1
|
Popova J, Bets V, Kozhevnikova E. Perspectives in Genome-Editing Techniques for Livestock. Animals (Basel) 2023; 13:2580. [PMID: 37627370 PMCID: PMC10452040 DOI: 10.3390/ani13162580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.
Collapse
Affiliation(s)
- Julia Popova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
| | - Victoria Bets
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Center of Technological Excellence, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Elena Kozhevnikova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Laboratory of Experimental Models of Cognitive and Emotional Disorders, Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
2
|
Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nat Biomed Eng 2023; 7:629-646. [PMID: 36797418 DOI: 10.1038/s41551-023-01007-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
The monogenic nature of Huntington's disease (HD) and other neurodegenerative diseases caused by the expansion of glutamine-encoding CAG repeats makes them particularly amenable to gene therapy. Here we show the feasibility of replacing expanded CAG repeats in the mutant HTT allele with a normal CAG repeat in genetically engineered pigs mimicking the selective neurodegeneration seen in patients with HD. A single intracranial or intravenous injection of adeno-associated virus encoding for Cas9, a single-guide RNA targeting the HTT gene, and donor DNA containing the normal CAG repeat led to the depletion of mutant HTT in the animals and to substantial reductions in the dysregulated expression and neurotoxicity of mutant HTT and in neurological symptoms. Our findings support the further translational development of virally delivered Cas9-based gene therapies for the treatment of genetic neurodegenerative diseases.
Collapse
|
3
|
Haughan J, Ortved KF, Robinson MA. Administration and detection of gene therapy in horses: A systematic review. Drug Test Anal 2023; 15:143-162. [PMID: 36269665 DOI: 10.1002/dta.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Gene therapy uses genetic modification of cells to produce a therapeutic effect. Defective or missing genes can be repaired or replaced, or gene expression can be modified using a variety of technologies. Repair of defective genes can be achieved using specialized gene editing tools. Gene addition promotes gene expression by introducing synthetic copies of genes of interest (transgenes) into cells where they are transcribed and translated into therapeutic proteins. Protein production can also be modified using therapies that regulate gene expression. Gene therapy is currently prohibited in both human and equine athletes because of the potential to induce production of performance-enhancing proteins in the athlete's body, also referred to as "gene doping." Detection of gene doping is challenging and necessitates development of creative, novel analytical methods for doping control. Methods for detection of gene doping must be specific to and will vary depending on the type of gene therapy. The purpose of this paper is to present the results of a systematic review of gene editing, gene therapy, and detection of gene doping in horses. Based on the published literature, gene therapy has been administered to horses in a large number of experimental studies and a smaller number of clinical cases. Detection of gene therapy is possible using a combination of PCR and sequencing technologies. This summary can provide a basis for discussion of appropriate and inappropriate uses for gene therapy in horses by the veterinary community and guide expansion of methods to detect inappropriate uses by the regulatory community.
Collapse
Affiliation(s)
- Joanne Haughan
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Mary A Robinson
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA.,Pennsylvania Equine Toxicology & Research Center, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
4
|
Moreno-Nombela S, Romero-Parra J, Ruiz-Ojeda FJ, Solis-Urra P, Baig AT, Plaza-Diaz J. Genome Editing and Protein Energy Malnutrition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:215-232. [DOI: 10.1007/978-981-19-5642-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Oyelami FO, Usman T, Suravajhala P, Ali N, Do DN. Emerging Roles of Noncoding RNAs in Bovine Mastitis Diseases. Pathogens 2022; 11:pathogens11091009. [PMID: 36145441 PMCID: PMC9501195 DOI: 10.3390/pathogens11091009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant class of RNA with varying nucleotide lengths. They have been shown to have great potential in eutherians/human disease diagnosis and treatments and are now gaining more importance for the improvement of diseases in livestock. To date, thousands of ncRNAs have been discovered in the bovine genome and the continuous advancement in deep sequencing technologies and various bioinformatics tools has enabled the elucidation of their roles in bovine health. Among farm animals' diseases, mastitis, a common inflammatory disease in cattle, has caused devastating economic losses to dairy farmers over the last few decades. Here, we summarize the biology of bovine mastitis and comprehensively discuss the roles of ncRNAs in different types of mastitis infection. Based on our findings and relevant literature, we highlighted various evidence of ncRNA roles in mastitis. Different approaches (in vivo versus in vitro) for exploring ncRNA roles in mastitis are emphasized. More particularly, the potential applications of emerging genome editing technologies, as well as integrated omics platforms for ncRNA studies and implications for mastitis are presented.
Collapse
Affiliation(s)
- Favour Oluwapelumi Oyelami
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Tahir Usman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana 690525, Kerala, India
| | - Nawab Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Duy N. Do
- Faculty of Veterinary Medicine, Viet Nam National University of Agriculture, Hanoi 100000, Vietnam
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: ; Tel.: +1-9029578789
| |
Collapse
|
6
|
Campbell MLH. Ethics: use and misuse of assisted reproductive techniques across species. REPRODUCTION AND FERTILITY 2022; 2:C23-C28. [PMID: 35118394 PMCID: PMC8801020 DOI: 10.1530/raf-21-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
The boundaries of what we are able to do using ARTs are fast-moving. In both human and veterinary medicine, this presents a fundamental question: 'Just because we can, should we?' or, to rephrase the same question: 'How can we distinguish between what is a use and a misuse of an ART, across species?' This paper assesses the scientific evidence base for and against the use of ARTs and offers a personal opinion on how we can use such evidence to inform an ethical distinction between justifiable and unjustifiable uses of the techniques. It is argued that the law provides a necessary but insufficient basis for such distinctions. Based on the evidence about harms and benefits, ARTs may be classified into three groups: those which should be rarely used; those for which current evidence supports arguments both for and against their use and those which there is an ethical imperative to use. To which category a particular ART falls into varies depending upon the species to which it is being applied and the reason we are using it. In order to ensure that our ethical oversight keeps up with our technical prowess, the medical and veterinary professions should keep discussing and debating the moral basis of the use of ARTs, not only with each other but also with the lay public. Lay summary The use of assisted reproductive techniques (ARTs) has become commonplace in both human and veterinary medicine. Technical limitations are rapidly advancing. This raises a fundamental issue: 'How can we distinguish between what is a use and a misuse of an ART, across species?'. 'Misuse' may be defined both in terms of physical and psychological harms and of moral disquiet about 'interfering with nature'. This paper assesses the scientific evidence base for and against the use of ARTs and provides a personal opinion on how we can use such evidence to inform an ethical distinction between justifiable and unjustifiable uses of the techniques. We need to consider not only legal but also non-legal ethical justifications for their use. Based on the evidence about harms and benefits, ARTs may be classified into three groups: those which should be rarely used; those for which current evidence supports arguments both for and against their use and those for which there is an ethical imperative to use. To which category a particular ART falls into varies depending upon the species to which it is being applied and the reason we are using it. Open discussion between the medical and veterinary professions and the public is necessary to ensure that ethical oversight of the use of ARTs across species keeps up with technical developments.
Collapse
Affiliation(s)
- Madeleine L H Campbell
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, South Mymms, UK
| |
Collapse
|
7
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
8
|
Singh P, Ali SA. Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals. Vet Sci 2021; 8:122. [PMID: 34209174 PMCID: PMC8309983 DOI: 10.3390/vetsci8070122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.
Collapse
Affiliation(s)
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India;
| |
Collapse
|
9
|
Dasgupta I, Flotte TR, Keeler AM. CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. Hum Gene Ther 2021; 32:275-293. [PMID: 33750221 PMCID: PMC7987363 DOI: 10.1089/hum.2021.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022] Open
Abstract
Precise gene manipulation by gene editing approaches facilitates the potential to cure several debilitating genetic disorders. Gene modification stimulated by engineered nucleases induces a double-stranded break (DSB) in the target genomic locus, thereby activating DNA repair mechanisms. DSBs triggered by nucleases are repaired either by the nonhomologous end-joining or the homology-directed repair pathway, enabling efficient gene editing. While there are several ongoing ex vivo genome editing clinical trials, current research underscores the therapeutic potential of CRISPR/Cas-based (clustered regularly interspaced short palindrome repeats-associated Cas nuclease) in vivo gene editing. In this review, we provide an overview of the CRISPR/Cas-mediated in vivo genome therapy applications and explore their prospective clinical translatability to treat human monogenic disorders. In addition, we discuss the various challenges associated with in vivo genome editing technologies and strategies used to circumvent them. Despite the robust and precise nuclease-mediated gene editing, a promoterless, nuclease-independent gene targeting strategy has been utilized to evade the drawbacks of the nuclease-dependent system, such as off-target effects, immunogenicity, and cytotoxicity. Thus, the rapidly evolving paradigm of gene editing technologies will continue to foster the progress of gene therapy applications.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Allison M. Keeler
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
10
|
McCarron A, Parsons D, Donnelley M. Animal and Cell Culture Models for Cystic Fibrosis: Which Model Is Right for Your Application? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:228-242. [PMID: 33232694 DOI: 10.1016/j.ajpath.2020.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Over the past 30 years, a range of cystic fibrosis (CF) animal models have been generated for research purposes. Different species, including mice, rats, ferrets, rabbits, pigs, sheep, zebrafish, and fruit flies, have all been used to model CF disease. While access to such a variety of animal models is a luxury for any research field, it also complicates the decision-making process when it comes to selecting the right model for an investigation. The purpose of this review is to provide a guide for selecting the most appropriate CF animal model for any given application. In this review, the characteristics and phenotypes of each animal model are described, along with a discussion of the key considerations that must be taken into account when choosing a suitable animal model. Available in vitro systems of CF are also described and can offer a useful alternative to using animal models. Finally, the future of CF animal model generation and its use in research are speculated upon.
Collapse
Affiliation(s)
- Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
11
|
From Mice to Monkeys? Beyond Orthodox Approaches to the Ethics of Animal Model Choice. Animals (Basel) 2020; 10:ani10010077. [PMID: 31906319 PMCID: PMC7022287 DOI: 10.3390/ani10010077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
Simple Summary New tools, allowing scientists to make precise changes to mammal genomes, have made possible future increased use of larger mammals in biomedical research, such as primates, pigs, and dogs. This paper addresses ethical issues that are raised by using larger mammals instead of smaller ones in this research. Because scientists who use animals in research follow strict guidelines, we first examine what those guidelines suggest for using larger mammals. We then consider what philosophers, who write about the ethics of animal use, consider as the important questions in evaluating which (if any) animals are acceptable to use in research. We find that philosophical perspectives have typically been interested in the question of when or if animal use is justified, while biomedical research guidance has assumed that animal use is justified but defined specific limits to that use. To address directly the ethical questions that arise in the practice of biomedical research in selecting which animals to use, we consider an approach to ethics that is focused on character and living well (or flourishing). This paper is valuable to society in drawing attention to the ethical questions, rather than merely the scientific issues, that are important in selecting which animals to use in biomedical research. Abstract Recent developments in genome editing tools, along with limits in the translational potential of rodent models of human disease, have spurred renewed biomedical research interest in large mammals like nonhuman primates, pigs, and dogs. Such scientific developments raise ethical issues about the use of these animals in comparison with smaller mammals, such as mice and rats. To examine these ethical questions, we first consider standard (or “orthodox”) approaches, including ethics oversight within biomedical research communities, and critical theoretical reflections on animal research, including rights-based and utilitarian approaches. We argue that oversight of biomedical research offers guidance on the profession’s permitted uses of animals within a research setting and orthodox approaches to animal ethics questions when and whether animals should be used in biomedicine; however, neither approach sufficiently investigates the nuances of ethical practices within the research setting. To fill this lacuna, we consider a virtue ethical approach to the use of specific animal models in biomedicine. From this perspective, we argued that limitations on flourishing for large mammals in a research setting, as well as potential human-animal bonds, are two sources of likely ethical tensions in animal care and use in the context of larger mammals.
Collapse
|
12
|
de Graeff N, Jongsma KR, Johnston J, Hartley S, Bredenoord AL. The ethics of genome editing in non-human animals: a systematic review of reasons reported in the academic literature. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180106. [PMID: 30905297 PMCID: PMC6452271 DOI: 10.1098/rstb.2018.0106] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, new genome editing technologies have emerged that can edit the genome of non-human animals with progressively increasing efficiency. Despite ongoing academic debate about the ethical implications of these technologies, no comprehensive overview of this debate exists. To address this gap in the literature, we conducted a systematic review of the reasons reported in the academic literature for and against the development and use of genome editing technologies in animals. Most included articles were written by academics from the biomedical or animal sciences. The reported reasons related to seven themes: human health, efficiency, risks and uncertainty, animal welfare, animal dignity, environmental considerations and public acceptability. Our findings illuminate several key considerations about the academic debate, including a low disciplinary diversity in the contributing academics, a scarcity of systematic comparisons of potential consequences of using these technologies, an underrepresentation of animal interests, and a disjunction between the public and academic debate on this topic. As such, this article can be considered a call for a broad range of academics to get increasingly involved in the discussion about genome editing, to incorporate animal interests and systematic comparisons, and to further discuss the aims and methods of public involvement. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Nienke de Graeff
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| | - Josephine Johnston
- Research Department, The Hastings Center, 21 Malcolm Gordon Road, Garrison, NY 10524, USA
| | - Sarah Hartley
- The University of Exeter Business School, University of Exeter, Rennes Drive, Exeter EX4 4PU, UK
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| |
Collapse
|
13
|
Austin ED, West J, Loyd JE, Hemnes AR. Translational Advances in the Field of Pulmonary Hypertension Molecular Medicine of Pulmonary Arterial Hypertension. From Population Genetics to Precision Medicine and Gene Editing. Am J Respir Crit Care Med 2017; 195:23-31. [PMID: 27398627 DOI: 10.1164/rccm.201605-0905pp] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
| | - James West
- 2 Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James E Loyd
- 2 Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna R Hemnes
- 2 Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
14
|
Bhat SA, Malik AA, Ahmad SM, Shah RA, Ganai NA, Shafi SS, Shabir N. Advances in genome editing for improved animal breeding: A review. Vet World 2017; 10:1361-1366. [PMID: 29263600 PMCID: PMC5732344 DOI: 10.14202/vetworld.2017.1361-1366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 01/05/2023] Open
Abstract
Since centuries, the traits for production and disease resistance are being targeted while improving the genetic merit of domestic animals, using conventional breeding programs such as inbreeding, outbreeding, or introduction of marker-assisted selection. The arrival of new scientific concepts, such as cloning and genome engineering, has added a new and promising research dimension to the existing animal breeding programs. Development of genome editing technologies such as transcription activator-like effector nuclease, zinc finger nuclease, and clustered regularly interspaced short palindromic repeats systems begun a fresh era of genome editing, through which any change in the genome, including specific DNA sequence or indels, can be made with unprecedented precision and specificity. Furthermore, it offers an opportunity of intensification in the frequency of desirable alleles in an animal population through gene-edited individuals more rapidly than conventional breeding. The specific research is evolving swiftly with a focus on improvement of economically important animal species or their traits all of which form an important subject of this review. It also discusses the hurdles to commercialization of these techniques despite several patent applications owing to the ambiguous legal status of genome-editing methods on account of their disputed classification. Nonetheless, barring ethical concerns gene-editing entailing economically important genes offers a tremendous potential for breeding animals with desirable traits.
Collapse
Affiliation(s)
- Shakil Ahmad Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar - 190 006, Jammu and Kashmir, India
| | - Abrar Ahad Malik
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar - 190 006, Jammu and Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar - 190 006, Jammu and Kashmir, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar - 190 006, Jammu and Kashmir, India
| | - Nazir Ahmad Ganai
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar - 190 006, Jammu and Kashmir, India
| | - Syed Shanaz Shafi
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar - 190 006, Jammu and Kashmir, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar - 190 006, Jammu and Kashmir, India
| |
Collapse
|