environmental and public health risks. OBJECTIVES this study aimed to examine the microbiome and resistome dynamics across a salinity gradient, analyzing water and sediment samples from the Baltic Sea coast and the Curonian Lagoon between 2017 and 2023. METHODS the composition of the water and sediment bacterial community was determined by Full-Length Amplicon Metagenomics Sequencing, while ARG detection and quantification were performed using the SmartChipTM Real-Time PCR system. RESULTS the observed differences in bacterial community composition between the Baltic Sea coast and the Curonian Lagoon were driven by variations in salinity and chlorophyll a (chl a) concentration. The genera associated with infectious potential were observed in higher abundances in sediment than in water samples. Over 300 genes encoding antibiotic resistance (ARGs), such as aminoglycosides, beta-lactams, and multidrug resistance genes, were identified. Of particular interest were those ARGs that have previously been detected in pathogens and those currently classified as a potential future threat. Furthermore, our findings reveal a higher abundance and a distinct profile of ARGs in sediment samples from the lagoon compared to water. CONCLUSIONS these results suggest that transitional waters such as lagoons may serve as reservoirs for ARGs, and might be influenced by anthropogenic pressures and natural processes such as salinity fluctuation and nutrient cycling.
Collapse
Affiliation(s)
- Greta Gyraitė
- Bioscience Institute, Life Science Center, Vilnius University, 10257 Vilnius, Lithuania;
| | - Marija Kataržytė
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Rafael Picazo Espinosa
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Greta Kalvaitienė
- Marine Research Institute, Klaipeda University, 92295 Klaipėda, Lithuania; (M.K.); (R.P.E.); (G.K.)
| | - Eglė Lastauskienė
- Bioscience Institute, Life Science Center, Vilnius University, 10257 Vilnius, Lithuania;
| |
Collapse
|
3
|
Zheng P, Mao A, Meng S, Yu F, Zhang S, Lun J, Li J, Hu Z. Assembly mechanism of microbial community under different seasons in Shantou sea area. MARINE POLLUTION BULLETIN 2024; 205:116550. [PMID: 38878412 DOI: 10.1016/j.marpolbul.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
Coastal areas are often affected by a variety of climates, and microbial composition patterns are conducive to adaptation to these environments. In this study, the composition and pattern of microbial communities in the Shantou sea from four seasons were analyzed. The diversity of microbial community was significant differences under different seasons (p < 0.01). Meanwhile, dissolved oxygen levels, temperature were key factors to shift microbial communities. The assembly mechanism of microbial communities was constructed by the iCAMP (Infer community assembly mechanism by the phylogenetic bin-based null). Interestingly, the analyses revealed that drift was the predominant driver of this process (44.5 %), suggesting that microbial community assembly in this setting was dominated by stochastic processes. For example, Vibrio was found to be particularly susceptible to stochastic processes, indicating that the pattern of bacterial community was governed by stochastic processes. Thus, these results offering novel insight into the regulation of microbial ecology in marine environments.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jingsheng Lun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, PR China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
4
|
Dong L. Spatio-temporal evolution and prediction of carbon balance in the Yellow River Basin and zoning for low-carbon economic development. Sci Rep 2024; 14:14385. [PMID: 38909073 PMCID: PMC11193802 DOI: 10.1038/s41598-024-65113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Studying the carbon effect of land use in watersheds is important for mitigating global warming, promoting coordinated emission reduction in different regions within the watersheds, and realizing high-quality development of the watersheds. Although a number of scholars have carried out relevant studies in the past, they mainly focused on carbon emissions, rarely involved the carbon balance formed by carbon sources and sinks, and lacked relevant studies on the development of low-carbon economy sub-region. Based on this, this study takes the Yellow River Basin as an example, explores the spatial and temporal evolution of carbon emissions from land use in counties in the Yellow River Basin from 1980 to 2020, and predicts the spatial pattern of carbon income and expenditure from land use under natural conditions in 2030 and 2060 using the PLUS model; and then superimposes on the main functional area planning, divides 735 counties in the Yellow River Basin into six low-carbon economic development subregions, and analyzes their economic development The model of their economic development is analyzed. The results show that: (1) the spatial and temporal differentiation of land use carbon balance in the Yellow River Basin has changed greatly over the past 40 years, (2) the spatial distribution pattern of land use carbon balance in the natural context in 2030 and 2060 is more similar to that in 1990, (3) the carbon emission reduction potentials and pattern optimization of the different low-carbon economic development subregions differ greatly, and they have different low-carbon economic development patterns. The results of this study provide a theoretical basis for scientifically and rationally formulating economic policies for low-carbon development in the counties of the Yellow River Basin, and also provide an important reference for related studies in other similar basins or regions in the world.
Collapse
Affiliation(s)
- Linlin Dong
- College of International Hospitality and Tourism Management, Lyceum of the Philippines University-Batangas, 4200, Batangas, Philippines.
| |
Collapse
|
5
|
Wang T, Huang R, Chen HL, Xu KM, Wu LG, Chen KP, Wu JC. Comparative study of reactive oxygen species and tetracycline degradation pathways in catalytic peroxodisulfate activation by asymmetric mesoporous TiO 2 and the corresponding controlled-release materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123813. [PMID: 38537801 DOI: 10.1016/j.envpol.2024.123813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
The removal of trace amounts of antibiotics from water environments while simultaneously avoiding potential environmental hazards during the treatment is still a challenge. In this work, green, harmless, and novel asymmetric mesoporous TiO2 (A-mTiO2) was combined with peroxodisulfate (PDS) as active components in a controlled-release material (CRM) system for the degradation of tetracycline (TC) in the dark. The formation of reactive oxygen species (ROS) and the degradation pathways of TC during catalytic PDS activation by A-mTiO2 powder catalysts and the CRMs were thoroughly studied. Due to its asymmetric mesoporous structure, there were abundant Ti3+/Ti4+ couples and oxygen vacancies in A-mTiO2, resulting in excellent activity in the activation of PDS for TC degradation, with a mineralization rate of 78.6%. In CRMs, ROS could first form during PDS activation by A-mTiO2 and subsequently dissolve from the CRMs to degrade TC in groundwater. Due to the excellent performance and good stability of A-mTiO2, the resulting constructed CRMs could effectively degrade TC in simulated groundwater over a long period (more than 20 days). From electron paramagnetic resonance analysis and TC degradation experiments, it was interesting to find that the ROS formed during PDS activation by A-mTiO2 powder catalysts and CRMs were different, but the degradation pathways for TC were indeed similar in the two systems. In PDS activation by A-mTiO2, besides the free hydroxyl radical (·OH), singlet oxygen (1O2) worked as a major ROS participating in TC degradation. For CRMs, the immobilization of A-mTiO2 inside CRMs made it difficult to capture superoxide radicals (·O2-), and continuously generate 1O2. In addition, the formation of sulfate radicals (·SO4-), and ·OH during the release process of CRMs was consistent with PDS activation by the A-mTiO2 powder catalyst. The eco-friendly CRMs had a promising potential for practical application in the remediation of organic pollutants from groundwater.
Collapse
Affiliation(s)
- Ting Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Rui Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hua-Li Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Kun-Miao Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Li-Guang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kou-Ping Chen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Ji-Chun Wu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Zhou SYD, Yang K, Neilson R, Li H, Li HZ, Zhou YY, Liu J, Su JQ, Huang FY. Long-term seawall barriers lead to the formation of an urban coastal lagoon with increased antibiotic resistome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119721. [PMID: 38043315 DOI: 10.1016/j.jenvman.2023.119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Urbanization has increased the spread of antibiotic resistance genes (ARGs) impacting urban aquatic ecosystems and threatening human health. However, an overview of the antibiotic resistome in artificial coastal lagoons formed by coastal seawall construction is unclear. This study investigated the resistome of sediment in a coastal lagoon, established for over 60 years and found that the composition of the resistome in the lagoon sediments associated with the seawall significantly differed from that of marine sediment external to the seawall. Moreover, the diversity, number, relative abundance, and absolute abundance of the antibiotic resistome in the lagoon sediments were significantly higher compared to marine sediment. Network analyses revealed that more co-occurrences were found in lagoon sediment between bacterial communities, ARGs and mobile genetic elements (MGEs) than in marine sediments, suggesting that bacteria in lagoon sediments may be associated with multiple antibiotic resistances. Random forest and structural equation models showed that an increase in the absolute abundance of MGEs had a concomitant effect on the absolute abundance and diversity of ARGs, whereas increasing salinity decreased the absolute abundance of ARGs. This study provides a basis to assess the risk of resistome diffusion and persistence in an artificial coastal lagoon.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China; Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Kai Yang
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Hu Li
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Hong-Zhe Li
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Yan-Yan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Fu-Yi Huang
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
7
|
Wei G, Gao H, Li S, Liu M, Li R, Zhang Y, Shu Q, Wang W, Zhi L, Zeng Y, Na G. The occurrence and abundance of antibiotic resistance genes in rivers of tropical islands: a case of Hainan Island, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88936-88948. [PMID: 37450180 DOI: 10.1007/s11356-023-28522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
In this study, the occurrence and distribution of 49 antibiotic resistance genes (ARGs) and two integrase genes (intl1, intl2) in three major rivers of Hainan Island, China, were investigated in July 2021, and to explore the spatial distribution of the target genes in the three rivers with the potential influencing factors such as regional characteristics and environmental factors. The results showed that a total of 46 ARGs and two integrase genes were detected in water and sediment, and the absolute abundance of ARGs ranged from 1.16 × 103 to 2.97 × 107 copies/L and 3.34 × 103-1.55 × 107 copies/g. ARGs of macrolides, aminoglycosides, and sulfonamides were this study's main types of ARGs. The aadA2, tetE, ermF, tetX, aac(6')-Ib, tetW, and qnrS genes are predominant ARGs in the water and sediment of the three rivers. The relative abundance of ARGs shows higher abundance in the midstream and downstream and lower abundance in the upstream and estuarine. After conducting a correlation analysis, it was found that there was a significant positive correlation between the ARGs detected in the water of the three main rivers. However, in sediment, tetC was negatively correlated with tetQ, macB was negatively correlated with ermF and ereA (p < 0.05), while the remaining ARGs showed positive correlations. Specifically, there was no significant positive correlation between tetQ and tetC, macB and ereA, and ermF in the sediments. Among the nine environmental factors studied, pH was found to be the main factor associated with the occurrence of ARGs in the aquatic environment, but it was also significantly associated with only nine ARGs. Among the detected heavy metals, only Cd and Zn showed significant correlations with the two ARGs in the water bodies of the three main rivers. It indicated that the pollution of ARGs in the three major rivers was in the initial stage, the detection abundance was low, the influence of environmental factors was small, and the interaction between ARGs seemed to be the main driving force. This study provides a scientific basis for further understanding the occurrence of ARGs and their influencing factors in a tropical island environment, and lays a foundation for subsequent management.
Collapse
Affiliation(s)
- Guangke Wei
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Shisheng Li
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Min Liu
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yintian Zhang
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Qin Shu
- National Marine Environmental Monitoring Center, Dalian, 116023, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Wang
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Liwen Zhi
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yingxu Zeng
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Guangshui Na
- Yazhou Bay Innovation Institute/Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
8
|
Gu YG, Wang YS, Jordan RW, Su H, Jiang SJ. Probabilistic ecotoxicological risk assessment of heavy metal and rare earth element mixtures in aquatic biota using the DGT technique in coastal sediments. CHEMOSPHERE 2023; 329:138592. [PMID: 37023907 DOI: 10.1016/j.chemosphere.2023.138592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Heavy metals (HMs) are routine contaminants due to their extensive use worldwide. Rare earth elements (REEs) are emerging contaminants because of their global exploitation for use in the high-tech sector. Diffusive gradients in thin films (DGT) are an effective method for measuring the bioavailable component of pollutants. This study represents the first assessment of the mixture toxicity of HMs and REEs in aquatic biota using the DGT technique in sediments. Xincun Lagoon was chosen as the case study site because it has been contaminated by pollutants. Nonmetric multidimensional scaling (NMS) analysis reveals that a wide variety of pollutants (Cd, Pb, Ni, Cu, InHg, Co, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb) are primarily impacted by sediment characteristics. Appraisal of single HM-REE toxicity reveals that the risk quotient (RQ) values for Y, Yb and Ce notably exceeded 1, demonstrating that the adverse effects of these single HMs and REEs should not be ignored. The combined toxicity of HM-REE mixtures in terms of probabilistic ecological risk assessment shows that the Xincun surface sediments had a medium probability (31.29%) of toxic effects on aquatic biota.
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan; Sanya Tropical Fisheries Research Institute, Sanya, 572025, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Ya-Su Wang
- College of Oceanography, Hohai University, Nanjing, 245700, China
| | - Richard W Jordan
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Hong Su
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shi-Jun Jiang
- College of Oceanography, Hohai University, Nanjing, 245700, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|