1
|
Yang Q, Deng Y, Gao L, Ai Q, Xu C, Zheng M. Occurrence, Seasonal Variation, and Health Risks of PM 2.5-bound Liquid Crystal Monomers (LCMs) in Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136960. [PMID: 39721249 DOI: 10.1016/j.jhazmat.2024.136960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Liquid crystal monomers (LCMs) are potentially persistent, bioaccumulative, and toxic emerging pollutants. However, their occurrence in outdoor PM2.5 and related human exposure risks remain unknown. In this study, 32 composite samples were analyzed, which were prepared from daily PM2.5 samples collected throughout the year 2021 -2022 in Beijing, China. In total, fifty-six of 78 LCMs were presented at a median concentration of 66.0 pg/m3 (range: 13.3-375.6 pg/m3), with fluorinated LCMs (FBAs) predominating and accounting for 90.7 % of the total LCMs. This concentration surpasses that of halogenated persistent organic pollutants (e.g., polychlorinated dibenzo-p-dioxins/furans) in ambient PM2.5. Higher concentrations of LCMs were found in spring and summer compared to autumn and winter, which could be explained by correlations of concentrations with temperature (p < 0.05). Trans,trans-3,4-Difluoro-4'-(4'-pentylbicyclohexyl-4-yl)biphenyl, trans,trans-3,4-Difluoro-4'-(4'-propylbicyclohexyl-4-yl)biphenyl, and trans,trans-3,4,5-Trifluoro-4'-(4'-propylbicyclohexyl-4-yl)biphenyl were identified for the first time as dominant compounds in ambient samples. Based on predicted biological toxicities, 48 LCMs were categorized as high priority due to their high potential for human absorption, including several compounds previously overlooked. The non-carcinogenic risks of LCMs through inhalation and dermal were negligible for children and adults. This study firstly established a priority list of LCMs in PM2.5, highlighting the need for heightened awareness of their health risks.
Collapse
Affiliation(s)
- Qianling Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi Xu
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Center, Beijing 100012, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang Y, Jin Q, Lin H, Xu X, Leung KMY, Kannan K, He Y. A review of liquid crystal monomers (LCMs) as emerging contaminants: Environmental occurrences, emissions, exposure routes and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135894. [PMID: 39303619 DOI: 10.1016/j.jhazmat.2024.135894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The widespread occurrence of liquid crystal monomers (LCMs) in the environment has raised concerns about their persistence, bioaccumulation, and toxicity (PBT). Here we review the lifecycle of environmental LCMs, focusing on their occurrences, emission sources, human exposure routes, and toxicity. Industrial emissions from Liquid Crystal Display (LCD) manufacturing and e-waste recycling are the primary point sources of LCMs. In addition, emissions from LCD products, air conditioning units, wastewater treatment plants, and landfills contribute to environmental occurrence of LCMs as secondary sources. Dietary routes were identified as the primary exposure pathways to humans. E-waste dismantling workers and infants/children are vulnerable populations to LCMs exposure. Exposure to LCMs has been shown to potentially induce oxidative stress, metabolic disorders, and endocrine disruption. Accumulation of LCMs in the brain and liver tissues of exposed animals highlights the need for toxicokinetic studies.
Collapse
Affiliation(s)
- Yulin Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Xiaotong Xu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Kenneth M Y Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Chemistry, City University of Hong Kong, Hong Kong
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, USA; Department of Environmental Health Sciences, State University of New York at Albany, Albany, NY 12237, USA
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Wu J, Ye W, Feng Y, Lao W, Li J, Lu H, Liu G, Su G, Deng Y. Aquatic photolysis of high-risk fluorinated liquid crystal monomers: Kinetics, toxicity evaluation, and mechanisms. WATER RESEARCH 2024; 255:121510. [PMID: 38555780 DOI: 10.1016/j.watres.2024.121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Despite the frequent detection of fluorinated liquid-crystal monomers (FLCMs) in the environment, the level of understanding of their fate, toxicity, and transformation remains insufficient. Herein, we investigated the degradation kinetics and mechanism of an FLCM (4-cyano-3-fluorophenyl 4-ethylbenzoate, CEB-F) under ultraviolet (UV) photolysis in aquatic environment. Our findings demonstrated that the UV photolysis of CEB-F followed first-order kinetics. Photodegradation products were identified using liquid chromatography with mass spectrometry, and detailed reaction pathways were proposed. It is postulated that through the attack of reactive oxygen species, hydroxylation, and CO/C-F bond cleavage, CEB-F gradually degraded into small molecular compounds, releasing fluorine ions. Acute immobilization tests with Daphnia magna (D. magna) revealed significant acute toxicity of CEB-F, with LC50 values ranging from 1.023 to 0.0536 μM over 24 to 96 h, emphasizing the potential high risk of FLCMs in aquatic ecosystems if inadvertently discharged. Interestingly, we found that the toxicity of CEB-F photolysis reaction solutions was effectively reduced. Through catalase and acetylcholinesterase activities analysis along with molecular docking simulation, we proposed differences in the underlying toxicity mechanisms of CEB-F and its photolysis products to D. magna. These findings highlight the potential harmful effects of FLCMs on aquatic ecosystems and enrich our understanding of the photolysis behavior of FLCMs.
Collapse
Affiliation(s)
- Jingyi Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weibiao Ye
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wenhao Lao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junchun Li
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Haijian Lu
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Research Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yirong Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
| |
Collapse
|
4
|
Zhan Y, Jin Q, Lin H, Tao D, Law LY, Sun J, He Y. Occurrence, behavior and fate of liquid crystal monomers in municipal wastewater. WATER RESEARCH 2023; 247:120784. [PMID: 37950950 DOI: 10.1016/j.watres.2023.120784] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
Liquid crystal monomers (LCMs), the essential substances used in the display screen of electronic devices, have been proposed as a class of emerging chemicals of concern. Despite their detection in various environmental matrices, little is known about the presence of LCMs in municipal sewage systems. This study aimed to investigate the occurrence, distribution, and fate of 64 LCMs released into the aqueous environment from a municipal wastewater treatment plant (WWTP) in Hong Kong, China. In total 14 LCMs were detected in WWTP samples. Specifically, the Σ14LCMs concentrations in crude influent, final effluent, and final sludge were found to be 16.8 ± 0.3 ng/L, 2.71 ± 0.05 ng/L, and 19.2 ± 1.0 ng/g dry weight, respectively. Among them, 10 fluorinated LCMs (F-LCMs) were determined to be present at concentrations of 8.90 ± 0.10 ng/L, 1.69 ± 0.05 ng/L, and 9.94 ± 1.00 ng/g dry weight, respectively. The predominant non-fluorinated LCMs (NF-LCMs) detected in all samples were 3OCB and EPhEMOB, while 2OdF3B was the dominant F-LCM. The overall removal rate of total LCMs was 83.8 ± 0.3 %, with 25.4 ± 4.8 % being removed by biodegradation and UV treatment. Compared to NF-LCMs, F-LCMs were more resistant to biodegradation. Despite the significant removal of LCMs through WWTP, the remaining LCMs in final effluent could result in an annual emission of 3.04 kg of total LCMs from the population of Hong Kong. This study provides the first evidence of LCMs contamination in municipal wastewater, possibly arising from routine electronic devices usage. Further investigation is needed to elucidate the potential impact of LCMs emission via WWTP effluent on the aquatic receiving ecosystem.
Collapse
Affiliation(s)
- Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lok Yung Law
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
5
|
Ge J, Du B, Shen M, Feng Z, Zeng L. A review of liquid crystal monomers: Environmental occurrence, degradation, toxicity, and human exposure of an emerging class of E-waste pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122267. [PMID: 37499966 DOI: 10.1016/j.envpol.2023.122267] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Liquid crystal monomers (LCMs) are a class of organic compounds with diphenyl or dicyclohexane as the skeleton structure, which are widely used in the manufacturing of liquid crystal displays. They are recognized as novel organic compounds with persistence, bioaccumulation, toxicity, and potential for long-range transport. LCMs are inevitably released into the environment throughout the life cycle of electronic products, and their presence has been found in various abiotic matrixes (air, dust, sediment, leachate, soil) and biotic matrixes (aquatic organisms, human serum, and human skin wipe). Given that studies on LCMs are still in their infancy, this review comprehensively summarizes the extensive literature data on LCMs and identifies key knowledge gaps and future research needs. The physicochemical properties, production, and usage of LCMs are described. Their environmental distribution, degradation, toxicity, and human exposure are also discussed based on the available data and results. Existing data show that LCMs have large-scale environmental pollution and may pose potential ecological and health risks, but it is still insufficient to accurately assess their risks due to the lack of knowledge on LCMs in many areas, such as global contamination trend, environmental behavior, toxic effects, and human exposure assessment. We believe that future studies of LCMs need to investigate LCMs pollution on a large geographic scale, explore their sources, behavior, and fate in the environment, and assess their potential health hazards to organisms and humans.
Collapse
Affiliation(s)
- Jiali Ge
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Zhiqing Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
6
|
Jin Q, Fan Y, Lu Y, Zhan Y, Sun J, Tao D, He Y. Liquid crystal monomers in ventilation and air conditioning dust: Indoor characteristics, sources analysis and toxicity assessment. ENVIRONMENT INTERNATIONAL 2023; 180:108212. [PMID: 37738697 DOI: 10.1016/j.envint.2023.108212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Indoor dust contaminated with liquid crystal monomers (LCMs) released from various commercial liquid crystal display (LCD) screens may pose environmental health risks to humans. This study aimed to investigate the occurrence of 64 LCMs in ventilation and air conditioning filters (VACF) dust, characterize their composition profiles, potential sources, and associations with indoor characteristics, and assess their in vitro toxicity using the human lung bronchial epithelial cells (BEAS-2B). A total of 31 LCMs with concentrations (ΣLCMs) ranging from 43.7 ng/g to 448 ng/g were detected in the collected VACF dust. Additional analysis revealed the potential interactions between indoor environmental conditions and human exposure risks associated with the detected LCMs in VACF dust. The service area and working time of the ventilation and air conditioning system, and the number of indoor LCD screens were positively correlated with the fluorinated ΣLCMs in VACF dust (r = 0.355 ∼ 0.511, p < 0.05), while the associations with the non-fluorinated ΣLCMs were not found (p > 0.05), suggesting different environmental behavior and fates of fluorinated and non-fluorinated LCMs in the indoor environment. Four main indoor sources of LCMs (i.e., computer (37.1%), television (28.3%), Brand A smartphone (21.2%) and Brand S smartphone (13.4%)) were identified by positive matrix factorization-multiple linear regression (PMF-MLR). Exposure to 14 relatively frequently detected LCMs, individually and in the mixture, induced significant oxidative stress in BEAS-2B cells. Among them, non-fluorinated LCMs, specifically 3cH2B and MeP3bcH, caused dominant decreased cell viability. This study provides new insights into the indoor LCMs pollution and the associated potential health risks due to the daily use of electronic devices.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yinzheng Fan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|