1
|
Liu L, Dai J, Yang Q, Lv L. A comprehensive review on anti-allergic natural bioactive compounds for combating food allergy. Food Res Int 2025; 201:115565. [PMID: 39849714 DOI: 10.1016/j.foodres.2024.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/18/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Food allergy poses a great challenge to food safety and public health worldwide. Currently, clinical symptoms are primarily managed with medications, which can lead to drug resistance, adverse effects, and disruptions in gut flora balance. As a result, there has been a focus on researching safe and effective anti-allergic natural ingredients. This paper provides a comprehensive overview of food allergy mechanisms, methods of assessment of anti-food allergy studies, and a classification of natural substances with anti-allergic properties. It also examines the anti-allergic effects of these substances on food allergies and investigates gut microbiota changes induced by these natural bioactives, highlighting their significance to food allergies.Natural actives with anti-food allergic properties may alleviate allergic reactions through multiple targets and pathways. These mechanisms include promoting a shift in the Th1/Th2 balance, reducting IgE synthesis, preventing cellular degranulation and reducing the release of allergic mediator. The gut environment is closely related to food allergy and there is a significant interaction between the two. By targeting the intestinal flora, we can adopt dietary interventions to effectively address and control food allergies. This provides valuable insights for the future development of functional foods targeting the alleviation of food allergies.
Collapse
Affiliation(s)
- Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jing Dai
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
2
|
Zhong H, Li J, Cheng JH. Targeting different signaling pathways for food allergy regulation and potential therapy: a review. Crit Rev Food Sci Nutr 2023; 64:12860-12877. [PMID: 37707435 DOI: 10.1080/10408398.2023.2257798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rising incidence rate of food allergy is attracting more intention. The pathogenesis of food allergy is complex and its definite regulatory mechanism is not utterly understood. Exploring the molecular mechanism of food allergy to help find effective methods that can prevent or treat food allergy is widely necessary. Recently, targeting cellular signaling pathways have been employed as novel approaches to discover food allergy therapy. Supplementing probiotics and bioactive compounds with anti-allergic property are believed feasible approaches for food allergy therapy. These probiotics or bioactive compounds affect food allergy by regulating cellular signaling pathways, and ultimately alleviate food allergy. This review aims to report systematic information about the knowledge of signaling pathways participated in food allergy, the alterations of these signaling pathways during food allergy that treated with probiotics and bioactive compounds are discussed as well. Further studies on the mechanism of signaling pathway network regulating food allergy and the precise action mechanism of probiotics and bioactive compounds are in the urgent need to help develop efficient treatment or complete prevention. We hope to help scientists understand food allergy systematically.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
3
|
Zhao Y, Song P, Yin S, Fan T, Li F, Ge X, Liu T, Xu W, Xu S, Chen L. Onchidium struma polysaccharides exhibit hypoglycemic activity and modulate the gut microbiota in mice with type 2 diabetes mellitus. Food Funct 2023; 14:1937-1951. [PMID: 36691957 DOI: 10.1039/d2fo02450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Onchidium struma polysaccharides (OsPs) are natural biologically active compounds, and our previous work showed that they can inhibit the activity of α-glucosidase in vitro, showing potential hypoglycemic activity. However, the effects of OsPs on type 2 diabetes mellitus (T2DM) in vivo remain unknown. Thus, the anti-diabetic activity of OsPs was evaluated in the present study in diabetic mice. The results showed that OsPs can significantly ameliorate the features of T2DM in mice by improving the levels of fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and pro-inflammatory factors, and ameliorating insulin resistance. Furthermore, OsPs can significantly improve biochemical indicators, decrease the contents of total cholesterol (TC) and triglyceride (TG), and reduce lipid accumulation in the liver. The possible mechanism of the prevention and treatment of T2DM by OsPs may involve the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT-1) signaling pathway. OsPs can regulate the dysbiosis of gut microbiota and reverse the abundance of Lactobacillus in mice with T2DM. Moreover, OsPs significantly increased the concentration of short-chain fatty acids (SCFAs) in mice with T2DM. Our results indicate that OsPs can be used as a novel food supplement for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Yunfeng Zhao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Peilin Song
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Public Analysis Department, Pharmaceutical Research Institute of Jumpcan Pharmaceutical Group Co., Ltd, Taizhou, Jiangsu 225300, China
| | - Shuai Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Tianyong Fan
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng 224051, China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| | - Su Xu
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, China.
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
4
|
Xiang X, Jiang Q, Yang H, Zhou X, Chen Y, Chen H, Liu S, Chen L. A review on shellfish polysaccharides: Extraction, characterization and amelioration of metabolic syndrome. Front Nutr 2022; 9:974860. [PMID: 36176638 PMCID: PMC9513460 DOI: 10.3389/fnut.2022.974860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Shellfish are diverse, widely distributed organisms that are a rich source of biological resources. Polysaccharides are an important components in shellfish, hence a great deal of attention has been directed at isolation and characterization of shellfish polysaccharides because of their numerous health benefits. Differences in shellfish species, habits, and environment result in the diversity of the structure and composition of polysaccharides. Thus, shellfish polysaccharides possess special biological activities. Studies have shown that shellfish polysaccharides exert biological activities, including antioxidant, antitumor, immune-regulation, hypolipidemic, antihypertensive, and antihyperglycemic effects, and are widely used in cosmetics, health products, and medicine. This review spotlights the extraction and purification methods of shellfish polysaccharides and analyses their structures, biological activities and conformational relationships; discusses the regulatory mechanism of shellfish polysaccharides on hyperlipidemia, hypertension, and hyperglycemia caused by lipid metabolism disorders; and summarizes its alleviation of lipid metabolism-related diseases. This review provides a reference for the in-depth development and utilization of shellfish polysaccharides as a functional food to regulate lipid metabolism-related diseases. To achieve high value utilization of marine shellfish resources while actively promoting the development of marine biological industry and health industry.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- *Correspondence: Shulai Liu,
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lin Chen,
| |
Collapse
|
5
|
The natural substances with anti-allergic properties in food allergy. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Lee DG, Lee YJ, Park SH, Park HR, Kang H, Kim JE. Preventive Effects of a Human Hematopoietic Mesenchymal Stem Cell (hHMSC) Therapy in Ovalbumin-Induced Food Allergy. Biomedicines 2022; 10:511. [PMID: 35203718 PMCID: PMC8962321 DOI: 10.3390/biomedicines10020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
No effective therapeutic strategies have been developed against food allergies. Immunomodulation during early infant period could prevent the development of food allergies. We investigated the preventive effects of human hematopoietic mesenchymal stem cells (hHMSCs) in mice with ovalbumin (OVA)-induced food allergy. BALB/c mice with OVA-induced food allergy were divided into 3 groups, and each group was treated with hHMSCs or hHMSC culture medium (hHMSC-CM) or saline. Ear thickness, allergy score, rectal temperature, and diarrhea occurrence were checked. Total IgE, OVA-specific IgE, and mucosal mast cell protease-1 (mMCP-1) were measured by ELISA. Other allergic parameters were analyzed using histology specimens, RT-PCR, and flow cytometry. Treatment with hHMSCs or hHMSC-CM significantly suppressed the frequency of anaphylactic response and rectal temperature decline, reduced diarrhea, total IgE, OVA-specific IgE, and mMCP-1. While the treatment decreased the level of Th2 cytokines, it enhanced IL-10 and TGF-β1 mRNA. Exposure to hHMSC or hHMSC-CM did not generate regulatory T cells, but reduced mast cells. The immunomodulatory effect on the Th2 cytokines was greater in hHMSC-CM than in hHMSCs. hHMSC treatment may be a promising preventive intervention against food allergy. Further studies are needed to elucidate the key substances released from hHMSC to induce immune tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Jung-Eun Kim
- Department of Dermatology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea; (D.-G.L.); (Y.-J.L.); (S.-H.P.); (H.-R.P.); (H.K.)
| |
Collapse
|
7
|
Cai B, Pan J, Chen H, Chen X, Ye Z, Yuan H, Sun H, Wan P. Oyster polysaccharides ameliorate intestinal mucositis and improve metabolism in 5-fluorouracil-treated S180 tumour-bearing mice. Carbohydr Polym 2020; 256:117545. [PMID: 33483054 DOI: 10.1016/j.carbpol.2020.117545] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigated the potential role of gut microbiota in protecting the intestinal barrier and improving nutritional metabolism in 5-FU-treated S180 tumour-bearing mice after treatment with oyster polysaccharide (CHP). CHP, with an α-(1→4) d-linked glucose backbone and (→4,6)-α-d-Glc-(1→) branches every 4.7 residues on average, increased the villus height, crypt depth, mucosa thickness, villus surface area and V/C ratio; decreased the expression of IL-1β, IL-6, and TNF-α; and even restored the TP, ALB, PA, TRF, IgA, IgM and IgG levels to normal levels. All these factors are related to CHP increasing the propionic acid- and butyric acid-producing microorganisms and decreasing the production of Bacteroides, Prevotellaceae_UCG-001 and Rikenellaceae_RC9_gut_group, thus affecting the TLRs signalling pathway. In conclusion, CHP attenuates 5-FU-induced intestinal mucositis and malnutrition by regulating gut microbiota, and can improve the prognosis of patients receiving chemotherapy.
Collapse
Affiliation(s)
- Bingna Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, Guangdong, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, Guangdong, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510000, Guangdong, China
| | - Xin Chen
- School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, Guangdong, China
| | - Ziqing Ye
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Huabiao Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Huili Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Peng Wan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
8
|
Reyes-Pavón D, Cervantes-García D, Bermúdez-Humarán LG, Córdova-Dávalos LE, Quintanar-Stephano A, Jiménez M, Salinas E. Protective Effect of Glycomacropeptide on Food Allergy with Gastrointestinal Manifestations in a Rat Model through Down-Regulation of Type 2 Immune Response. Nutrients 2020; 12:nu12102942. [PMID: 32992996 PMCID: PMC7601722 DOI: 10.3390/nu12102942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycomacropeptide (GMP) is a bioactive peptide derived from milk κ-casein with immune-modulatory and anti-inflammatory properties. Food allergy (FA) is an adverse immune reaction with a broad spectrum of manifestations. Allergen intake induces persistent intestinal inflammation and tissue damage. In this study, the anti-allergic activity of GMP was evaluated using a rat ovalbumin (OVA)-induced FA model with gastrointestinal manifestation. Rats were orally GMP treated from 3 days prior and during FA development. The severity of food anaphylaxis and diarrheal episodes, antibody production and histamine level were measured. Histopathological changes, inflammation and predominant cytokine profile at intestine were analyzed. Oral GMP intake decreased clinical signs and diarrhea severity induced by allergen, with a significant reduction in intestinal edema and expression level of IL-1β and TNF-α. Prophylaxis with GMP also diminished serum anti-OVA IgE and IgG1, and histamine levels. GMP treatment markedly decreased eosinophil infiltration, mast cell and goblet cell hyperplasia, total IgE expression in intestine, and prevented histological changes in villi, crypts and internal muscularis layer. The treatment effectively suppressed IL-5, IL-13 and GATA3 expression and skewed the intestinal cytokine profile toward type 1 and regulatory. These results suggest that GMP may protect against FA through down-regulating the type 2 inflammatory response.
Collapse
Affiliation(s)
- Diana Reyes-Pavón
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico; (D.R.-P.); (D.C.-G.); (L.E.C.-D.)
| | - Daniel Cervantes-García
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico; (D.R.-P.); (D.C.-G.); (L.E.C.-D.)
- National Council of Science and Technology, 03940 Mexico City, Mexico
| | | | - Laura Elena Córdova-Dávalos
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico; (D.R.-P.); (D.C.-G.); (L.E.C.-D.)
| | - Andrés Quintanar-Stephano
- Department of Physiology and Pharmacology, Basic Science Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico;
| | - Mariela Jiménez
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico; (D.R.-P.); (D.C.-G.); (L.E.C.-D.)
- Correspondence: (M.J.); (E.S.); Tel.: +52-(449)-910-8424 (E.S.)
| | - Eva Salinas
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico; (D.R.-P.); (D.C.-G.); (L.E.C.-D.)
- Correspondence: (M.J.); (E.S.); Tel.: +52-(449)-910-8424 (E.S.)
| |
Collapse
|
9
|
Pratap K, Taki AC, Johnston EB, Lopata AL, Kamath SD. A Comprehensive Review on Natural Bioactive Compounds and Probiotics as Potential Therapeutics in Food Allergy Treatment. Front Immunol 2020; 11:996. [PMID: 32670266 PMCID: PMC7326084 DOI: 10.3389/fimmu.2020.00996] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Food allergy is rising at an alarming rate and is a major public health concern. Globally, food allergy affects over 500 million people, often starting in early childhood and increasingly reported in adults. Commercially, only one approved oral immunotherapy-based treatment is currently available and other allergen-based immunotherapeutic are being investigated in clinical studies. As an alternative approach, a substantial amount of research has been conducted on natural compounds and probiotics, focusing on the immune modes of action, and therapeutic uses of such sources to tackle various immune-related diseases. Food allergy is primarily mediated by IgE antibodies and the suppression of allergic symptoms seems to be mostly modulated through a reduction of allergen-specific IgE antibodies, upregulation of blocking IgG, and downregulation of effector cell activation (e.g., mast cells) or expression of T-helper 2 (Th-2) cytokines. A wide variety of investigations conducted in small animal models or cell-based systems have reported on the efficacy of natural bioactive compounds and probiotics as potential anti-allergic therapeutics. However, very few lead compounds, unlike anti-cancer and anti-microbial applications, have been selected for clinical trials in the treatment of food allergies. Natural products or probiotic-based approaches appear to reduce the symptoms and/or target specific pathways independent of the implicated food allergen. This broad range therapeutic approach essentially provides a major advantage as several different types of food allergens can be targeted with one approach and potentially associated with a lower cost of development. This review provides a brief overview of the immune mechanisms underlying food allergy and allergen-specific immunotherapy, followed by a comprehensive collection of current studies conducted to investigate the therapeutic applications of natural compounds and probiotics, including discussions of their mode of action and immunological aspects of their disease-modifying capabilities.
Collapse
Affiliation(s)
- Kunal Pratap
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Center for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Elecia B Johnston
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Center for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Center for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| | - Sandip D Kamath
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Center for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
10
|
Liu YF, Wu ZX, Zhang J, Liu YX, Liu ZY, Xie HK, Rakariyatham K, Zhou DY. Seasonal Variation of Lipid Profile of Oyster Crassostrea talienwhanensis from the Yellow Sea Area. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1737998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yan-Fei Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Zi-Xuan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Jing Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Yu-Xin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| | - Zhong-Yuan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Hong-Kai Xie
- National Engineering Research Center of Seafood, Dalian, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Kanyasiri Rakariyatham
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
- National Engineering Research Center of Seafood, Dalian, PR China
| |
Collapse
|
11
|
Xiong Q, Hu Y, Ye X, Song Z, Yuan J, Xiong B, Jing Y, Shi Y, Xu T, Wu J, Zhang Q, Liang J, Zhou L. Extraction, purification and characterization of sulphated polysaccharide from Bellamya quadrata and its stabilization roles on atherosclerotic plaque. Int J Biol Macromol 2020; 152:314-326. [PMID: 32109475 DOI: 10.1016/j.ijbiomac.2020.02.243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 11/28/2022]
Abstract
The aim of this paper was to investigate the extraction, purification and characterization of sulphated polysaccharide (BQPS) from Bellamya quadrata and its stabilization roles on atherosclerotic plaque. Firstly, crude polysaccharide (CBQP) from Bellamya quadrata was extracted by protease enzyme assisted extraction. Moreover, its optimal parameters were obtained by the response surface method as follows: the ratio of water to raw material of 24:1, enzyme dosage of 285 U/g, enzymolysis pH value of 4.7 and temperature of 67 °C. Secondly, CBQP was further purified to obtain the target polysaccharide BQPS by Q Sepharose Fast Flow and Sephacryl S-400 gel column chromatography. Then, the characterization of BQPS revealed that it possessed a total polysaccharide content of 91.88 ± 1.23%, sulfuric acid group content of 9.12 ± 1.59% and molecular weight of 91.1 kDa. BQPS was only consisted of glucose without any proteins. Finally, BQPS was confirmed to have a significant stabilizing effect on atherosclerotic plaque and its mechanism was related to the selective promotion of autophagy with the precisely right strength.
Collapse
Affiliation(s)
- Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China; Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Youdong Hu
- Department of Geriatric Medicine, Huai'an Second People's Hospital, Huai'an 223002, Jiangsu, China
| | - Xianying Ye
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zhuoyue Song
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Boyang Xiong
- Department of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, Jiangsu, China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yingying Shi
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Tingting Xu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jun Wu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Qianghua Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jian Liang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Li Zhou
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; Department of Intensive Care Unit, Dazhou Central Hospital, Dazhou 635000, Sichuan, China.
| |
Collapse
|
12
|
Xiong Q, Song Z, Hu W, Liang J, Jing Y, He L, Huang S, Wang X, Hou S, Xu T, Chen J, Zhang D, Shi Y, Li H, Li S. Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities. Crit Rev Food Sci Nutr 2018; 60:48-63. [PMID: 30285473 DOI: 10.1080/10408398.2018.1512472] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The further development of fishery resources is a hotspot in the development of the fishery industry. However, how to develop aquatic animal resources deeply is a key point to be solved in the fishery industry. Over the past decades, numerous aquatic animals have gained great attention in the development and utilization of their bioactive molecules which are of therapeutic applications as nutraceuticals and pharmaceuticals. Recent research revealed that aquatic animals are composed of many vital moieties, such as polysaccharides and proteins, which provide health benefits beyond basic nutrition. In particular, aquatic animal polysaccharides are gaining worldwide popularity owing to their high content, ease of extraction, specific structure, few side effects, prominent therapeutic potential and incorporation in functional foods and dietary supplements. Thus, tremendous research on the isolation, identification and bioactivities of polysaccharides has been carried out. This review presents comprehensive viewpoints on extraction, separation, purification, structural characterization and bioactivity of various polysaccharides from aquatic animals, such as sea cucumber, abalone, oyster and mussels. In addition, this review profiled a brief knowledge on both current challenges and future scope in aquatic animal polysaccharides field. The review will be a direction of deep processing in fishery resources, which is a hotspot, but technical bottleneck. Furthermore, the review could be served as a useful reference material for further investigation, production and application of polysaccharides from aquatic animals in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingping Xiong
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhuoyue Song
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Weihui Hu
- Division of Life Science, Center for Chinese Medicine, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Jian Liang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Lian He
- School of Nursing, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, PR China
| | - Song Huang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xiaoli Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Shaozhen Hou
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Tingting Xu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Jing Chen
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Danyan Zhang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yingying Shi
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Hailun Li
- Nephrological Department, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, PR China
| | - Shijie Li
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
13
|
Qin X, Fan X, Zhang L, Zheng H, Zhang C, Yuan J. Extraction, purification, and structure characterization of polysaccharides from Crassostrea rivularis. Food Sci Nutr 2018; 6:1621-1628. [PMID: 30258605 PMCID: PMC6145277 DOI: 10.1002/fsn3.695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 11/11/2022] Open
Abstract
Crude polysaccharide was prepared from Crassostrea rivularis by 30% (w/v) potassium hydroxide solution at 90°C for 120 min. Three fractions (OG1, OG2, and OG3) were purified by DEAE-52 cellulose and Sepharose 2B gel column chromatography. The chemical structures were determined using gas chromatography (GC), high-performance gel permeation chromatography (HPGPC), Fourier-transform infrared (FT-IR) spectroscopy, and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The results indicated that OG1 was composed of rhamnose and little mannose (8.71%), the ratio of Rha: Gal: Xyl: Fuc in OG3 were 14:5.5:3:1. And their average molecular weights (Mw) were about 1.66 × 106 and 2.33 × 106 Da, respectively. OG2 was composed only of glucose (98.23%), which means it was glycogen. OG2 was consisted mainly of →4)- α-D-Glc-(1→, with the branch chain every 6.5 glucose residues on average, which is →4,6)-α-D-Glc-(1→ and trace amount of α-D-Glc-(1→ branched units. The Mw was 2.27 × 106 Da. It provides the bases for the bioactivity research.
Collapse
Affiliation(s)
- Xiaoming Qin
- South China Sea Bio‐Resource Exploitation and Utilization Collaborative Innovation CenterZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Xiuping Fan
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyZhanjiangChina
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Lianyi Zhang
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Huina Zheng
- South China Sea Bio‐Resource Exploitation and Utilization Collaborative Innovation CenterZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Chaohua Zhang
- South China Sea Bio‐Resource Exploitation and Utilization Collaborative Innovation CenterZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyZhanjiangChina
- National Research and Development Branch Center for Shellfish ProcessingZhanjiangChina
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Jianjun Yuan
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine AlgaeQuanzhouChina
| |
Collapse
|
14
|
Lin S, Hao G, Long M, Lai F, Li Q, Xiong Y, Tian Y, Lai D. Oyster (Ostrea plicatula Gmelin) polysaccharides intervention ameliorates cyclophosphamide—Induced genotoxicity and hepatotoxicity in mice via the Nrf2—ARE pathway. Biomed Pharmacother 2017; 95:1067-1071. [DOI: 10.1016/j.biopha.2017.08.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
|