1
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Souza HR, Zucoloto AR, Francisco ITP, Rays HP, Tinti NP, Della Matta NJ, Guandalini RB, Yoshikawa AH, Messias da Silva J, Possebon L, Iyomasa-Pilon MM, de Haro Moreno A, Girol AP. Evaluation of the healing properties of Garcinia brasiliensis extracts in a cutaneous wound model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115334. [PMID: 35597412 DOI: 10.1016/j.jep.2022.115334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wound healing is a complex process that can leave pathological scars, especially in case of infections from opportunistic microorganisms. In this context, herbal medicines open up great possibilities for investigation. One of the species of interest native to Brazil is Garcinia brasiliensis ("bacupari"). Traditionally known for treating wounds and ulcers, G. brasiliensis presents anti-inflammatory, antioxidant and antimicrobials properties. But, its wound healing profile in experimental models, in order to validate its efficacy, is still litle studied. AIM OF THE STUDY Thus, the objective of this work was to evaluate, in an infected cutanous wound model, the potential of formulations incorporated with G. brasiliensis leaves extracts. MATERIALS AND METHODS Crude extract (CE), Ethyl Acetate Fraction (EAF) and Hexanic Fraction (HF) were submitted to phytochemical assays, high performance thin layer chromatography (HTPLC) and cytotoxicity studies. CE and EAF were also tested for microbicidal properties and incorporated in cream and gel formulations at 10% concentration. After stability testing, the gel formulations with CE or EAF at 10% were selected and applied to skin wounds infected or not with Staphylococcus aureus in Wistar rats. The healing potenttial of the extracts was verified by the expression of the protein Annexin A1 (AnxA1), related to the processes of inflammation and antifibrotic function, the cells immunostaining for Gasdermin-D (GSDM-D), a marker of pyroptotic cell death, and the dosage of interleukin-10 (IL-10) and monocyte chemotactic protein (MCP)-1 inflammatory mediators. RESULTS Phytochemical studies indicated the presence of compounds of pharmacological interest, including Catechin, Quercetin and Berberine in addition to low cytotoxicity of CE and EAF at 10%. After the 6-day topical treatments, CE and EAF gel formulations demonstrated to control the pruritus formation process. The treatments decreased AnxA1 expression and the amount of cells immunostained for GSDM-D, and increased the expression of MCP-1 in infected wounds. CONCLUSIONS Together, the results show important anti-inflammatory profile and skin healing potential of CE and EAF from G. brasiliensis leaves, even in infected lesions, with therapeutic perspectives.
Collapse
Affiliation(s)
- Helena Ribeiro Souza
- São Paulo State University, (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto Campus, SP, Brazil; University Center Padre Albino (UNIFIPA), Catanduva, SP, Brazil
| | | | | | | | | | | | | | | | | | - Lucas Possebon
- University Center Padre Albino (UNIFIPA), Catanduva, SP, Brazil
| | | | | | - Ana Paula Girol
- São Paulo State University, (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto Campus, SP, Brazil; University Center Padre Albino (UNIFIPA), Catanduva, SP, Brazil; São Paulo Federal University (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Han Y, Itenberg SA, Wu X, Xiao H. Guidelines for inflammation models in mice for food components. EFOOD 2022. [DOI: 10.1002/efd2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanhui Han
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| | - Sasha A. Itenberg
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
4
|
Zhang X, Song Z, Li Y, Wang H, Zhang S, Reid AM, Lall N, Zhang J, Wang C, Lee D, Ohizumi Y, Xu J, Guo Y. Cytotoxic and Antiangiogenetic Xanthones Inhibiting Tumor Proliferation and Metastasis from Garcinia xipshuanbannaensis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1515-1523. [PMID: 33905250 DOI: 10.1021/acs.jnatprod.0c01354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Eight prenylated xanthones including four new analogues were extracted and purified from the leaves of Garcinia xipshuanbannaensis. Multiple techniques including UV, 1D and 2D NMR, and HRESIMS were used to determine the structures of the isolated xanthones. These xanthones were evaluated for their cytotoxicity toward human cancer cells, and compound 4 exhibited activity against HeLa cells. A cytotoxic mechanism examination revealed the active compound induced cell apoptosis by arresting the cell cycle, increasing the levels of ROS, and inhibiting the expression of p-STAT3 in HeLa cells. In in vivo zebrafish experiments, compound 4 was found to block tumor proliferation and migration and have antiangiogenetic activity, and thus seems worthy of further laboratory evaluation.
Collapse
Affiliation(s)
- Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Anna-Mari Reid
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
5
|
do Espirito Santo BLS, Santana LF, Kato Junior WH, de Araújo FDO, Bogo D, Freitas KDC, Guimarães RDCA, Hiane PA, Pott A, Filiú WFDO, Arakaki Asato M, Figueiredo PDO, Bastos PRHDO. Medicinal Potential of Garcinia Species and Their Compounds. Molecules 2020; 25:molecules25194513. [PMID: 33019745 PMCID: PMC7582350 DOI: 10.3390/molecules25194513] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Garcinia is a genus of Clusiaceae, distributed throughout tropical Asia, Africa, New Caledonia, Polynesia, and Brazil. Garcinia plants contain a broad range of biologically active metabolites which, in the last few decades, have received considerable attention due to the chemical compositions of their extracts, with compounds which have been shown to have beneficial effects in several diseases. Our work had the objective of reviewing the benefits of five Garcinia species (G. brasiliensis, G. gardneriana, G. pedunculata, G. cambogia, and G. mangstana). These species provide a rich natural source of bioactive compounds with relevant therapeutic properties and anti-inflammatory effects, such as for the treatment of skin disorders, wounds, pain, and infections, having demonstrated antinociceptive, antioxidant, antitumoral, antifungal, anticancer, antihistaminic, antiulcerogenic, antimicrobial, antiviral, vasodilator, hypolipidemic, hepatoprotective, nephroprotective, and cardioprotective properties. This demonstrates the relevance of the genus as a rich source of compounds with valuable therapeutic properties, with potential use in the prevention and treatment of nontransmissible chronic diseases.
Collapse
Affiliation(s)
- Bruna Larissa Spontoni do Espirito Santo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Lidiani Figueiredo Santana
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Wilson Hino Kato Junior
- Graduate of Pharmaceutical Sciences, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil;
| | - Felipe de Oliveira de Araújo
- Graduate of Electrical Engineering, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil;
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
- Correspondence: ; Tel.: +55-67-3345-7416
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Arnildo Pott
- Laboratory of Botany, Institute of Biosciences, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil;
| | - Wander Fernando de Oliveira Filiú
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil;
| | - Marcel Arakaki Asato
- Medical School, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil;
| | - Patrícia de Oliveira Figueiredo
- Laboratory PRONABio (Bioactive Natural Products)-Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, 79074-460 Campo Grande, Brazil;
| | - Paulo Roberto Haidamus de Oliveira Bastos
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| |
Collapse
|
6
|
Hu X, Wang L, Zhang L, Zhang T. β-Elemene inhibits 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin tumorigenesis through suppression of NF-κB-associated signaling events in the mouse skin model. J Biochem Mol Toxicol 2020; 34:e22550. [PMID: 32662567 DOI: 10.1002/jbt.22550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022]
Abstract
β-Elemene (1-methyl-1-vinyl-2,4-diisopropenyl-cyclohexane), a natural sesquiterpene-derived curcumae radix, exhibits a variety of pharmacologic properties including anticancer. However, the molecular action of β-elemene in chemical-induced skin carcinogenesis remains unclear. Therefore, the present study executes to investigate a possible effect of β-elemene in the 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor model. The experimental mice were subjected to execute two-stage skin carcinogenesis and it has been initiated by the addition of DMBA on the dorsal portion of the mouse skin. One week after, for chemical carcinogen of mice, topical exposure of DMBA has been induced following with TPA (5 nmol) in acetone (200 μL) given weekly twice for 20 weeks respectively. After completion of the experimental period, we noticed that 100% of tumor incidence, histopathological changes, decreased lipid peroxidation (LPO), and decreased antioxidant levels in DMBA/TPA-promoted skin carcinogenesis. Furthermore, enhanced activity of inflammatory protein markers (nuclear factor [NF]-κB, tumor necrosis factor-α, interleukin-6, cyclooxygenase-2, and nitric oxide synthase) and cell-proliferative messenger RNA markers (PCNA, cyclin D1), and increased antiapoptotic protein Bcl-2; decreased proapoptotic protein marker events Bax and caspase 3 and 9 expressions were noticed in DMBA/TPA promoted skin tissue. In this study, we noticed that β-elemene noticeably reversed the histopathological changes and antioxidant levels in tumor-bearing mice. Conversely, β-elemene effectively inhibits inflammation, cell proliferation events, and enhances proapoptotic factors, by suppression of NF-κB transcriptional activation in DMBA/TPA animals. Thus, we concluded that β-elemene prevents DMBA/TPA promoted skin carcinogenesis through its antioxidant and abate inflammation markers and cell-proliferative markers also activating proapoptotic molecules.
Collapse
Affiliation(s)
- Xing Hu
- Department of Dermatology, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Liang Wang
- Department of Spine and Joint, The First People's Hospital of Pingyuan County, Dezhou, Shandong, China
| | - Lili Zhang
- Department of Oncology and Hematology, The First People's Hospital of Pingyuan County, Dezhou, Shandong, China
| | - Tao Zhang
- TCM Internal Medicine, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
7
|
Warriar P, Barve K, Prabhakar B. Anti-Arthritic Effect of Garcinol Enriched Fraction Against Adjuvant Induced Arthritis. ACTA ACUST UNITED AC 2020; 13:49-56. [PMID: 30457056 PMCID: PMC6778983 DOI: 10.2174/1872213x12666181120091528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/30/2023]
Abstract
Background: Garcinia indica also known as kokum is used in traditional system of medicine for relieving inflammation and rheumatic pain. Garcinol, a benzophenone obtained from its fruit rind is reported to have anti-inflammatory effect via modulating arachidonic acid metabolism, suppressing iNOS expression, NF-κB activation and COX-2 expression. It has also been studied for antioxidant and anti-cancer activity. Apart from these, few patents claim that garcinol also has anti-obesity and hepatoprotec-tive effect and has a potential to be used for the treatment of renal disorders, endometriosis and cardiac dysfunction. Objective: Garcinol Enriched Fraction (GEF) from the fruit rind of Garcinia indica should be effective in the treatment of arthritis, one of the chronic inflammatory disorder owing to its anti-inflammatory property as indicated by earlier experiments. Methods: GEF was prepared from the fruit rind of Garcinia indica and quantified using LC-MS/MS. It was found to contain 89.4% w/w of garcinol. GEF was evaluated at the dose of 10mg/kg for its efficacy against Complete Freund’s Adjuvant (CFA) induced arthritis in Wistar albino rats. Paw volumes of both sides were measured by Plethysmometer and body weight was recorded on 0, 1, 5, 12 and 21st day. The hyperalgesic response was also measured by motility test and stair climbing test. Results: GEF showed a significant reduction in paw swelling (p < 0.0001) and arthritis index (p < 0.0001) exhibiting anti-inflammatory potential. It also improves the motility and stair climbing ability of experimental animals (p < 0.05), thus reducing hyperalgesia. Conclusion: Garcinol enriched fraction shows anti-arthritic activity in experimental animals.
Collapse
Affiliation(s)
- Purnima Warriar
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Kalyani Barve
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Bala Prabhakar
- SPP- School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| |
Collapse
|
8
|
Oskoueian E, Karimi E, Noura R, Ebrahimi M, Shafaei N, Karimi E. Nanoliposomes encapsulation of enriched phenolic fraction from pistachio hulls and its antioxidant, anti-inflammatory, and anti-melanogenic activities. J Microencapsul 2019; 37:1-13. [DOI: 10.1080/02652048.2019.1692941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ehsan Oskoueian
- Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Noura
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | - Mahdi Ebrahimi
- Faculty of Life Science and Biotechnology, Department of Plant Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Negin Shafaei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ensiyeh Karimi
- Faculty of Pharmacy, Tehran Medical Sciences, Department of Medicinal Chemistry, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Schobert R, Biersack B. Chemical and Biological Aspects of Garcinol and Isogarcinol: Recent Developments. Chem Biodivers 2019; 16:e1900366. [PMID: 31386266 DOI: 10.1002/cbdv.201900366] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 11/08/2022]
Abstract
The natural polyisoprenylated benzophenone derivatives garcinol and isogarcinol are secondary plant metabolites isolated from various Garcinia species including Garcinia indica. This review takes stock of the recent chemical and biological research into these interesting natural compounds over the last five years. New biological sources and chemical syntheses are discussed followed by new insights into the activity of garcinol and isogarcinol against cancer, pathogenic bacteria, parasite infections and various inflammatory diseases.
Collapse
Affiliation(s)
- Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, 95447, Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
10
|
Yang XW, Grossman RB, Xu G. Research Progress of Polycyclic Polyprenylated Acylphloroglucinols. Chem Rev 2018; 118:3508-3558. [PMID: 29461053 DOI: 10.1021/acs.chemrev.7b00551] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of hybrid natural products sharing the mevalonate/methylerythritol phosphate and polyketide biosynthetic pathways and showing considerable structure and bioactivity diversity. This review discusses the progress of research into the chemistry and biological activity of 421 natural PPAPs in the past 11 years as well as in-depth studies of biological activities and total synthesis of some PPAPs isolated before 2006. We created an online database of all PPAPs known to date at http://www.chem.uky.edu/research/grossman/PPAPs . Two subclasses of biosynthetically related metabolites, spirocyclic PPAPs with octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core and complicated PPAPs produced by intramolecular [4 + 2] cycloadditions of MPAPs, are brought into the PPAP family. Some PPAPs' relative or absolute configurations are reassigned or critically discussed, and the confusing trivial names in PPAPs investigations are clarified. Pharmacologic studies have revealed a new molecular mechanism whereby hyperforin and its derivatives regulate neurotransmitter levels by activating TRPC6 as well as the antitumor mechanism of garcinol and its analogues. The antineoplastic potential of some type B PPAPs such as oblongifolin C and guttiferone K has increased significantly. As a result of the recent appearances of innovative synthetic methods and strategies, the total syntheses of 22 natural PPAPs including hyperforin, garcinol, and plukenetione A have been accomplished.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| | - Robert B Grossman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , United States
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| |
Collapse
|
11
|
Assessment of Toxicity and Beneficiary Effects of Garcinia pedunculata on the Hematological, Biochemical, and Histological Homeostasis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4686104. [PMID: 28243309 PMCID: PMC5294221 DOI: 10.1155/2017/4686104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/03/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022]
Abstract
This study was undertaken to investigate the toxicological profile of a methanolic extract of Garcinia pedunculata fruit in rats by conducting hematological, biochemical, and histopathological examinations. Long Evans rats were divided into four groups, each with 6 animals, and were treated with three oral doses (250, 500, and 1000 mg/kg) once daily for 21 days. The extract did not cause significant changes in body and relative organ weight, percent water content, or hematological parameters at any administered doses. However, a significant dose-dependent positive effect in serum lipid profile and all atherogenic indices including the cardiac risk ratio, Castelli's risk index-2, and the atherogenic coefficient were observed. Significant increases in the levels of iron and decreases in serum alkaline phosphatase, alanine transaminase, and lactate dehydrogenase activities and the levels of serum glucose were noted when the extract was administered at the highest dose (1000 mg/kg). Histopathological examination of the target tissues further confirmed that the extract was safe and had no observed toxicological features. Our study indicates that G. pedunculata fruit is nontoxic, has the potential to be effective against atherosclerosis, and may be used as a hepatoprotectant. The fruit extract is also beneficial to those with iron deficiency and hyperglycemia.
Collapse
|
12
|
Lee J, Kang U, Seo EK, Kim YS. Heme oxygenase-1-mediated anti-inflammatory effects of tussilagonone on macrophages and 12- O -tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Int Immunopharmacol 2016; 34:155-164. [DOI: 10.1016/j.intimp.2016.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 12/29/2022]
|