1
|
Li C, Shi L, Liu T, Dong K, Ren W, Zhang Y. Changes in electron distribution of aged microplastic and their environmental impacts in aquatic environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:124. [PMID: 40113611 DOI: 10.1007/s10653-025-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) are widespread environmental pollutants. This study primarily examines the changes in electro distribution of aged MPs in aquatic environments and their subsequent impact on the environment. Under the action of natural and artificial aging, the electron cloud arrangement of MPs will change, thus affecting the relevant properties of MPs. Among them, the free radicals formed by advanced oxidation technology will be enriched on the surface of MPs carrying benzene rings, and react with other pollutants (organic pollutants, heavy metals, etc.) adsorbed by MPs to form environmental persistent free radicals (EPFRs). The electron cloud density of MPs carrying EPFRs increases, and the reactivity will also increase. Additionally, the oxygen-containing functional groups on the surface of aged MPs enhance their selective adsorption, altering their environmental impact. MPs can serve as a source of free radicals in the environment, enhance the oxidation capacity of other substances in the environment, and even affect the expression of antibiotic resistance genes. In addition, MPs have a high mobility, which will have a greater negative impact in the environment. Additionally, the high mobility of MPs amplifies their negative environmental impact. This study examines the changes in electron distribution of aged MPs and highlights their effects on aquatic ecosystems, providing insights into pollution control, toxicity, and degradation mechanisms.
Collapse
Affiliation(s)
- Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lixia Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Keke Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weiwei Ren
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
2
|
Amparán MAA, Palacios A, Flores GM, Olivera PMC. Review and future outlook for the removal of microplastics by physical, biological and chemical methods in water bodies and wastewaters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:429. [PMID: 40106081 PMCID: PMC11923036 DOI: 10.1007/s10661-025-13883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) have become a major global environmental problem due to their accelerated distribution throughout different environments. Their widespread presence is a potential threat to the ecosystems because they alter the natural interaction among their constituent elements. MPs are considered as emergent pollutants due to the huge amount existing in the environment and by the toxic effects they can cause in living beings. The removal of MPs from water bodies and wastewaters is a control strategy that needs to be implemented from the present on and strictly constantly in the near future to control and mitigate their distribution into other environments. The present work shows a detailed comparison of the current potential technologies for the remediation of the MPs pollution. That is, physical, biological, and chemical methods for the removal of MPs from water bodies and wastewaters. Focusing mainly on the discussion of the perspective on the current innovative technologies for the removal or degradation of the MPs, rather than in a deep technical discussion of the methodologies. The selected novel physical methods discussed are adsorption, ultrafiltration, dynamic membranes and flotation. The physical methods are used to modify the physical properties of the MPs particles to facilitate their removal. The biological methods for the removal of MPs are based on the use of different bacterial strains, worms, mollusks or fungus to degrade MPs particles due to the hydrocarbon chain decrease of the particles, because these kinds of microorganisms feed on these organic chains. The degradation of MPs in water bodies and wastewaters by chemical methods is focusing on coagulation, electrocoagulation, photocatalysis, and ozonation. Chemical methods achieve the degradation of MPs by the modification of the chemical structure of the particles either by the change of the surface of the particles or by attacking radicals with a high oxidation capacity. Additionally, some interesting combinations of physical, chemical, and biological methods are discussed. Finally, this work includes a critical discussion and comparison of several novel methods for the removal or degradation of MPs from water bodies and wastewaters, emphasizing the areas of opportunity and challenges to be faced.
Collapse
Affiliation(s)
- Marco Antonio Alvarez Amparán
- Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México.
| | - Adriana Palacios
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| | - German Miranda Flores
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| | - Pedro Manuel Castro Olivera
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| |
Collapse
|
3
|
Yang X, Niu S, Li M, Niu Y, Shen K, Dong B, Hur J, Li X. Leaching behavior of microplastics during sludge mechanical dewatering and its effect on activated sludge. WATER RESEARCH 2024; 266:122395. [PMID: 39255567 DOI: 10.1016/j.watres.2024.122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Dewatering is an indispensable link in sludge treatment, but its effect on the microplastics (MPs) remains inadequately understood. This study investigated the physicochemical changes and leaching behavior of MPs during the mechanical dewatering of sludge, as well as the impact of MP leachates on activated sludge (AS). After sludge dewatering, MPs exhibit rougher surfaces, decreased sizes and altered functional groups due to the addition of dewatering agents and the application of mechanical force. Meanwhile, plastic additives, depolymerization products, and derivatives of their interactions are leached from MPs during sludge dewatering process. The concentration of MP-based leachates in sludge is 2-25 times higher than that in water. The enhancement of pH and ionic strength caused by dewatering agents induces the release of MP leachates enriched with protein-like, fulvic acid-like, and soluble microbial by-product-like substances. The reflux of MP leachates in sludge dewatering liquor to the wastewater treatment system negatively impacts AS, leading to a decrease in COD removal rate and inhibition of the extracellular polymeric substances secretion. More importantly, MP leachates cause oxidative stress to microbial cells and alter the microbial community structure of AS at the phylum and genus levels. These findings confirm that MPs undergo aging and leaching during sludge dewatering process, and MP leachates may negatively affect the wastewater treatment system.
Collapse
Affiliation(s)
- Xingfeng Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Man Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yulong Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kailiang Shen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
4
|
Ojha PC, Satpathy SS, Ojha R, Dash J, Pradhan D. Insight into the removal of nanoplastics and microplastics by physical, chemical, and biological techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1055. [PMID: 39404908 DOI: 10.1007/s10661-024-13247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
Plastic pollutants create health crises like physical damage to tissues, upset reproductive processes, altered behaviour, oxidative stress, neurological disorders, DNA damage, gene expression, and disrupt physiological functions, as the biosphere accumulates them inadvertently through the food web. Water resources have become the generic host of plastic wastes irrespective of their particle size, resulting in widespread distribution in aquatic environments. The pre-treatment step of the traditional water treatment process can easily remove coarse-sized plastic wastes. However, the fine plastic particles, with sizes ranging from nanometres to millimetres, are indifferent to the traditional water treatment. To address the escalating problems, the upgradation of different traditional physical, chemical, and biological remediation techniques offers a promising avenue for tackling tiny plastic particles from the water environment. Further, new techniques and hybrid incorporations to the existing water treatment techniques have been explored, specifically removing tiny plastic debris. A detailed understanding of the sources, fate, and impact of plastic wastes in the environment, as well as an evaluation of the above treatment techniques and their limitations and challenges, can only show the way for their upgradation, hybridization, and development of new techniques. This review paper provides a comprehensive overview of the current knowledge and techniques for the remediation of nanoplastics and microplastics.
Collapse
Affiliation(s)
- Priti Chhanda Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Swati Sucharita Satpathy
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Ritesh Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Jyotilagna Dash
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Debabrata Pradhan
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India.
| |
Collapse
|
5
|
Cui B, Rong H, Tian T, Guo D, Duan L, Nkinahamira F, Ndagijimana P, Yan W, Naidu R. Chemical methods to remove microplastics from wastewater: A review. ENVIRONMENTAL RESEARCH 2024; 249:118416. [PMID: 38316391 DOI: 10.1016/j.envres.2024.118416] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Microplastics (Mps) have emerged as a pervasive environmental concern, with their presence detected not only in freshwater ecosystems but also in drinking and bottled water sources. While extensive research has centered on understanding the origins, migration patterns, detection techniques, and ecotoxicological impacts of these contaminants, there remains a notable research gap about the strategies for Mps removal. This study reviews existing literature on chemical approaches for mitigating microplastic contamination within wastewater systems, focusing on coagulation precipitation, electrocoagulation, and advanced oxidation methods. Each approach is systematically explored, encompassing their respective mechanisms and operational dynamics. Furthermore, the comparative analysis of these three techniques elucidates their strengths and limitations in the context of MPs removal. By shedding light on the intricate mechanisms underlying these removal methods, this review contributes to the theoretical foundation of microplastic elimination from wastewater and identifies future research trajectories and potential challenges.
Collapse
Affiliation(s)
- Baihui Cui
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong, 518107, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tingting Tian
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dabin Guo
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| | | | | | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong, 518107, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
6
|
Nohara NML, Ariza-Tarazona MC, Triboni ER, Nohara EL, Villarreal-Chiu JF, Cedillo-González EI. Are you drowned in microplastic pollution? A brief insight on the current knowledge for early career researchers developing novel remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170382. [PMID: 38307272 DOI: 10.1016/j.scitotenv.2024.170382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Microplastics (MPs) composed of different polymers with various shapes, within a vast granulometric distribution (1 μm - 5 mm) and with a wide variety of physicochemical surface and bulk characteristics spiral around the globe, with different atmospheric, oceanic, cryospheric, and terrestrial residence times, while interacting with other pollutants and biota. The challenges of microplastic pollution are related to the complex relationships between the microplastic generation mechanisms (physical, chemical, and biological), their physicochemical properties, their interactions with other pollutants and microorganisms, the changes in their properties with aging, and their small sizes that facilitate their diffusion and transportation between the air, water, land, and biota, thereby promoting their ubiquity. Early career researchers (ERCs) constitute an essential part of the scientific community committed to overcoming the challenges of microplastic pollution with their new ideas and innovative scientific perspectives for the development of remediation technologies. However, because of the enormous amount of scientific information available, it may be difficult for ERCs to determine the complexity of this environmental issue. This mini-review aims to provide a quick and updated overview of the essential insights of microplastic pollution to ERCs to help them acquire the background needed to develop highly innovative physical, chemical, and biological remediation technologies, as well as valorization proposals and environmental education and awareness campaigns. Moreover, the recommendations for the development of holistic microplastic pollution remediation strategies presented here can help ERCs propose technologies considering the environmental, social, and practical dimensions of microplastic pollution while fulfilling the current government policies to manage this plastic waste.
Collapse
Affiliation(s)
- Nicoly Milhardo Lourenço Nohara
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
| | - Eduardo Rezende Triboni
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Evandro Luís Nohara
- Department of Mechanical Engineering, University of Taubaté, R. Daniel Daneli, no number, Taubaté, Brazil
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66628, Nuevo León, Mexico
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| |
Collapse
|