1
|
Das PP, Gul MZ, Weber AM, Srivastava RK, Marathi B, Ryan EP, Ghazi IA. Rice Bran Extraction and Stabilization Methods for Nutrient and Phytochemical Biofortification, Nutraceutical Development, and Dietary Supplementation. Nutr Rev 2025; 83:692-712. [PMID: 39657228 PMCID: PMC11894254 DOI: 10.1093/nutrit/nuae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Rice is a global staple food crop for nearly half of the world's population. Rice bran along with the germ are essential components of whole-grain rice and have immense potential for enhancing human nutrition. Rice bran has a unique composition and distinct requirements for processing before it can be consumed by humans when compared with other cereal brans. The comprehensive overview and synthesis of rice bran processing include extending the shelf life for functional food product development and extraction of bioactive components. This narrative review highlights established and innovative stabilization approaches, including solvent extraction and enzymatic treatments, which are critical methods and technologies for wider rice bran availability. The nutrient and phytochemical profiles of rice bran may improve with new cultivar development and food-fortification strategies. The postharvest agricultural practices and processing techniques can reduce food waste while also supporting growers to produce novel pigmented cultivars that can enhance nutritional value for human health.
Collapse
Affiliation(s)
- Prajna Priyadarshini Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Mir Zahoor Gul
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Annika M Weber
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, United States
| | - Rakesh K Srivastava
- Genomics, Pre-breeding, and Bioinformatics (GPB), Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Balram Marathi
- Department of Genetics and Plant Breeding, Agricultural College, Warangal, Telangana 506007, India
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University and Colorado School of Public Health, Fort Collins, CO 80523, United States
| | - Irfan A Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Siripattanakulkajorn C, Sombutsuwan P, Villeneuve P, Baréa B, Domingo R, Lebrun M, Aryusuk K, Durand E. Physical properties and oxidative stability of mayonnaises fortified with natural deep eutectic solvent, either alone or enriched with pigmented rice bran. Food Chem 2025; 463:141124. [PMID: 39243623 DOI: 10.1016/j.foodchem.2024.141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
This article explores the novel use of natural deep eutectic solvents (NaDES) in real food by incorporating them into mayonnaise, either alone or with pigmented rice bran (RB). Results showed that NaDES-fortified mayonnaises could prevent lipid oxidation. Notably, mayonnaises with NaDES2 (betaine:sucrose:water) significantly reduced the production of lipid hydroperoxides, which was maintained to an average of 2.6 mmol LOOH/kg oil, which is 2.9 times lower than the control (7.5 mmol LOOH/kg oil), or 7.4 times lower than mayonnaise with citric acid (19.1 mmol LOOH/kg oil). NaDES2-fortified mayonnaises maintained high tocopherols levels (0.97 g/Kg oil) and reduced volatile compounds from secondary lipid oxidation. This effect may result from NaDES altering the aqueous phase properties of mayonnaise, notably by reducing water activity by ∼0.1. Finally, pre-enrichment of the NaDES phase with bioactive molecules (e.g. from pigmented RB) represents an innovative perspective to promote the health benefits of formulated foods.
Collapse
Affiliation(s)
- Chatchai Siripattanakulkajorn
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Piraporn Sombutsuwan
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Pierre Villeneuve
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Bruno Baréa
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Romain Domingo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Marc Lebrun
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Kornkanok Aryusuk
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand; Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand.
| | - Erwann Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France.
| |
Collapse
|
3
|
Lomarat P, Phechkrajang C, Sunghad P, Anantachoke N. Raman spectroscopy coupled with the PLSR model: A rapid method for analyzing gamma-oryzanol content in rice bran oil. Food Chem X 2024; 24:101923. [PMID: 39525060 PMCID: PMC11550018 DOI: 10.1016/j.fochx.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Rice bran oil (RBO) is widely used in food, nutraceutical, and cosmetic industries, due to its γ-oryzanol content, a key quality indicator. This study developed a rapid, non-destructive method for quantifying γ-oryzanol in RBO using Raman spectroscopy combined with partial least squares regression (PLSR). The optimal PLSR model, based on orthogonal signal correction (OSC)-pretreated data of Raman spectra from 800 to 1800 cm-1, demonstrated high accuracy with a strong R2-Pearson correlation coefficient of 0.9827 and low root mean square error of prediction (RMSEP) of 0.5314. Principal component analysis (PCA) of OSC-pretreated data showed improved sample grouping by concentration of γ-oryzanol compared to untreated data. Additionally, Bland-Altman plots comparing results from Raman and HPLC methods showed random scatter within ±2 SD of the mean difference, confirming the method's reliability. This study indicates that Raman spectroscopy can serve as a reliable method for determining γ-oryzanol content in RBO products within the related industries.
Collapse
Affiliation(s)
- Pattamapan Lomarat
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Chutima Phechkrajang
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pawida Sunghad
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Chaikul P, Kanlayavattanakul M, Khongkow M, Jantimaporn A, Lourith N. Anti-skin ageing activities of rice (Oryza sativa) bran soft and hard waxes in cultured skin cells. Int J Cosmet Sci 2024; 46:162-174. [PMID: 37840342 DOI: 10.1111/ics.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Rice (Oryza sativa) bran waxes, the by-products of rice bran oil manufacturing, are widely used as inactive components in several preparations. Nevertheless, the function of rice bran waxes against skin ageing has never been reported. This study aimed to investigate thermal property and fatty acid profile of rice bran waxes, including rice bran soft (RBS) and hard (RBH) waxes, and the activities against skin ageing in cultured skin cells. METHODS Thermal property and fatty acid profile of rice bran waxes were analysed by differential scanning calorimetry and gas chromatography-mass spectrometry, respectively. The cytotoxicity assay of waxes was performed in B16F10 melanoma cells, human skin fibroblasts and co-culture cells of HaCaT cells and human skin fibroblasts. The non-cytotoxic concentrations of waxes were evaluated for their activities against skin ageing, including melanogenesis assay, antioxidant activity, collagen content analysis, matrix metalloproteinase-1 and matrix metalloproteinase-2 inhibitory assay and anti-inflammatory activity. RESULTS Thermal property indicated the endotherm peaks with melting temperatures at 40.89 ± 0.27°C and 69.64 ± 0.34°C for RBS and RBH, respectively. The main fatty acids in RBS were oleic (31.68 ± 0.75%) and linoleic acids (27.19 ± 0.40%), whereas those in RBH were palmitic (36.24 ± 1.08%) and stearic acids (35.21 ± 4.51%). The cytotoxicity assay in single cells and co-culture cells showed the non-cytotoxicity of RBS (0.0001-1 mg/mL) and RBH (0.0001-0.1 mg/mL). The anti-skin ageing activities of 1 mg/mL RBS and 0.1 mg/mL RBH included the melanogenesis inhibition by suppression of tyrosinase and tyrosinase-related protein-2 enzymes, the antioxidant activity by cellular protection against cell damage and cell death, the collagen stimulation, the matrix metalloproteinase-1 and matrix metalloproteinase-2 suppression and the anti-inflammation. CONCLUSIONS The study results suggest that RBS and RBH can potentially be applied as the functional ingredients in formulations against skin ageing as well as provide the superior benefit on skin moisturization.
Collapse
Affiliation(s)
- Puxvadee Chaikul
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Mayuree Kanlayavattanakul
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Angkana Jantimaporn
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nattaya Lourith
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
5
|
Zheng L, Wang S, Yang Y, Zheng X, Xiao D, Ai B, Sheng Z. Volatile aroma compounds of passion fruit seed Oils: HS-GC-IMS analysis and interpretation. Food Chem X 2024; 21:101212. [PMID: 38389576 PMCID: PMC10881532 DOI: 10.1016/j.fochx.2024.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The physicochemical properties, fatty acid composition and volatile aroma compounds of cold-pressed passion fruit seed oils were analyzed. The oils were rich in linoleic acid, oleic acid and volatile compounds. A total of 108 volatile compounds including 17 aldehydes, 23 alcohols, 21 esters, 19 ketones, 6 acids, 9 alkenes, 5 pyrazines and 8 others were identified using HS-GC-IMS. The significant differences of volatile compounds in the purple and yellow passion fruit seed oils were observed via the GalleryPlot graph and distinguished by principal component analysis. The results showed that acids, alcohols, esters and ketones were major aromatic compounds in purple passion fruit seed oils, which contribute to flavors such as flowery, fruity, creamy, yogurt. Whereas the contents of aldehydes, pyrazines, alkenes were higher in yellow passion fruit seed oils, which contributes to fatty and nutty odors. The findings filled in our understanding of volatilization characteristics in passion fruit seed oils.
Collapse
Affiliation(s)
- Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Shenwan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
- Huazhong Agricultural University, College of Food Science and Technology, Wuhan, Hubei 430070, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zhanwu Sheng
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
6
|
SAWANGWAN T, KAJADMAN D, KULCHANANIMIT R. Determination of prebiotic properties of rice bran extract. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:222-226. [PMID: 38966046 PMCID: PMC11220324 DOI: 10.12938/bmfh.2023-090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/03/2024] [Indexed: 07/06/2024]
Abstract
This research investigated and compared the prebiotic properties of a rice bran extract obtained through commercial xylanase extraction in comparison with water extraction. Prebiotic properties were evaluated by probiotic growth stimulation (Lacticaseibacillus casei and Lactiplantibacillus plantarum) and gastrointestinal pathogen inhibition (Bacillus cereus and Escherichia coli). The rice bran extract obtained with xylanase (RB1) displayed significantly higher total polysaccharide and total reducing sugar contents than those obtained with water (RB2; p<0.05). After extraction for 30 min, RB1 exhibited the highest total polysaccharide and total reducing sugar contents. HPLC (high performance liquid chromatography) analysis revealed that RB1 primarily contained xylose, while RB2 contained less glucose and lacked other sugar derivatives. RB1 proved effective in stimulating the growth of L. casei and L. plantarum, surpassing even inulin (a commercial prebiotic). Furthermore, it demonstrated a high potential for inhibiting the growth of pathogenic B. cereus and E. coli, comparable to inulin. In contrast, RB2 exhibited lower inhibitory capacity against B. cereus and E. coli.
Collapse
Affiliation(s)
- Thornthan SAWANGWAN
- Biotechnology Department, Faculty of Science, Ramkhamhaeng
University, 2086 Huamark, Bangkapi, Bangkok 10240, Thailand
| | - Daleena KAJADMAN
- Biotechnology Department, Faculty of Science, Ramkhamhaeng
University, 2086 Huamark, Bangkapi, Bangkok 10240, Thailand
| | - Ratchanon KULCHANANIMIT
- Biotechnology Department, Faculty of Science, Ramkhamhaeng
University, 2086 Huamark, Bangkapi, Bangkok 10240, Thailand
| |
Collapse
|
7
|
Liu Z, Liu X, Ma Z, Guan T. Phytosterols in rice bran and their health benefits. Front Nutr 2023; 10:1287405. [PMID: 37899831 PMCID: PMC10600523 DOI: 10.3389/fnut.2023.1287405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
With the continuous technological innovation in the high-value utilization of rice bran byproducts, rice bran oil retains a higher concentration of beneficial components such as a well-balanced composition of fatty acids and abundant phytosterols. This makes it a highly nutritious and healthy vegetable oil. This review provides an overview of the advancements made in separating, purifying, and processing phytosterols in rice bran oil. The review also introduces techniques for assessing the stability of rice bran oil. Moreover, the review emphasizes the nutritional value of phytosterols found in rice bran oil, highlighting their various health benefits, including their anticancer, anti-inflammatory, anti-allergic, antibacterial, cholesterol-lowering, skin-protective, anti-obesity, anti-diabetic, neuroprotective, gastroprotective, and immune-enhancing effects. Attaining a comprehensive understanding of the research progress made in phytosterols derived from rice bran oil can offer valuable guidance for the efficient utilization of rice bran.
Collapse
Affiliation(s)
- Zhaoguo Liu
- Changchun Institute of Technology, Changchun, China
| | - Xiaoxiao Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Zhu R, Tan S, Wang Y, Zhang L, Huang L. Physicochemical Properties and Hypolipidemic Activity of Dietary Fiber from Rice Bran Meal Obtained by Three Oil-Production Methods. Foods 2023; 12:3695. [PMID: 37835348 PMCID: PMC10572562 DOI: 10.3390/foods12193695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the effects of three oil production methods on the physicochemical properties of dietary fiber from rice bran flour, and the hypolipidemic effects of the dietary fibers were investigated in vitro and in vivo. The particle size results showed that the organic-solvent-impregnated rice bran meal dietary fiber (N-RBDF) had the smallest average particle size and the aqueous enzymatic rice bran meal dietary fiber (E-RBDF) had the narrowest particle size distribution. Scanning electron microscopy (SEM) results demonstrated that all three kinds of rice bran meal dietary fibers (RBDFs) were irregularly flaky. Fourier transform infrared spectroscopy (FT-IR) results revealed that the three RBDFs had similar reactive groups, and X-ray diffraction (XRD) results indicated that all three RBDFs were cellulose type I crystals. The results of thermogravimetric analysis showed that the lignin content of N-RBDF was significantly lower than that of the other two. Among the three kinds of RBDFs, E-RBDF had higher water retention capacity, swelling capacity, oil holding capacity, and adsorption capacity for cholesterol and sodium bile salts. The results of experimental studies in hyperlipidemic rats showed that all three kinds of RBDFs significantly reduced triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and elevated high-density lipoprotein cholesterol (HDL-C) in the serum of hyperlipidemic rats; they also significantly lowered malondialdehyde (MDA) and elevated total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities in the livers of rats. In addition, all three kinds of RBDFs decreased aminotransferase (ALT) and aminotransferase (AST) activity in serum and also improved liver steatosis and reduced atherosclerosis index (AI) in rats with hyperlipidemia. Our study provides a reference for the development and utilization of rice bran meal and the application of rice bran meal dietary fiber in food processing.
Collapse
Affiliation(s)
- Renwei Zhu
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Sha Tan
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Yayi Wang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Linwei Zhang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Liang Huang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| |
Collapse
|
9
|
Wongwaiwech D, Kamchonemenukool S, Ho CT, Li S, Majai N, Rungrat T, Sujipuli K, Pan MH, Weerawatanakorn M. Bioactives from Crude Rice Bran Oils Extracted Using Green Technology. Molecules 2023; 28:molecules28062457. [PMID: 36985429 PMCID: PMC10057060 DOI: 10.3390/molecules28062457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Crude rice bran oils from different rice cultivars and extraction methods bear different contents of nutraceuticals. The health benefits of lowering cholesterol activity of rice bran oil being confirmed by many reports are partly attributed to non-nutrient nutraceuticals, especially γ-oryzanol, phytosterols, and policosanols. As the world has been facing the global warming crisis, green extraction technology is gaining attention from many sectors. The current study aims to compare the nutraceutical composition with respect to γ-oryzanol, phytosterol, and policosanol content as well as the antioxidant properties of crude rice bran oils extracted from white and red rice bran using three green technologies, comparing with conventional hexane extraction. The data show that the traditional solvent extraction gave the highest oil yield percentage (26%), but it was not significantly different from subcritical liquefied dimethyl ether extraction (24.6%). Subcritical liquefied dimethyl ether extraction gave higher oil yield than supercritical CO2 extraction (15.5–16.2%). The crude rice bran oil extracted using subcritical liquefied dimethyl ether extraction produced the highest total phenolic contents and antioxidant activities. The highest γ-oryzanol content of the crude rice bran oil was found in oil extracted by conventional cold press (1370.43 mg/100 g). The γ-oryzanol content of the oil obtained via subcritical liquefied dimethyl ether extraction was high (1213.64 mg/100 g) compared with supercritical CO2 extraction. The red rice bran yielded the crude rice bran oil with the highest total phytosterol content compared with the white bran, and the oil from red rice bran extracted with subcritical liquefied dimethyl ether generated the highest total phytosterol content (1784.17 mg/100 g). The highest policosanol content (274.40 mg/100 g) was also found in oil obtained via subcritical liquefied dimethyl ether extraction.
Collapse
Affiliation(s)
- Donporn Wongwaiwech
- Department of Agro-Industry, Rajamangala University of Technology Lanna Tak, 41/1 Moo 7, Mai Ngam, Mueang, Tak 63000, Thailand
| | - Sudthida Kamchonemenukool
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Shiming Li
- Department of Food Science, College of Life Sciences, Huanggang Normal University, Huanggang 438000, China
| | - Nutthaporn Majai
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Tepsuda Rungrat
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Kawee Sujipuli
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-0629514194
| |
Collapse
|
10
|
Ruksiriwanich W, Linsaenkart P, Khantham C, Muangsanguan A, Sringarm K, Jantrawut P, Prom-u-thai C, Jamjod S, Yamuangmorn S, Arjin C, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Barba FJ, Sommano SR, Chutoprapat R, Boonpisuttinant K. Regulatory Effects of Thai Rice By-Product Extracts from Oryza sativa L. cv. Bue Bang 3 CMU and Bue Bang 4 CMU on Melanin Production, Nitric Oxide Secretion, and Steroid 5α-Reductase Inhibition. PLANTS (BASEL, SWITZERLAND) 2023; 12:653. [PMID: 36771737 PMCID: PMC9921347 DOI: 10.3390/plants12030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Alopecia and gray hair are common hair abnormalities affecting physical appearance and causing psychological problems. Chemical treatments partially restore hair disorders but have distressing side effects. Bioactive plant compounds constitute promising sources of potential medicinal substances instead of chemical agents, producing high side effects. In this study, we focused on the waste of local rice cultivars: Bue Bang 3 CMU (BB3CMU) and Bue Bang 4 CMU (BB4CMU) from the north of Thailand. The rice bran oil (RBO), defatted rice bran extract (DFRB), and rice husk (H) were determined for in vitro hair revitalization in melanin production, nitric oxide (NO) secretion, and steroid 5α-reductase inhibition. The results indicated that BB4CMU-RBO with high contents of iron, zinc, and free fatty acids showed a comparable induction of melanin production on melanocytes (130.18 ± 9.13% of control) to the standard drug theophylline with no significant difference (p > 0.05). This promising melanin induction could be related to activating the NO secretion pathway, with the NO secretion level at 1.43 ± 0.05 µM. In addition, BB4CMU-RBO illustrated a significant inhibitory effect on both steroid 5α-reductase genes (SRD5A) type 1 and type 2, which relates to its primary source of tocopherols. Hence, rice bran oil from the Thai rice variety BB4CMU could be applied as a promising hair revitalizing candidate, from natural resources, to help promote hair growth and re-pigmentation effects.
Collapse
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Sansanee Jamjod
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani 12130, Thailand
| |
Collapse
|
11
|
High Levels of Policosanols and Phytosterols from Sugar Mill Waste by Subcritical Liquefied Dimethyl Ether. Foods 2022; 11:foods11192937. [PMID: 36230017 PMCID: PMC9564350 DOI: 10.3390/foods11192937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Extracting nutraceuticals with high value from bagasse, filter mud, and sugarcane leaves discarded as sugar mill by-products, is crucial for the development of a sustainable bio-economy. These by-products are important sources of policosanols and phytosterols, which have a cholesterol-lowering effect. This research focused on using a promising green technology, subcritical liquefied dimethyl ether extraction, with a low pressure of 0.8 MPa, to extract policosanols and phytosterols and on application of pretreatments to increase their contents. For direct extraction by subcritical liquefied dimethyl ether without sample pretreatment, the highest extraction yield (7.4%) and policosanol content were found in sugarcane leaves at 2888 mg/100 g, while the highest and lowest phytosterol contents were found in filter mud at 20,878.75 mg/100 g and sugarcane leaves at 10,147.75 mg/100 g, respectively. Pretreatment of filter mud by ultrasonication in hexane solution together with transesterification before the second subcritical liquefied dimethyl ether extraction successfully increased the policosanol content, with an extract purity of 60%, but failed to increase the phytosterol content.
Collapse
|
12
|
Phannasorn W, Pharapirom A, Thiennimitr P, Guo H, Ketnawa S, Wongpoomchai R. Enriched Riceberry Bran Oil Exerts Chemopreventive Properties through Anti-Inflammation and Alteration of Gut Microbiota in Carcinogen-Induced Liver and Colon Carcinogenesis in Rats. Cancers (Basel) 2022; 14:cancers14184358. [PMID: 36139518 PMCID: PMC9496912 DOI: 10.3390/cancers14184358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Riceberry has recently been acknowledged for its beneficial pharmacological effects. Riceberry bran oil (RBBO) exhibited anti-proliferation activity in various cancer cell lines. However, animal studies of RBBO on anti-carcinogenicity and its molecular inhibitory mechanism have been limited. This study purposed to investigate the chemopreventive effects of RBBO on the carcinogen-induced liver and colorectal carcinogenesis in rats. Rats were injected with diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH) and further orally administered with RBBO equivalent to 100 mg/kg body weight of γ-oryzanol 5 days/week for 10 weeks. RBBO administration suppressed preneoplastic lesions including hepatic glutathione S-transferase placental form positive foci and colorectal aberrant crypt foci. Accordingly, RBBO induced hepatocellular and colorectal cell apoptosis and reduced pro-inflammatory cytokine expression. Interestingly, RBBO effectively promoted the alteration of gut microbiota in DEN- and DMH-induced rats, as has been shown in the elevated Firmicutes/Bacteroidetes ratio. This outcome was consistent with an increase in butyrate in the feces of carcinogen-induced rats. The increase in butyrate reflects the chemopreventive properties of RBBO through the mechanisms of its anti-inflammatory properties and cell apoptosis induction in preneoplastic cells. This would indicate that RBBO containing γ-oryzanol, phytosterols, and tocols holds significant potential in the prevention of cancer.
Collapse
Affiliation(s)
- Warunyoo Phannasorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aroonrat Pharapirom
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Huina Guo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunantha Ketnawa
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53935325; Fax: +66-53894031
| |
Collapse
|
13
|
Analytical Procedural Validation of Policosanol Compounds. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
15
|
Fragrant rapeseed oil consumption prevents blood cholesterol accumulation via promoting fecal bile excretion and reducing oxidative stress in high cholesterol diet fed rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Rani H, Sharma S, Bala M. Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects: A review. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Heena Rani
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Manju Bala
- FG & OP Division ICAR‐Central Institute of Post‐Harvest Engineering and Technology Ludhiana Punjab India
| |
Collapse
|
17
|
Supercritical Carbon Dioxide Extraction, Antioxidant Activity, and Fatty Acid Composition of Bran Oil from Rice Varieties Cultivated in Portugal. SEPARATIONS 2021. [DOI: 10.3390/separations8080115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bran of different rice cultivars produced in Portugal were used to study supercritical carbon dioxide extraction conditions of rice bran oil (RBO) and evaluate and compare antioxidant activity and fatty acid composition of the different rice bran varieties. The effect of plant loading (10–20 g), CO2 flow rate (0.5–1.5 L/min), pressure (20–60 MPa), and temperature (40–80 °C) was studied. The amount of oil extracted ranged from 11.72%, for Ariete cultivar, to 15.60%, for Sirio cultivar. The main fatty acids components obtained were palmitic (13.37%–16.32%), oleic (44.60%–52.56%), and linoleic (29.90%–38.51%). Excellent parameters of the susceptibility to oxidation of the oils were obtained and compare. RBO of Ariete and Gladio varieties presented superior DPPH and ABTS radical scavenging activities, whereas, Minima, Ellebi, and Sirio varieties had the lowest scavenging activities. Moreover, the oil obtained towards the final stages of extraction presented increased antioxidant activity.
Collapse
|
18
|
The use of Raman spectroscopy and chemometrics for the discrimination of lab-produced, commercial, and adulterated cold-pressed oils. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Peanparkdee M, Borompichaichartkul C, Iwamoto S. Bioaccessibility and antioxidant activity of phenolic acids, flavonoids, and anthocyanins of encapsulated Thai rice bran extracts during in vitro gastrointestinal digestion. Food Chem 2021; 361:130161. [PMID: 34051598 DOI: 10.1016/j.foodchem.2021.130161] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Encapsulation technique was applied to improve the stability of bioactive compounds in bran extracts from Thai rice cultivars (Khao Dawk Mali 105, Kiaw Ngu, Hom Nil, and Leum Pua), using three carriers including gelatin, gum Arabic, and the mixture of gelatin and gum Arabic. The microcapsules obtained using gelatin provided a higher production yield of 76.08, 85.63, 85.63 and 85.59%, respectively. A greater encapsulation efficiency was also observed in the extracts encapsulated with gelatin (93.45, 95.91, 91.19 and 95.09%, respectively). After simulated gastric and intestinal digestion, the microcapsules formed by using gelatin exhibited the higher release of bioactive compounds and antioxidant activity than unencapsulated extracts. However, the extracts encapsulated using gelatin and gum Arabic complex yielded the lowest release of bioactive compounds and their antioxidant activity after simulated digestion. The overall results showed that gelatin was an appropriate carrier that could protect bioactive compounds from the digestion conditions.
Collapse
Affiliation(s)
- Methavee Peanparkdee
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Chaleeda Borompichaichartkul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Emerging Process for Food Functionality Design (EPFFD) Research Unit, Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10300, Thailand
| | - Satoshi Iwamoto
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
20
|
da Rocha Lemos Mendes G, Souto Rodrigues P, de Las Mercedes Salas-Mellado M, Fernandes de Medeiros Burkert J, Badiale-Furlong E. Defatted Rice Bran as a Potential Raw Material to Improve the Nutritional and Functional Quality of Cakes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:46-52. [PMID: 33404888 DOI: 10.1007/s11130-020-00872-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Cakes are the most popular bakery items around the world because they are easy to consume and affordable. Their baking characteristics and consumers' healthy habits have driven the adoption of new ingredients and technologies to improve their functionality. This study aimed to develop cakes in which wheat flour was replaced by different amounts of defatted rice bran and to evaluate their physicochemical composition, nutritional and technological properties, and sensory profile. The use of defatted rice bran in cakes promoted an increase in fiber content, phenolic compounds and antioxidant capacity, besides decreasing their energy value. The formulation with 30% defatted rice bran exhibited high acceptance and 35% of the judges declared that they would consume the product at least once a week, if it could be found on the market. Results showed that defatted rice bran is a potential raw material that could be used in bakery products, as a cheap way to improve their nutritional quality without affecting consumer acceptability.
Collapse
Affiliation(s)
- Gabriela da Rocha Lemos Mendes
- Industria Riograndense de Óleos Vegetais - IRGOVEL, Av. Presidente João Goulart, P.O BOX: 96040-000, 7351, Pelotas, RS, Brazil.
- Universidade Federal do Rio Grande - Escola de Química e de Alimentos, Av. Italia, Campus Carreiros, P.O BOX: 96203-900, Rio Grande, RS, Brazil.
| | - Priscila Souto Rodrigues
- Universidade Federal do Rio Grande - Escola de Química e de Alimentos, Av. Italia, Campus Carreiros, P.O BOX: 96203-900, Rio Grande, RS, Brazil
| | | | | | - Eliana Badiale-Furlong
- Universidade Federal do Rio Grande - Escola de Química e de Alimentos, Av. Italia, Campus Carreiros, P.O BOX: 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
21
|
Wongwaiwech D, Weerawatanakorn M, Boonnoun P. Subcritical dimethyl ether extraction as a simple method to extract nutraceuticals from byproducts from rice bran oil manufacture. Sci Rep 2020; 10:21007. [PMID: 33273543 PMCID: PMC7713051 DOI: 10.1038/s41598-020-78011-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 11/15/2022] Open
Abstract
The byproducts of rice bran oil processes are a good source of fat-soluble nutraceuticals, including γ-oryzanol, phytosterol, and policosanols. This study aimed to investigate the effects of green technology with low pressure as the subcritical fluid extraction with dimethyl ether (SUBFDME) on the amount of γ-oryzanol, phytosterol, and policosanol extracted from the byproducts and to increase the purity of policosanols. The SUBFDME extraction apparatus was operated under pressures below 1 MPa. Compared to the chemical extraction method, SUBFDME gave the highest content of γ-oryzanol at 924.51 mg/100 g from defatted rice bran, followed by 829.88 mg/100 g from the filter cake, while the highest phytosterol content was 367.54 mg/100 g. Transesterification gave the highest extraction yield of 43.71% with the highest policosanol content (30,787 mg/100 g), and the SUBFDME method increased the policosanol level from transesterified rice bran wax to 84,913.14 mg/100 g. The results indicate that the SUBFDME method is a promising tool to extract γ-oryzanol and phytosterol and a simple and effective technique to increase the purity of policosanol. The study presented a novel technique for the potential use of SUBSFDME as an alternative low-pressure and low-temperature technique to extract γ-oryzanol and phytosterol. The combination of transesterification and the SUBFDME technique is a potential simple two-step method to extract and purify policosanol, which is beneficial for the manufacture of dietary supplements, functional foods and pharmaceutical products.
Collapse
Affiliation(s)
- Donporn Wongwaiwech
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok, 65000, Thailand
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok, 65000, Thailand.
| | - Panatpong Boonnoun
- Department of Industrial Engineering, Chemical Engineering Program, Faculty of Engineering, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok, 65000, Thailand
| |
Collapse
|
22
|
Hou T, Zhao J, Lei Z, Shimizu K, Zhang Z. Synergistic effects of rice straw and rice bran on enhanced methane production and process stability of anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2020; 314:123775. [PMID: 32652449 DOI: 10.1016/j.biortech.2020.123775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the synergistic effects of rice straw (RS) and rice bran (RB) addition on methane production and process stability of anaerobic digestion of food waste (FW). Positive synergistic effect (Synergy index (SI) = 1.03-1.24 > 1) was noticed in all the co-digestion reactors. The optimum mixing ratio of FW:RS:RB (volatile solid (VS) basis) was 60:10:30 with the maximum SI (1.24), achieving 27.4% increase in methane yield (235.4 mL/g-VS) and around 5 days shorter of λ (3.7 days) compared to the mono-digestion of FW (184.8 mL/g-VS and 8.2 days). Remarkably high concentration of volatile fatty acids (VFAs) was also accumulated in the mono-digestion of FW, especially propionic acid, which to a great extent caused the methane production to stagnate. Results from this study demonstrate that co-digestion of FW and RS with RB has high potentials for energy recovery from AD of the mixed feedstocks and its stable operation.
Collapse
Affiliation(s)
- Tingting Hou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|