1
|
Yang S, Liu B, Wang L, Duran R. Dispatched microbial community assembly processes driving ecological succession during phytostabilization of mercury-rich tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125376. [PMID: 39581369 DOI: 10.1016/j.envpol.2024.125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phytostabilization is an important way for the remediation of mine tailings, but the associated microbial processes and community succession remain largely unknown. In this study, we investigated the assembly mechanisms maintaining the core and satellite subcommunities diversity during phytostabilizaion of a mercury-rich mine tailings. The contents of total Hg and methylmercury decreased with a concomitant increase of total and available phosphorus content along the successive remediation stages. Microbial community composition, profiled by 16S rRNA gene sequencing, revealed amplicon sequence variants (ASVs) that were separated according to their abundance within either the core community or the satellite community. Community dynamics analysis showed that alpha diversity indices increased for the core community while decreased for the satellite community. Both satellite and core communities were mainly driven by stochastic drift process, and homogeneous selection was relatively higher in shaping the core community organization. The core community included ASVs affiliated to Proteobacteria, Crenarchaeota, Bacteroidota, Verrucomicrobiota, Acidobacteriota, and Myxococcota phyla, which were driven primarily by heterogeneous selection and drift. The satellite community included ASVs affiliated to Acidobacteriota, Ktedonobacteria, Anaerolineae and Verrucomicrobiota phyla, which were mainly influenced by heterogeneous selection. Nineteen taxa and one taxon were identified as keystone taxa for the satellite and core communities respectively. This study provides important insights on the assemble rules within the core and satellite communities, and theoretical guidance for further ecological restoration and management during microbial remediation of metal-mined derelict land.
Collapse
Affiliation(s)
- Shengxiang Yang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Bang Liu
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | - Lu Wang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
2
|
Han HJ, Song CW, Yoon D, Lee JU. Soil pollution with heavy metals in the vicinity of coal-fired power plants in Taean and Seocheon, Chungnam Province, South Korea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:10. [PMID: 39652273 DOI: 10.1007/s10653-024-02322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
This study investigated the distributions of heavy metals (Cd, Cu, Hg, Ni, Pb, and Zn) in agricultural soils near coal-fired power plants in Taean and Seocheon, South Korea, considering wind direction and distance from the plants. Additionally, pollution assessment for these heavy metals was conducted using the geoaccumulation index (Igeo) and enrichment factor. Results showed that heavy metal concentrations in the studied soil samples were below Korean environmental criteria for agricultural soil (Cd: 4, Cu: 150, Hg: 4, Ni: 100, Pb: 200, and Zn: 300 mg/kg). However, a significant proportion of samples exceeded average levels found in uncontaminated soils. Spatial distribution analysis revealed higher concentrations of Cd and Pb southwest of the Taean plant, influenced by prevailing northeast winds. In Seocheon, soils within 4 km of the plant exhibited elevated levels of Cd and Ni, suggesting coal combustion as a potential contamination source. Pollution assessment indicated that Cd and Pb in soils near both thermal power plants were more enriched by artificial activity compared to agricultural soils in control areas. Sequential extraction results showed that heavy metals in soils within 4 km of the Seocheon plant had higher proportions of exchangeable to organic-associated forms than soils beyond 4 km, indicating a risk of high bioavailability near emission sources. This study highlights the significant impact of coal-fired power plant emissions on soil contamination, emphasizing the need for continuous monitoring and management. Environmental policies should consider wind patterns and proximity to emission sources to effectively mitigate contamination risks.
Collapse
Affiliation(s)
- Hyeop-Jo Han
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Chang-Woo Song
- Department of Energy and Resources Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Daeung Yoon
- Department of Energy and Resources Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jong-Un Lee
- Department of Energy and Resources Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
3
|
Xu ZX, Zeng B, Chen S, Xiao S, Jiang LG, Li X, Wu YF, You LX. Soil microbial community composition and nitrogen enrichment responses to the operation of electric power substation. Front Microbiol 2024; 15:1453162. [PMID: 39228385 PMCID: PMC11368844 DOI: 10.3389/fmicb.2024.1453162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
The surge in global energy demand mandates a significant expansion of electric power substations. Nevertheless, the ecological consequences of electric power substation operation, particularly concerning the electromagnetic field, on soil microbial communities and nitrogen enrichment remain unexplored. In this study, we collected soil samples from six distinct sites at varying distances from an electric power substation in Xintang village, southeastern China, and investigated the impacts of electromagnetic field on the microbial diversity and community structures employing metagenomic sequencing technique. Our results showed discernible dissimilarities in the fungal community across the six distinct sites, each characterized by unique magnetic and electric intensities, whereas comparable variations were not evident within bacterial communities. Correlation analysis revealed a diminished nitrogen fixation capacity at the site nearest to the substation, characterized by low moisture content, elevated pH, and robust magnetic induction intensity and electric field intensity. Conversely, heightened nitrification processes were observed at this location compared to others. These findings were substantiated by the relative abundance of key genes associated with ammonium nitrogen and nitrate nitrogen production. This study provides insights into the relationships between soil microbial communities and the enduring operation of electric power substations, thereby contributing fundamental information essential for the rigorous environmental impact assessments of these facilities.
Collapse
Affiliation(s)
- Zhi-Xin Xu
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Bo Zeng
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Sheng Chen
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Sa Xiao
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Lin-Gao Jiang
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Xiang Li
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Yun-Fang Wu
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
4
|
Muhammad T, Jiang C, Li Y, Manan I, Ma C, Geng H, Fatima I, Adnan M. Impacts and mechanism of coal fly ash on kitchen waste composting performance: The perspective of microbial community. CHEMOSPHERE 2024; 350:141068. [PMID: 38160955 DOI: 10.1016/j.chemosphere.2023.141068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Aerobic composting is eco-friendly and sustainable practice for kitchen waste (KW) disposal to restore soil fertility and reduce environmental risks. However, KW compact structure, perishable nature, acidification by anaerobic acidogens, inhibits the metabolism of aerobic microbes, insufficient breakdown of organic matters, and prolong the composting duration. This study, co-composted coal fly ash (FA), to regulate bacterial dynamics, co-occurrence patterns and nutrients transformation in KW composting. Our results indicated, FA created suitable environment by increasing pH and temperature, which facilitated the proliferation and reshaping of microbial community. FA fostered the relative abundances of phlya (Proteobacteria, Chloroflexi and Actinobacteriota) and genera (Bacillus, Paenibacillus and Lysinibacillus), which promoted the nutrients transformation (phosphorus and nitrogen) in KW compost. FA enhanced the mutualistic correlations between bacterial communities, promoted the network complexity (nodes & edges) and contains more positive connections, which reflect the FA amendment effects. KW mature compost seed germination index reached >85% of FA treatment, indicated the final products fully met the Chinese national standard for organic fertilizer. These findings might provide opportunity to advance the KW composting and collaborative management of multiple waste to curb the current environmental challenges.
Collapse
Affiliation(s)
- Tahir Muhammad
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Cuiling Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| | - Irum Manan
- Department of Botany, Sardar Bahadur Khan Women's University, Quetta 87300, Pakistan.
| | - Changjian Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Hui Geng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Iza Fatima
- Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, USA.
| | - Muhammad Adnan
- College of Environment Hohai University, Nanjing 210098, China.
| |
Collapse
|
5
|
Li D, Zhang X, Chen J, Li J. Toxicity factors to assess the ecological risk for soil microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115867. [PMID: 38142592 DOI: 10.1016/j.ecoenv.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The toxicity factor (TF), a critical parameter within the potential ecological risk index (RI), is determined without accounting for microbial factors. It is considerable uncertainty exists concerning its validity for quantitatively assessing the influence of metal(loid)s on microorganisms. To evaluate the suitability of TF, we constructed microcosm experiments with varying RI levels (RI = 100, 200, 300, 500, and 700) by externally adding zinc (Zn), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd), and mercury (Hg) to uncontaminated soil (CK). Quantitative real-time PCR (qPCR) and high-throughput sequencing techniques were employed to measure the abundance and community of bacteria and fungi, and high-throughput qPCR was utilised to quantify functional genes associated with CNPS cycles. The results demonstrated that microbial diversity and function exhibited significant alterations (p < 0.05) in response to increasing RI levels, and the influences on microbial community structure, enzyme activity, and functional gene abundances were different due to the types of metal(loid)s treatments. At the same RI level, significant differences (p < 0.05) were discerned in microbial diversity and function across metal(loid) treatments, and these differences became more pronounced (p < 0.001) at higher levels. These findings suggest that TF may not be suitable for the quantitative assessment of microbial ecological risk. Therefore, we adjusted the TF by following three steps (1) determining the adjustment criteria, (2) deriving the initial TF, and (3) adjusting and optimizing the TF. Ultimately, the optimal adjusted TF was established as Zn = 1.5, Cr = 4.5, Cu = 6, Pb = 4.5, Ni = 5, Cd = 22, and Hg = 34. Our results provide a new reference for quantitatively assessing the ecological risks caused by metal(loid)s to microorganisms.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|