1
|
Guertin JE, Losano JDA, Salazar S, Callaham J, Daigneault BW. Prolonged maintenance of stallion semen by optimization of cooling conditions. J Equine Vet Sci 2025; 144:105243. [PMID: 39566592 DOI: 10.1016/j.jevs.2024.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Bottlenecks to the success of equine assisted reproductive technologies (ART) include suboptimal conditions for prolonged storage of stallion sperm. Shipped stallion sperm are transported in cooling devices designed to maintain temperature for up to 48 h. Increasing the storage time of cooled semen while maintaining acceptable motility would relieve logistical ART challenges. Experiments were conducted to test the hypothesis that external regulation of shipment container temperature would prolong storage time of cooled stallion semen. Initial experiments determined the effect of pre-freezing cooling cans at -20 °C or -80 °C on sperm motility. Fresh sperm was extended in INRA96 and placed in commercial Equitainers for 3.5 days (84 h). Quantification of sperm kinematics was determined every 12 h. Sperm held in Equitainers with -20°C cans maintained higher total and progressive motility than -80 °C conditions at 60 h (63 %, 29 % vs. 32 %, 17 %, respectively). Internal monitoring of Equitainers containing -20 °C freezer can temperature identified 20 °C as the threshold for rapidly decreased motility. In the second experiment, sperm were maintained in Equitainers containing -20 °C freezer cans and placed in two different conditions: 1) ambient temperature for 48 h (23 °C) or 2) 5 °C for external temperature regulation up to 8 days, or when total motility dropped below 50 %. Sperm kinematics was determined every 24 h. Total motility from samples held with external temperature regulation (5 °C) remained above 50 % for more than 7 days. These findings suggest that cooled stallion semen can be advanced beyond traditional 48 h constraints by improving temperature maintenance of storage conditions.
Collapse
Affiliation(s)
- Jillian E Guertin
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | | | - Sophia Salazar
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Justin Callaham
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
2
|
Morris L, Harteveld R, Gibb Z. A simplified fixed-time insemination protocol using frozen-thawed stallion spermatozoa stored at 17°C for up to 24 h before insemination. Equine Vet J 2024; 56:688-696. [PMID: 38616619 DOI: 10.1111/evj.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Insemination of mares with frozen-thawed spermatozoa requires intensive management and results in 40%-60% per cycle pregnancy rates. OBJECTIVES To determine if satisfactory fertility is possible for frozen-thawed semen after processing it through a microfluidic device, followed by storage at 17°C for up to 24 h before fixed-time insemination. STUDY DESIGN Uncontrolled field trials. METHODS A pilot study evaluated the motility of frozen-thawed spermatozoa after centrifugation and storage (17°C) in two different media for up to 48 h. Subsequently, the motility of frozen-thawed semen processed through a microfluidic device, resuspended in two different media during storage (17°C) for up to 24 h was evaluated. The fertility of frozen-thawed spermatozoa, after microfluidic sorting and storage at 17°C for up to 24 h, was evaluated after fixed-time insemination in a commercial embryo programme. Experiment 1: Frozen-thawed spermatozoa (N = 5 stallions) were centrifuged and resuspended in Botusemen Gold™ or SpermSafe™ and stored (17°C) for up to 48 h. Sperm motility was evaluated by CASA at 0, 6, 24 and 48 h. Experiment 2: Frozen-thawed spermatozoa (N = 4 stallions) underwent microfluidic sorting and storage (17°C) for up to 24 h in both media. Sperm concentration and motility were evaluated at 0, 16 and 24 h. Experiment 3: Fertility of frozen-thawed spermatozoa (N = 3 stallions) was evaluated after insemination of 42 mare cycles at 6, 16 and 24 h after thawing, microfluidic sorting and storage before fixed-time insemination. RESULTS The stallion significantly influenced sperm motility, but there was no effect of media on motility parameters. Storage time significantly affected sperm motility after centrifugation but not after microfluidic sorting. Storage time had no effect on the overall embryo recovery rate (52%, n = 42). MAIN LIMITATIONS Field trial with small mare numbers and no control at time = 0 h. CONCLUSIONS Fixed-time insemination of frozen-thawed spermatozoa after microfluidic sorting and storage at 17°C for up to 24 h produced satisfactory embryo recovery rates.
Collapse
Affiliation(s)
- Lee Morris
- EquiBreed ART Ltd, Te Awamutu, New Zealand
| | | | - Zamira Gibb
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Australia
| |
Collapse
|
3
|
Dierberger H, Pieper L, Jung M, Schulze M. Vibration emissions affect the quality of liquid-preserved AI doses in stallions. Theriogenology 2024; 218:1-7. [PMID: 38280300 DOI: 10.1016/j.theriogenology.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Artificial insemination (AI) with liquid-preserved stallion semen is a widely used reproductive technology. As the demand for AI doses of high-class stallions is transnational, they are frequently exposed to long-distance transport. Since recent studies in boars indicated that vibration emissions caused by transport negatively affected sperm quality in vitro, this study questioned whether sperm quality in stallions is similarly impaired. Furthermore, we investigated stallion and extender-related differences in the spermatozoa's resistance to transport-related quality loss. Stallion ejaculates (n = 30) were collected at a German AI center, split in half, and subsequently diluted to a final sperm concentration of 50 × 106 sperm/mL using the semen extenders EquiPlus or Gent (both Minitüb GmbH, Germany). Four 12 mL aliquots of each sample were filled in plastic syringes according to a split-sample design and exposed to vibration (Displacement index Di = 3.0 ± 0.1) at 5 °C for 0 h (control), 3 h, 6 h or 9 h. All samples were stored for four days at 5 °C after transport simulation and analyzed for total sperm motility, thermo-resistance, membrane integrity, and mitochondrial activity determined by flow cytometry as well as the pH. After calculating generalized linear mixed models for each sperm quality trait, a negative impact of the duration of transport simulation could be shown on total sperm motility (P = 0.001), thermo-resistance (P = 0.030), and the pH (P = 0.001). Simulated transport for 6 h and 9 h diminished sperm quality (P ≤ 0.01), with 9 h reducing thermo-resistance by 5 ± 2.2% points (PP) for EquiPlus and sperm motility by 2.2 ± 1.7 PP for Gent compared to the control group. In contrast, samples exposed to vibration for 3 h showed no decline in sperm quality (P > 0.05). The individual stallion influenced every semen trait (P < 0.05) and transport-related losses in sperm thermo-resistance of up to 15.9 PP were demonstrated. Furthermore, EquiPlus was superior to Gent in all semen assessments (P < 0.001). We conclude that in vitro sperm quality is impaired by vibration. As the quality loss depends on the transport time, we recommend keeping shipping time as short as possible especially for spermatozoa of stallions that are susceptible to vibration-induced sperm quality loss.
Collapse
Affiliation(s)
- Hannah Dierberger
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| | - Laura Pieper
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| | - Markus Jung
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany.
| |
Collapse
|
4
|
Dierberger H, Pieper L, Jung M, Schulze M. Rotation of liquid-preserved artificial insemination doses on roller benches affects sperm quality during storage in stallions. Reprod Domest Anim 2023; 58:1413-1419. [PMID: 37596825 DOI: 10.1111/rda.14456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Appropriate stallion semen handling is of great importance in equine artificial insemination (AI) industry. Optimal treatment of AI doses is aiming for best sperm preservation by excluding strong environmental influences and adding media that favour sperm survival. One method widely used in stallion sperm handling is the rotation of liquid-preserved semen samples on roller benches during storage. As previous studies in boars give rise to the fact that rotation should not be considered beneficial for spermatozoa anymore, the present study investigated the influence of continuous rotation of diluted stallion AI portions on sperm quality. Ejaculates (n = 15) were collected at a German AI centre and diluted with the two extenders EquiPlus and Gent (Minitüb GmbH) to a final concentration of 50 × 106 sperm/mL. Afterwards, samples were placed separately on roller benches at 5°C in the dark, obtaining a rotation frequency of 5 revolutions per minute (rpm) and 36 rpm for four consecutive days following a split-sample design. Both groups were analysed daily in comparison to a control group (0 rpm) with an extended spectrum of spermatological methods including computer-assisted sperm analysis and flow cytometry. Statistical analyses were based on the calculation of generalized linear mixed models for each sperm parameter. The research revealed a decrease in sperm quality parameters of rotated samples compared to non-rotated control groups, visible in total sperm motility (p < .001), decreased thermo-resistance (p < .01) and a drop in pH (p < .001). Interestingly, no differences (p > .05) were detected between rotation frequencies of 5 and 36 rpm. We conclude that the fertilizing capacity of stallion semen was negatively affected by rotation during storage in vitro, irrespective of the rotation frequency. Further studies need to investigate whether field fertility in horses is similarly affected by semen rotation on roller benches in vivo.
Collapse
Affiliation(s)
- H Dierberger
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - L Pieper
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - M Jung
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - M Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| |
Collapse
|
5
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
6
|
Jakop U, Hensel B, Czirják GÁ, Quirino M, Schröter F, Jung M, Schulze M. Bacterial killing activity and lysozymes: A stable defence mechanism in stallion seminal plasma? Reprod Domest Anim 2023; 58:73-80. [PMID: 36107117 DOI: 10.1111/rda.14260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/11/2023]
Abstract
During insemination, bacterial contamination of the ejaculate can lead to reduced sperm quality and transmission of pathogens to the female, thus should be avoided. The semen of a variety of animal taxa possess antimicrobial properties against a wide range of bacterial species through antimicrobial molecules, such as lysozyme, but their variance and the factors influencing it are unknown for most species. In this study, the antibacterial defence (bacterial killing activity (BKA) against Escherichia (E.) coli and Staphylococcus (S.) aureus as well as lysozyme concentration) was studied in seminal fluid from two consecutive ejaculates of 18 stallions. All ejaculates showed BKA against the tested bacteria, which correlated between the two consecutive ejaculates (rS = 0.526, p = .025 for E. coli and rS = 0.656, p = .003 for S. aureus) and appeared to be stable over the tested period. The lysozyme concentration (LC) showed no significant correlation between the consecutive ejaculates (rS = 0.161, p = .681). However, LC had a positive correlation to the ratio of apoptotic spermatozoa within the ejaculates (rS = 0.426, p = .019). In contrast to other livestock (e.g., boar, bull), the BKA in stallion semen did not correlate significantly with the age of the animal nor sperm quality characteristics.
Collapse
Affiliation(s)
- Ulrike Jakop
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - Britta Hensel
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Monike Quirino
- Setor de Suínos, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Filip Schröter
- Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School, Bernau, Germany
| | - Markus Jung
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| |
Collapse
|
7
|
Clulow J, Gibb Z. Liquid storage of stallion spermatozoa – Past, present and future. Anim Reprod Sci 2022; 247:107088. [DOI: 10.1016/j.anireprosci.2022.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
|
8
|
Wiebke M, Hensel B, Nitsche-Melkus E, Jung M, Schulze M. Cooled storage of semen from livestock animals (part I): boar, bull, and stallion. Anim Reprod Sci 2022; 246:106822. [PMID: 34400028 DOI: 10.1016/j.anireprosci.2021.106822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
This review is part of the Festschrift in honor of Dr. Duane Garner and provides an overview of current techniques for cooled storage of semen from livestock animals. The first part describes the current state of the art of liquid semen preservation in boars, bulls, and stallions, including the diluents, use of additives, processing, temperature, and cooling of semen. The species-specific physiology and varying extents of cold shock sensitivity are taken into consideration. In addition, factors influencing the quality of cooled-stored semen are discussed. Methods, trends, and the most recent advances for improving sperm quality during cold-temperature storage are highlighted and their respective advantages and disadvantages are contrasted. There has been much progress in recent years regarding cold-temperature storage of boar sperm and there is great potential for a large-scale use to replace the current 17 °C temperature storage regime and the associated use of antibiotics in the future. For stallion sperm, there is an opposite trend away from previous low-temperature storage towards storage at higher temperatures to increase sperm viability and longevity. In bulls, liquid storage of sperm is mostly used in the seasonal dairy production systems of New Zealand and Ireland, but with further research focusing on shelf-live elongation of liquid preserved sperm, there is potential for an application in breeding programs worldwide.
Collapse
Affiliation(s)
- M Wiebke
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| | - B Hensel
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| | - E Nitsche-Melkus
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| | - M Jung
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany
| | - M Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321, Bernau, Germany.
| |
Collapse
|
9
|
Rizkallah N, Chambers CG, de Graaf SP, Rickard JP. Factors Affecting the Survival of Ram Spermatozoa during Liquid Storage and Options for Improvement. Animals (Basel) 2022; 12:244. [PMID: 35158568 PMCID: PMC8833663 DOI: 10.3390/ani12030244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/02/2023] Open
Abstract
Semen preservation is an essential component of reproductive technologies, as it promotes genetic gain and long-distance semen transport and multiplies the number of ewes able to be inseminated per single ejaculate. However, the reduced temperature during cold storage at 5 or 15 °C inflicts sub-lethal damage to spermatozoa, compromising sperm quality and the success of artificial breeding. New and emerging research in various species has reported the advantages of storing spermatozoa at higher temperatures, such as 23 °C; however, this topic has not been thoroughly investigated for ram spermatozoa. Despite the success of storing spermatozoa at 23 °C, sperm quality can be compromised by the damaging effects of lipid peroxidation, more commonly when metabolism is left unaltered during 23 °C storage. Additionally, given the biosafety concern surrounding the international transport of egg-yolk-containing extenders, further investigation is critical to assess the preservation ability of synthetic extenders and whether pro-survival factors could be supplemented to maximise sperm survival during storage at 23 °C.
Collapse
Affiliation(s)
- Natalie Rizkallah
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia; (C.G.C.); (S.P.d.G.); (J.P.R.)
| | | | | | | |
Collapse
|
10
|
Ortiz-Rodríguez JM, Martín-Cano FE, Gaitskell-Phillips GL, Silva A, Ortega-Ferrusola C, Gil MC, Peña FJ. Low glucose and high pyruvate reduce the production of 2-oxoaldehydes, improving mitochondrial efficiency, redox regulation, and stallion sperm function†. Biol Reprod 2021; 105:519-532. [PMID: 33864078 DOI: 10.1093/biolre/ioab073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Energy metabolism in spermatozoa is complex and involves the metabolism of carbohydrate fatty acids and amino acids. The ATP produced in the electron transport chain in the mitochondria appears to be crucial for both sperm motility and maintaining viability, whereas glycolytic enzymes in the flagella may contribute to ATP production to sustain motility and velocity. Stallion spermatozoa seemingly use diverse metabolic strategies, and in this regard, a study of the metabolic proteome showed that Gene Ontology terms and Reactome pathways related to pyruvate metabolism and the Krebs cycle were predominant. Following this, the hypothesis that low glucose concentrations can provide sufficient support for motility and velocity, and thus glucose concentration can be significantly reduced in the medium, was tested. Aliquots of stallion semen in four different media were stored for 48 h at 18°C; a commercial extender containing 67 mM glucose was used as a control. Stallion spermatozoa stored in media with low glucose (1 mM) and high pyruvate (10 mM) (LG-HP) sustained better motility and velocities than those stored in the commercial extender formulated with very high glucose (61.7 ± 1.2% in INRA 96 vs 76.2 ± 1.0% in LG-HP media after 48 h of incubation at 18°C; P < 0.0001). Moreover, mitochondrial activity was superior in LG-HP extenders (24.1 ± 1.8% in INRA 96 vs 51.1 ± 0.7% in LG-HP of spermatozoa with active mitochondria after 48 h of storage at 18°C; P < 0.0001). Low glucose concentrations may permit more efficient sperm metabolism and redox regulation when substrates for an efficient tricarboxylic acid cycle are provided. The improvement seen using low glucose extenders is due to reductions in the levels of glyoxal and methylglyoxal, 2-oxoaldehydes formed during glycolysis; these compounds are potent electrophiles able to react with proteins, lipids, and DNA, causing sperm damage.
Collapse
Affiliation(s)
- José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma L Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
11
|
Effects of glucose concentration in semen extender and storage temperature on stallion sperm quality following long-term cooled storage. Theriogenology 2020; 147:1-9. [PMID: 32070880 DOI: 10.1016/j.theriogenology.2020.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
In Experiment 1, the effects of glucose concentration in extender (0 mM, 67 mM, 147 mM, 270 mM; G0, G67, G147, and G270, respectively) and storage temperature of extended semen (5, 10, 15 and 20 °C) were evaluated after storage for up to 5 days (T0h to T120h). For all time points tested, mean total (TMOT) and progressive (PMOT) sperm motility were lower in G0 than all other treatment groups (P < 0.05). Mean curvilinear velocity (VCL) was lower in G0 than other treatment groups at all time points tested except T0h (P < 0.05). Mean percentage of plasma membrane/acrosome intact sperm (VAI) was similar among treatments at T0h, T72h, and T120h (P > 0.05). Mean TMOT and PMOT, were lower for semen stored at 20 °C than all lower storage temperatures (P < 0.05) at all time points. In Experiment 2, semen was stored at 10 °C in extender containing no added glucose (G0) or 147 mM glucose (G147). Following storage, semen was centrifuged and resuspended in extender containing no added glucose (G0 - G0 or G147 - G0, respectively) or 147 mM of glucose (G0 - G147 or G147 - G147, respectively). Mean TMOT, PMOT, and VCL were higher in G147 than G0 at all time periods tested (P < 0.05), whereas mean VAI was similar between these treatment groups throughout the experiment (P > 0.05). Mean TMOT and PMOT were higher in G0 - G147 than G0 - G0 at T72h and T120h (P < 0.05) and mean VCL was higher in G0 - G147 than G0 - G0 for all time periods. Mean TMOT, PMOT, and VCL were higher in G147 - G147 than G147 - G0 at all time points tested (P < 0.05), whereas mean VAI was similar between these two treatment groups for each of the time points (P > 0.05). In Experiment 3, the minimum concentration of glucose required to maintain sperm quality following long-term cooled storage (T120 h) was evaluated (G0, G5, G10, G20, G40, G67, G147 mM). At T120 h, mean TMOT was lowest in G0, G5, G10, and G20 (P < 0.05), whereas mean PMOT and VCL were lower in G0, G5, G10, and G20 than in G40, G67, and G147 (P < 0.05). Mean VAI was higher in G10 than G67, but similar among G10 and other treatment groups (P > 0.05). In conclusion, the absence of added glucose in extender reduced the motion characteristics of stallion sperm during long-term storage (5 days), but VAI was not affected. The use of temperatures between 5 and 15 °C for long-term storage (5 days) best maintained sperm motility and VAI. The threshold concentration of added glucose in extender required to optimize sperm motion characteristics was 40 mM.
Collapse
|
12
|
Pérez-Marín CC, Requena FD, Arando A, Requena L, Requena F, Agüera EI. Short-term tolerance of equine spermatozoa to various abiotic factors. Reprod Domest Anim 2018; 53:534-544. [PMID: 29399898 DOI: 10.1111/rda.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
The aim of this study was to determine the effects of various abiotic factors, such as light, physical stress (pipetting) and thermal shock, on the quality of fresh and cooled equine sperm. In experiment I, four sperm aliquots were subjected to different light exposures: (i) protected control samples (CTRL), (ii) exposed to UV light at 10 cm (UV10), (iii) exposed to UV light at 20 cm (UV20) and (iv) exposed to laboratory lighting (LAB). In experiment II, four semen aliquots were subjected to repeated pipetting for 0, 10, 20 and 30 times (CTRL, P10, P20 and P30, respectively). In experiment III, four semen aliquots at 15°C were subjected to thermal oscillations: (i) cooled control sperm at 15°C (CTRL), (ii) oscillations of 1.9°C/min to a temperature of 30°C (T30), (iii) oscillations of 1.4°C/min, with the temperature rapidly falling until reaching 1.3°C (T0R) and (iv) oscillations of 1.1°C/min, with the temperature slowly falling until reaching 4.2°C (T0S). The results revealed that after 30 min, UV10 and UV20 sperm samples showed significantly (p < .05) lower total and progressive motility values, sperm kinematic parameters and mitochondrial potential. After 45 min of exposure, differences were highly significant (p < .001). No significant differences (p > .05) were found for pipetting or thermal oscillations. The results suggest that, even if equine sperm samples are not handled in the laboratory under optimal conditions, fresh and cooled equine spermatozoa are able to resist the impact of various abiotic stimuli without any reduction in their quality. This study analyses the effect on normospermic samples, but future research could look at the tolerance that asthenozoospermic equine samples have to these abiotic influences.
Collapse
Affiliation(s)
- C C Pérez-Marín
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - F D Requena
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - A Arando
- Department of Genetics, University of Cordoba, Cordoba, Spain
| | - L Requena
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - F Requena
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - E I Agüera
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
13
|
The Effect of Time of Breeding Relative to Ovulation on Pregnancy Rate When Using Cooled Transported Semen or Natural Mating in the Mare. J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|