1
|
Sahragard A, Pagan-Galbarro C, Cocovi-Solberg DJ, Miró M. Dual microelectromembrane extraction as a tunable platform for the determination of antioxidant compounds with varied hydrophobicity in oral bioaccessibility assays of food commodities: a proof of concept. Anal Bioanal Chem 2025; 417:1421-1430. [PMID: 39891662 PMCID: PMC11861116 DOI: 10.1007/s00216-025-05744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
An automatic millifluidic dual microelectromembrane extraction (D-µEME) method as a front-end to HPLC-UV-Vis is herein proposed for the first time to facilitate the matrix clean-up of relatively polar polyphenolic acidic (PPA) antioxidants with a relatively broad range of lipophilicity (logP from -0.27 to 2.14) from simulated gastric extracts of oral bioaccessibility tests. The flow setup is amenable to handle microliter volumes of two distinct organic phases along with donor and acceptor phases unsupervised, conduct in-tube D-µEME in parallel without supporting membranes, and mix the two acceptor phases automatically prior to online HPLC-UV-Vis. The target antioxidants involve gallic acid, chlorogenic acid, 4-hydroxybenzoic acid, caffeic acid, and trans-cinnamic acid. Various solvents are explored to investigate their compatibility for simultaneous D-µEME, including 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, and 1-nonanol, as well as deep eutectic solvents, e.g., thymol/6-methyl coumarin, and ionic liquids as additives to alcohols. Notably, 1-pentanol and 1-octanol exhibit the best performances in extracting the most polar (gallic acid and chlorogenic acid) and the least polar analytes (trans-cinnamic acid), respectively, notwithstanding both solvents are amenable to retrieve analytes with medium hydrophobicity (4-hydroxybenzoic acid and caffeic acid). The effects of the voltage, the extraction time, and the sample ionic strength on the extraction recoveries are also investigated in detail. Under the selected D-µEME conditions, the overall linear ranges span from 1.25 to 80 mg/L, with limits of detection ranging from 0.2 to 3.3 mg/L. The flow-based D-µEME is resorted to oral bioaccessibility assays in the gastric phase of the target compounds from eggplant, blueberry, and coffee bean extracts, with relative extraction recoveries ranging from 71.5 to 133.5%.
Collapse
Affiliation(s)
- Ali Sahragard
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Spain.
| | - Carlos Pagan-Galbarro
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
| | - David J Cocovi-Solberg
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Spain.
| |
Collapse
|
2
|
Piqué-Borràs MR, Röhrl J, Künstle G. Herbal Amara extract induces gastric fundus relaxation via inhibition of the M2 muscarinic receptor. Neurogastroenterol Motil 2025; 37:e14924. [PMID: 39344827 DOI: 10.1111/nmo.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/05/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Impaired gastric accommodation is one of the most frequent symptoms of functional dyspepsia. The safety and efficacy of conventional treatments remain to be proven and alternative herbal therapies have been proposed to alleviate gastrointestinal symptoms. This preclinical study examined the role of herbal Amara extract (containing Artemisia absinthium, Centaurium erythraea, Cichorium intybus, Gentiana lutea, Juniperus communis, Achillea millefolium, Peucedanum ostruthium, Salvia officinalis, and Taraxacum extracts) on gastric (fundus) accommodation and the possible implication of muscarinic receptors in its regulation. METHODS The effect of Amara extract on fundus motility was investigated in organ baths of smooth muscle strips isolated from the fundus of guinea pigs, and the role of the muscarinic receptor pathway was evaluated using functional and radioligand binding assays in cell lines expressing the M2 or M3 muscarinic receptor. KEY RESULTS Amara extract inhibited carbachol-induced contraction of guinea pig smooth muscle strips in a dose-dependent manner. This relaxant effect was not affected by the M3 antagonist J-104129. Amara extract also inhibited M2, but not M3, receptor activity in CHO-K1 cells (IC50 219 μg mL-1), and specifically bound the M2 receptor (IC50 294 μg mL-1). Of the nine herbal components of Amara extract, Juniperus communis, P. ostruthium, and Salvia officinalis inhibited M2 receptor activity (IC50 32.0, 20.8, and 20.1 μg mL-1, respectively), and P. ostruthium was sufficient to reverse carbachol-induced ex vivo contraction of guinea pig fundic smooth muscles. CONCLUSION AND INFERENCES Amara extract relaxes gastric smooth muscles by inhibiting the M2 muscarinic receptor. This study suggests the potential benefit of Amara extract for patients with impaired gastric accommodation.
Collapse
Affiliation(s)
| | - Johann Röhrl
- Preclinical Research and Development, Weleda AG, Arlesheim, Switzerland
| | - Gerald Künstle
- Preclinical Research and Development, Weleda AG, Arlesheim, Switzerland
| |
Collapse
|
3
|
Sishu NK, Selvaraj CI. Phytochemistry, pharmacological applications, and therapeutic effects of green synthesized nanomaterials using Cichorium species-a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8527-8559. [PMID: 38900250 DOI: 10.1007/s00210-024-03221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Cichorium is a genus of potential medicinal herbs that finds widespread cultivation in regions spanning Asia and Europe. Belonging to the Asteraceae family, these plants are typically biennial or perennial in nature. Among the various explored varieties of chicory plants, the most commonly studied ones include Cichorium intybus, Cichorium endivia, and Cichorium pumilum. In Ayurveda, chicory has long been used as a remedy for many health problems. This versatile plant is renowned for its efficacy in managing conditions such as gallstones, gastroenteritis, sinus ailments, and the treatment of skin abrasions and wounds. Numerous bioactives, including polysaccharides, caffeic acid, flavonoids, coumarins, steroids, alkaloids, organic acids, triterpenoids, sesquiterpenoids, and essential oils, are present, according to a thorough phytochemical examination. The phytochemicals isolated from chicory have displayed significant therapeutic activities, including antidiabetic effects, hepatoprotective benefits, anti-obesity properties, and anti-cancer potential, as extensively documented by numerous researchers. The incorporation of these bioactive compounds into one's diet as part of a healthy lifestyle has demonstrated considerable advantages for human well-being. Green synthesis is a recent technology in which plant extracts or phytochemicals are used for synthesizing nanoparticles since plant extracts are generally less toxic and contain capping and reducing agents. This review summarizes current developments in green synthesis employing phytoconstituents from Cichorium species and extracts from various plant parts and their application to scientific problems. In order to preserve lifestyles and cure human diseases, the investigation emphasizes the therapeutic effects of the chemical components and nanoparticles obtained from the extract of Cichorium species.
Collapse
Affiliation(s)
- Nayan Kumar Sishu
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Elshorbagy AM, Fayed MAA, Sallam A, Badria FA. Metabolic Profiling, GC-MS, LC-ESI-MS/MS Analysis, Phenolics Isolation and Biological Evaluation of the Aerial Parts Extracts of Felicia abyssinica L. Chem Biodivers 2024; 21:e202301347. [PMID: 38244212 DOI: 10.1002/cbdv.202301347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/22/2024]
Abstract
Felicia abyssinica L., family Asteraceae, is widely used in folk medicine. This represents the first study to investigate its phytoconstituents and pharmacological effects. Phytoconstituents identified by GC-MS, LC-ESI-MS/MS-based metabolomics, and NMR (1D & 2D). GC-MS of the (FAMEs) revealed mainly the identification of 55 fatty acids. LC-ESI-MS/MS analysis resulted in the tentative identity of 13 compounds representing flavonoids, phenolics, and fatty acids. Ethyl acetate fraction exhibited the highest total flavonoids 66.19 mg/mL Rutin equivalent, while the methanolic fraction showed the highest phenolics 87.70 mg/mL gallic acid equivalent, and the total condensed tannins were 64.35 μg CE/mg catechins equivalent. A flavonoid and a cinnamic acid derivative were identified as quercetin 3-O-(2'''-O-acetyl) rutinoside (Mumikotin A) (1) and Methyl sinapate (2). Biological evaluation of antioxidant and cytotoxic activities was carried out. Cytotoxicity was examined on HepG-2 cell lines where the average cell viability was 91.42 % and 52.48 % for concentrations 10 and 100 μg/mL respectively. Methylene chloride and methanolic fractions showed the highest antioxidant activity 225 μg/mL Ascorbic acid equivalents. It is hypothesized that high phenolics, flavonoid content, and oxygenated identified compounds contribute to the antioxidant activity and can be regarded as a promising species for nutraceuticals active antioxidants with potential value for remedy.
Collapse
Affiliation(s)
- Ahmed M Elshorbagy
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Amal Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Tedeschi P, Marzocchi S, Marchetti N, Barba FJ, Maietti A. Influence of Post-Harvest 1-Methylcyclopropene (1-MCP) Treatment and Refrigeration on Chemical Composition, Phenolic Profile and Antioxidant Modifications during Storage of Abate Fétel Pears. Antioxidants (Basel) 2023; 12:1955. [PMID: 38001808 PMCID: PMC10669555 DOI: 10.3390/antiox12111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
'Abate Fétel', a winter cultivar, is the most important pear cultivar in Italy; its fruits are appreciated by consumers for their aroma, texture and balanced sweet and sour taste. Maintaining high-quality characteristics to prolong the shelf-life of fruit and preserve the sensory and nutritional quality is a priority for the food industry. The aim of our study was to test the effectiveness of 1-methylcyclopropene (1-MCP) and cold storage in prolonging the shelf-life of these fruits, which were harvested at maturity at two different times. This work focused on the effects of different storage treatments and two ripening times on (i) the chemical composition of Abate Fétel pulp fruits to preserve their sweet taste and aroma and (ii) the phenolic profile composition and antioxidant activity of the peel, which is naturally rich in phytochemicals and important for the fruit's shelf-life and in the functional food industry for its high nutritional value. Abate Fétel fruits were harvested at the optimal commercial maturity stage, first on 15 September, having been treated with 1-MCP and stored for 2 months at cold temperatures; the other fruits were harvested at the end of September and stored in a cold cell for 2 months. The fruit pulp was tested for glucose and fructose, pH, acidity and organic acids (malic, citric, fumaric and shikimic), phenolic content and phenolic compounds (chlorogenic and caffeic acids, rutin, hyperoside, kaempferol-3-rutinoside and isoquercitrin), and the antioxidant activities in the fruit peels were measured. Treating the fruits with 1-MCP better preserved the phytochemical compounds compared to simple refrigeration, preserving the fruit's quality and prolonging its shelf-life. All the treatments help to maintain the glucose and fructose content and the acidity, preserving the aroma and organoleptic characteristics.
Collapse
Affiliation(s)
- Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (N.M.); (A.M.)
| | - Silvia Marzocchi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy;
| | - Nicola Marchetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (N.M.); (A.M.)
| | - Francisco J. Barba
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, University of València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain;
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (N.M.); (A.M.)
| |
Collapse
|
6
|
Pan X, Li J, Lao F, Hou X, Gao L, Wu J. Phenolic characterization of fermented jujube puree by HPLC-MS/MS and their release during in vitro dynamic digestion. Food Chem 2023; 413:135630. [PMID: 36791666 DOI: 10.1016/j.foodchem.2023.135630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Health benefits of fruit products fermented with probiotics are partially attributed to their increased contents of phenolic compounds. In this study, the effect of in vitro dynamic gastrointestinal digestion on the release of phenolic compounds and changes in the antioxidant activity of jujube puree fermented with Streptococcus thermophilus was investigated. Thirteen target phenolic compounds were characterized by high-performance liquid chromatography-tandem mass spectrometry. The recovery of this developed method ranged from 87.41% to 111.03%, and the limits of detection and quantification were low. Fermentation with Streptococcus thermophilus significantly increased the contents of most phenolic compounds in jujube puree. Fermentation reduced the decrease in the contents of most phenolic compounds in jujube puree during gastrointestinal digestion and, as a consequence improved the antioxidant capacity of digested fractions. These findings indicated that fermentation could increase the bioaccessibility of specific phenolics in jujube, as well as the antioxidant activity of this fruit.
Collapse
Affiliation(s)
- Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Xujie Hou
- College of Food Science and Engineering, Tarim University, Xinjiang 843300, China
| | - Lin Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China; School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
7
|
Jakobek L, Blesso C. Beneficial effects of phenolic compounds: native phenolic compounds vs metabolites and catabolites. Crit Rev Food Sci Nutr 2023; 64:9113-9131. [PMID: 37140183 DOI: 10.1080/10408398.2023.2208218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the human body, the positive effects of phenolic compounds are increasingly observed through their presence in tissues and organs in their native form or in the form of metabolites or catabolites formed during digestion, microbial metabolism, and host biotransformation. The full extent of these effects is still unclear. The aim of this paper is to review the current knowledge of beneficial effects of native phenolic compounds or their metabolites and catabolites focusing on their role in the health of the digestive system, including disorders of the gastrointestinal and urinary tracts and liver. Studies are mostly connecting beneficial effects in the gastrointestinal and urinary tract to the whole food rich in phenolics, or to the amount of phenolic compounds/antioxidants in food. Indeed, the bioactivity of parent phenolic compounds should not be ignored due to their presence in the digestive tract, and the impact on the gut microbiota. However, the influence of their metabolites and catabolites might be more important for the liver and urinary tract. Distinguishing between the effects of parent phenolics vs metabolites and catabolites at the site of action are important for novel areas of food industry, nutrition and medicine.
Collapse
Affiliation(s)
- Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Christopher Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
8
|
Matvieieva N, Bessarabov V, Khainakova O, Duplij V, Bohdanovych T, Ratushnyak Y, Kuzmina G, Lisovyi V, Zderko N, Kobylinska N. Cichorium intybus L. “hairy” roots as a rich source of antioxidants and anti-inflammatory compounds. Heliyon 2023; 9:e14516. [PMID: 37101499 PMCID: PMC10123141 DOI: 10.1016/j.heliyon.2023.e14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
The present study aimed to determine the bioactive profile of various extracts of Cichorium intybus L. "hairy" roots. In particular, the total content of flavonoids as well as the reducing power, antioxidant and anti-inflammatory activity of the aqueous and ethanolic (70%) extracts were evaluated. The total content of flavonoids the ethanolic extract of the dry "hairy" root reached up to 121.3 mg (RE)/g, which was twofold greater than in the aqueous one. A total of 33 diverse polyphenols were identified by the LC-HRMS method. The experimental results showed a high amount of gallic (6.103 ± 0.008 mg/g) and caffeic (7.001 ± 0.068 mg/g) acids. In the "hairy" roots, the presence of rutin, apigenin, kaempferol, quercetin, and its derivatives was found in concentrations of 0.201±0.003 - 6.710±0.052 mg/g. The broad spectrum of pharmacological activities (antioxidant, anti-inflammatory, antimutagenic, anticarcinogenic, etc.) of the key flavonoids identified in the chicory "hairy" root extract was predicted by the General Unrestricted Structure-Activity Relationships algorithm based on in the substances detected in the extract. The evaluation of the antioxidant activity showed that the EC50 values of the ethanol and the aqueous extracts were 0.174 and 0.346 mg, respectively. Thus, the higher ability of the ethanol extract to scavenge the DPPH radical was observed. The calculated Michaelis and inhibition constants indicated that the ethanolic extract of C. intybus "hairy" roots is an efficient inhibitor of soybean 15-Lipoxygenase activity (IC50 = 84.13 ± 7.22 μM) in a mixed mechanism. Therefore, the obtained extracts could be the basis of herbal pharmaceuticals for the therapy of human diseases accompanied by oxidative stress and inflammation, including the pandemic coronavirus disease COVID-19.
Collapse
Affiliation(s)
- Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Volodymyr Bessarabov
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Olena Khainakova
- University of Oviedo, 8 Julián Claveria Av., Oviedo, 33006, Spain
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Taisa Bohdanovych
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Yakiv Ratushnyak
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Galina Kuzmina
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Vadym Lisovyi
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Nazar Zderko
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Natalia Kobylinska
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Sciences of Ukraine, 42 akad. Vernadskoho Blvd., Kyiv, 03142, Ukraine
- Corresponding author.
| |
Collapse
|
9
|
Jakobek L, Ištuk J, Tomac I, Matić P. β-Glucan and Aronia (<i>Aronia melanocarpa</i>) Phenolics: Interactions During <i>In Vitro</i> Simulated Gastrointestinal Digestion and Adsorption. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/155281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Parsley (Petroselinum crispum Mill.): A source of bioactive compounds as a domestic strategy to minimize cholesterol oxidation during the thermal preparation of omelets. Food Res Int 2022; 156:111199. [DOI: 10.1016/j.foodres.2022.111199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/23/2022]
|
11
|
Gómez-Mejía E, Rosales-Conrado N, León-González ME, Valverde A, Madrid Y. A combined analytical-chemometric approach for the in vitro determination of polyphenol bioaccessibility by simulated gastrointestinal digestion. Anal Bioanal Chem 2022; 414:2739-2755. [PMID: 35112149 PMCID: PMC8888401 DOI: 10.1007/s00216-022-03922-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
In this study, an integrated characterisation through polyphenol and caffeine content and antioxidant activity was combined with chemometric analysis to assess the effects of simulated in vitro gastrointestinal digestion on the bioaccessibility of these bioactive compounds from nine different tea infusions. Tea infusions were characterised based on total flavonoids, total polyphenols and antioxidant activity, together with the determination of individual polyphenol content. Fourteen phenolic compounds, including phenolic acids, stilbenes and flavonoids, were selected based on their reported bioactivity and high accessibility, attributed to their low molecular weight. Both polyphenols and caffeine were initially monitored in raw tea infusions and through the different digestion stages (salivary, gastric and duodenal) by capillary high performance liquid chromatography coupled to diode array detection (cHPLC-DAD) and/or HPLC coupled to a triple quadrupole mass analyser (HPLC–MS/MS). Multivariate analysis of the studied bioactives, using principal component analysis and cluster analysis, revealed that the decaffeination process seems to increase the stability and concentration of the compounds evaluated during digestion. The greatest transformations occurred mainly in the gastric and duodenal stages, where low bioactivity indices (IVBA) were shown for resveratrol and caffeic acid (IVBA = 0%). In contrast, the polyphenols gallic acid, chlorogenic acid and quercetin gave rise to their availability in white, green and oolong infusion teas (IVBA > 90%). Furthermore, highly fermented black and pu-erh varieties could be designated as less bioaccessible environments in the duodenum with respect to the tested compounds.
Collapse
Affiliation(s)
- Esther Gómez-Mejía
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Noelia Rosales-Conrado
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Eugenia León-González
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Alejandro Valverde
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Yolanda Madrid
- Analytical Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
12
|
Characterization of Ingredients Incorporated in the Traditional Mixed-Salad of the Capuchin Monks. PLANTS 2022; 11:plants11030301. [PMID: 35161282 PMCID: PMC8838144 DOI: 10.3390/plants11030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
Abstract
Recipes on the composition of the “salad of the monks” (Capuchin monks) have been reported in Italy since the 17th century. Different wild edible plants were highly regarded as an important ingredient of this mixed salad. Among these, some species played a key role for both their taste and nutritional properties: Plantago coronopus L. (PC), Rumex acetosa L., Cichorium intybus L., and Artemisia dracunculus L. In the present study, the micromorphological and phytochemical features as well as the antioxidant and anti-inflammatory properties of extracts of these fresh and blanched leaves, were investigated. The extracts obtained by blanched leaves, according to the traditionally used cooking method, showed the highest content of bioactive compounds (total phenols 1202.31–10,751.88 mg GAE/100 g DW; flavonoids 2921.38–61,141.83 mg QE/100 g DW; flavanols 17.47–685.52 mg CE/100 g DW; proanthocyanidins 2.83–16.33 mg CyE/100 g DW; total chlorophyll 0.84–1.09 mg/g FW; carbohydrates 0.14–1.92 g/100 g FW) and possess the most marked antioxidant (IC50 0.30–425.20 µg/mL) and anti-inflammatory activity (IC50 240.20–970.02 µg/mL). Considering this, our results indicate that increased consumption of the investigated plants, in particular of PC, raw or cooked briefly, could provide a healthy food source in the modern diet by the recovery and enhancement of ancient ingredients.
Collapse
|
13
|
Anticancer Activity of Aqueous Extracts from Asparagus officinalis L. Byproduct on Breast Cancer Cells. Molecules 2021; 26:molecules26216369. [PMID: 34770777 PMCID: PMC8588164 DOI: 10.3390/molecules26216369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Cultivation of asparagus (Asparagus officinalis L.; Asp) for food and medicinal use has taken place since the early Roman Empire. Today, Asp represents a worldwide diffuse perennial crop. Lower portions of the spears represent a food industry waste product that can be used to extract bioactive molecules. In this study, aqueous extracts derived from the non-edible portion of the plant (hard stem) were prepared and characterized for chemical content. Furthermore, the biocompatibility and bioactivity of Asp aqueous extracts were assessed in vitro on normal fibroblasts and on breast cancer cell lines. Results showed no interference with fibroblast viability, while a remarkable cytostatic concentration-dependent activity, with significant G1/S cell cycle arrest, was specifically observed in breast cancer cells without apoptosis induction. Asp extracts were also shown to significantly inhibit cell migration. Further analyses showed that Asp extracts were characterized by specific pro-oxidant activity against tumoral cells, and, importantly, that their combination with menadione resulted in a significant enhancement of oxidants production with respect to menadione alone in breast cancer cells but not in normal cells. This selectivity of action on tumoral cells, together with the easiness of their preparation, makes the aqueous Asp extracts very attractive for further investigation in breast cancer research, particularly to investigate their role as possible co-adjuvant agents of clinical drug therapies.
Collapse
|
14
|
Recovery of Bioactive Compounds from Strawberry ( Fragaria × ananassa) Pomace by Conventional and Pressurized Liquid Extraction and Assessment Their Bioactivity in Human Cell Cultures. Foods 2021; 10:foods10081780. [PMID: 34441558 PMCID: PMC8392826 DOI: 10.3390/foods10081780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Pressing strawberries for juice generates large amounts of pomace, containing valuable nutrients and therefore requiring more systematic studies for their valorization. This study compared conventional solid-liquid (SLE) and pressurized liquid (PLE) extractions with ethanol (EtOH) and H2O for the recovery of bioactive compounds from strawberry pomace. The composition and bioactivities of the products obtained were evaluated. Among 15 identified compounds, quercetin-3-glucuronide, kaempferol-3-glucuronide, tiliroside, ellagic, malic, succinic, citric and p-coumaric acids were the most abundant constituents in strawberry pomace extracts. SLE-EtOH and PLE-H2O extracts possessed strong antioxidant capacity in DPPH• and ABTS•+ scavenging and oxygen radical absorbance capacity (ORAC) assays. Cytotoxicity, antiproliferative and cellular antioxidant activities in human cells of PLE-EtOH and PLE-H2O extracts were also evaluated. PLE-EtOH and PLE-H2O extracts possessed strong antioxidant activity, protecting Caco-2 cells upon stress stimuli, while PLE-EtOH extract showed higher antiproliferative activity with no cytotoxicity associated. In general, the results obtained revealed that properly selected biorefining schemes enable obtaining from strawberry pomace high nutritional value functional ingredients for foods and nutraceuticals.
Collapse
|
15
|
Jakobek L, Ištuk J, Matić P, Skendrović Babojelić M. Interactions of polyphenols from traditional apple varieties 'Bobovac', 'Ljepocvjetka' and 'Crvenka' with β-Glucan during in vitro simulated digestion. Food Chem 2021; 363:130283. [PMID: 34120042 DOI: 10.1016/j.foodchem.2021.130283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Interactions between β-glucan and polyphenols might have an effect on polyphenol digestion and bioaccessibility. The influence of β-glucan on in vitro gastrointestinal digestion of polyphenols of traditional apple varieties was studied. Polyphenols were chemically and enzymatically extracted, and identified and quantified with high-performance liquid chromatography. Simulated digestion of peel and flesh of apples was conducted. Polyphenols released in digestion in lower amounts than occur naturally in apples. Their content increased from the oral to the gastric, then decreased in the intestinal phase (up to 21% (peel) and 16% (flesh) were recovered) where anthocyanins and flavan-3-ols were not found. β-glucan decreased (oral and intestinal digestion of peel) or increased (gastric digestion of peel; oral, gastric, intestinal digestion of flesh) the recovered polyphenols. Interactions between β-glucan, polyphenols and enzymes might have influenced these effects. β-glucan is suggested to increase the polyphenol content reaching lower parts of the digestive tract.
Collapse
Affiliation(s)
- Lidija Jakobek
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | - Jozo Ištuk
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | - Petra Matić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | | |
Collapse
|
16
|
Phytochemical profiling and anti-aging activities of Euphorbia retusa extract: In silico and in vitro studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Lin PC, Wang X, Zhong XJ, Zhou N, Wu L, Li JJ, Hu YT, Shang XY. Chemical characterization of a PD-1/PD-L1 inhibitory activity fraction of the ethanol extract from Gymnadenia conopsea. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:235-249. [PMID: 33263258 DOI: 10.1080/10286020.2020.1844190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Searching for PD-1/PD-L1 inhibitor from medicinal plants has become a potential method to discover small molecular cancer immunotherapy drugs. Using PD-1/PD-L1 inhibitory activity assay in vitro, a bioactive fraction was obtained from the ethanol extract of Gymnadenia conopsea. A sensitive UPLC-HRMS/MS method was established for the rapid screening and identification of compositions from bioactive fraction. Based on the characteristic fragmentation patterns of standards analysis and extracted ion chromatogram (EIC) method, 46 compounds were rapidly screened and identified (including 35 succinic acid ester glycosides and 11 other compounds), among which 17 compounds were tentatively identified as new compounds.
Collapse
Affiliation(s)
- Peng-Cheng Lin
- College of Pharmaceutical Sciences, Qinghai Nationalities University, Xining 810000, China
| | - Xin Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Xiang-Jian Zhong
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Na Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Lei Wu
- College of Pharmaceutical Sciences, Qinghai Nationalities University, Xining 810000, China
| | - Jin-Jie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Yang-Tao Hu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang 330047 China
| | - Xiao-Ya Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| |
Collapse
|
18
|
Montiel-Sánchez M, García-Cayuela T, Gómez-Maqueo A, García HS, Cano MP. In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chem 2020; 342:128087. [PMID: 33077279 DOI: 10.1016/j.foodchem.2020.128087] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022]
Abstract
Cactus berry (Myrtillocactus geometrizans) is a scarcely studied Mexican wild fruit. These fruits could contribute to reduce the risk of degenerative chronic diseases due to their bioactive profile. The aim of this work was to study the betalains and phenolic profile in cactus berry, their in vitro biological activities and gastrointestinal digestive stability and bioaccessibility. 43 metabolites were identified by HPLC-DAD-ESI-QTOF (8 betaxanthins, 8 betacyanins, 13 flavonoids, 6 phenolic acids). Phyllocactin and Isorhamnetin rhamnosyl-rutinoside (IG2) were the most abundant metabolites (5876 and 396 µg/g dw) which were also bioaccessible (16 and 21%, respectively). Pulps showed higher (p ≤ 0.05) antioxidant activity by the Oxygen Radical Absorbance Capacity (27 mM Trolox equivalents). The anti-hyperglycemic activity was highest (p ≤ 0.05) in peel and pulp tissues (85% α-glucosidase and 8% α-amylase inhibition). An 83% inhibition of hyaluronidase showed high anti-inflammatory activity. Cactus berry fruit should be considered a promising fruit candidate for a sustainable healthy diet.
Collapse
Affiliation(s)
- Mara Montiel-Sánchez
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Tomás García-Cayuela
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Andrea Gómez-Maqueo
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo en Alimentos, TecNM/Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Ver., Mexico
| | - M Pilar Cano
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Design and Characterization of Ethosomes for Transdermal Delivery of Caffeic Acid. Pharmaceutics 2020; 12:pharmaceutics12080740. [PMID: 32781717 PMCID: PMC7465088 DOI: 10.3390/pharmaceutics12080740] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
The present investigation describes a formulative study aimed at designing ethosomes for caffeic acid transdermal administration. Since caffeic acid is characterized by antioxidant potential but also high instability, its encapsulation appears to be an interesting strategy. Ethosomes were produced by adding water into a phosphatidylcholine ethanol solution under magnetic stirring. Size distribution and morphology of ethosome were investigated by photon correlation spectroscopy, small-angle X-ray spectroscopy, and cryogenic transmission electron microscopy, while the entrapment capacity of caffeic acid was evaluated by high-performance liquid chromatography. Caffeic acid stability in ethosome was compared to the stability of the molecule in water, determined by mass spectrometry. Ethosome dispersion was thickened by poloxamer 407, obtaining an ethosomal gel that was characterized for rheological behavior and deformability. Caffeic acid diffusion kinetics were determined by Franz cells, while its penetration through skin, as well as its antioxidant activity, were evaluated using a porcine skin membrane–covered biosensor based on oxygen electrode. Ethosome mean diameter was ≈200 nm and almost stable within three months. The entrapment of caffeic acid in ethosome dramatically prolonged drug stability with respect to the aqueous solution, being 77% w/w in ethosome after six months, while in water, an almost complete degradation occurred within one month. The addition of poloxamer slightly modified vesicle structure and size, while it decreased the vesicle deformability. Caffeic acid diffusion coefficients from ethosome and ethosome gel were, respectively, 137- and 33-fold lower with respect to the aqueous solution. At last, the caffeic acid permeation and antioxidant power of ethosome were more intense with respect to the simple solution.
Collapse
|
20
|
Aisa HA, Xin XL, Tang D. Chemical constituents and their pharmacological activities of plants from Cichorium genus. CHINESE HERBAL MEDICINES 2020; 12:224-236. [PMID: 36119016 PMCID: PMC9476815 DOI: 10.1016/j.chmed.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/28/2019] [Accepted: 11/23/2019] [Indexed: 01/16/2023] Open
Affiliation(s)
- Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Corresponding author.
| | - Xue-lei Xin
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dan Tang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
21
|
Rapid Characterizaiton of Chemical Constituents of the Tubers of Gymnadenia conopsea by UPLC-Orbitrap-MS/MS Analysis. Molecules 2020; 25:molecules25040898. [PMID: 32085417 PMCID: PMC7070944 DOI: 10.3390/molecules25040898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gymnadenia conopsea R. Br. is a traditional Tibetan medicinal plant that grows at altitudes above 3000 m, which is used to treat neurasthenia, asthma, coughs, and chronic hepatitis. However, a comprehensive configuration of the chemical profile of this plant has not been reported because of the complexity of its chemical constituents. In this study, a rapid and precise method based on ultra-high performance liquid chromatography (UPLC) combined with an Orbitrap mass spectrometer (UPLC–Orbitrap–MS/MS) was established in both positive- and negative-ion modes to rapidly identify various chemical components in the tubers of G. conopsea for the first time. Finally, a total of 91 compounds, including 17 succinic acid ester glycosides, 9 stilbenes, 6 phenanthrenes, 19 alkaloids, 11 terpenoids and steroids, 20 phenolic acid derivatives, and 9 others, were identified in the tubers of G. conopsea based on the accurate mass within 3 ppm error. Furthermore, many alkaloids, phenolic acid derivates, and terpenes were reported from G. conopsea for the first time. This rapid method provides an important scientific basis for further study on the cultivation, clinical application, and functional food of G. conopsea.
Collapse
|
22
|
Sinkovič L, Nečemer M, Ogrinc N, Žnidarčič D, Stopar D, Vidrih R, Meglič V. Parameters for discrimination between organic and conventional production: A case study for chicory plants (Cichorium intybus L.). Food Chem Toxicol 2020; 136:111109. [PMID: 31904471 DOI: 10.1016/j.fct.2019.111109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022]
Abstract
Organic crop production has become a highly attractive way of production over the world and thus the need for robust analytical techniques for their authentication. The main aim of this study is to identify appropriate biomarkers to discriminate between organic and conventionally grown chicory. Chicory is an appreciated leafy vegetable among producers and consumers, especially due to its undemanding cultivation and content of bioactive substances. Six different fertility management practices (control, two organic, two mineral, and a combination of organic and mineral fertilizers) were used to produce five chicory cultivars in a glasshouse pot experiment. Analysis of bioactive compounds, nitrogen assimilation, multi-elemental profiling and stable isotope ratio determination of carbon (C), nitrogen (N) and sulphur (S) were performed to differentiate between organic and conventional production. In this study, nitrogen isotopes are found to be an excellent way of identifying organically produced chicory of a different variety with the highest δ15N values. Conversely, the same samples had the lowest δ34S values indicating that also stable isotopes of S could be used as a marker for the authentication of organic production.
Collapse
Affiliation(s)
- Lovro Sinkovič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, SI-1000, Ljubljana, Slovenia.
| | - Marijan Nečemer
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, SI-1000, Ljubljana, Slovenia
| | - Dragan Žnidarčič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - David Stopar
- Laboratory of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Rajko Vidrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
23
|
Qian W, Wu W, Kang Y, Wang Y, Yang P, Deng Y, Ni C, Huang J. Comprehensive identification of minor components and bioassay-guided isolation of an unusual antioxidant from Azolla imbricata using ultra-high performance liquid chromatography—quadrupole time-of-flight mass spectrometry combined with multicomponent knockout and bioactivity evaluation. J Chromatogr A 2020; 1609:460435. [DOI: 10.1016/j.chroma.2019.460435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022]
|
24
|
Thabit S, Handoussa H, Roxo M, Cestari de Azevedo B, S E El Sayed N, Wink M. Styphnolobium japonicum (L.) Schott Fruits Increase Stress Resistance and Exert Antioxidant Properties in Caenorhabditis elegans and Mouse Models. Molecules 2019; 24:E2633. [PMID: 31331055 PMCID: PMC6680879 DOI: 10.3390/molecules24142633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Styphnolobium japonicum (L.) Schott is a popular Asian tree widely used in traditional medicine. The current study explored the potential stress resistance and antioxidant activities of its fruits. Phytochemical profiling of the hydroalcoholic fruit extract was done via high performance liquid chromatography-photodiode array-electrospray ionization-mass/mass (HPLC-PDA-ESI-MS/MS). Twenty four phenolic constituents were tentatively identified in the extract. The Caenorhabditis elegans (C. elegans) nematode model in addition to trimethyltin (TMT)-induced neurotoxicity mouse model were used for in vivo evaluation of its antioxidant properties. The ability of the extract to enhance stress resistance was manifested through increasing survival rate by 44.7% and decreasing basal reactive oxygen species (ROS) levels by 72.3% in C. elegans. In addition, the extract increased the levels of the stress response enzyme superoxide dismutase-3 (Sod-3) by 55.5% and decreased the expression of heat shock protein-16.2 (Hsp-16.2) in nematodes, which had been challenged by juglone, by 21%. Using a mouse model, the extract significantly decreased the expression of the oxidative stress marker malondialdehyde (MDA). Furthermore, an elevation in the levels of the antioxidant marker glutathione (GSH), SOD and heme oxygenase-1 (HO-1) enzymes were observed. Our findings imply that Styphnolobium japonicum has the potential to be used in future studies focusing on diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Sara Thabit
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Heba Handoussa
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mariana Roxo
- Biology Department, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Bruna Cestari de Azevedo
- Biology Department, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
- Departmento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900 Ribeirão Preto, Brazil
| | - Nesrine S E El Sayed
- Pharmacology and Toxicology department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael Wink
- Biology Department, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| |
Collapse
|
25
|
Li M, Fan Y, Liu Z, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. Tracing the melamine migration from three-piece tin cans into food simulants during coating process. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Chemo-metric analysis of the polyphenolic profile of Cichorium intybus L. leaves grown on different water resources of Pakistan. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-9985-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Prevalence and current therapy in chronic liver disorders. Inflammopharmacology 2019; 27:213-231. [PMID: 30737607 DOI: 10.1007/s10787-019-00562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Herbal medicine plays an important role in health, particularly in remote parts of developing areas with few health facilities. According to WHO estimates, about three-quarters of the world's population currently use herbs or traditional medicines to treat various ailments, including liver diseases. Several studies have found that the use of medicinal plants was effective in the treatment of infectious and non-infectious diseases. Hepatitis and liver cirrhosis associated with many clinical manifestations can be treated with allopathic medicines, but reports of a number of side effects including immunosuppression, bone marrow suppression, and renal complications have motivated researchers to explore more natural herbal medicines with low or no side effects and with high efficacy in treating hepatic diseases. METHODS Databases including PubMed, Medline, and Google Scholar were searched for findings on the hepatoprotective effects of plants. RESULTS Various medicinal plants are used for the treatment of liver disorders. The range of alternative therapies is huge, and they are used worldwide, either as part of primary health care or in combination with conventional medicine. Hepatoprotective plants contain a variety of chemical constituents including flavonoids, alkaloids, glycosides, carotenoids, coumarins, phenols, essential oil, organic acids, monoterpenes, xanthenes, lignans, and lipids. CONCLUSION This review shows that numerous plants are found to contain hepatoprotective compounds. However, further studies are needed to determine their association with existing regimes of antiviral medicines and to develop evidence-based alternative medicine to cure different kinds of liver disease in humans.
Collapse
|
28
|
Shepherd's Purse Polyphenols Exert Its Anti-Inflammatory and Antioxidative Effects Associated with Suppressing MAPK and NF- κB Pathways and Heme Oxygenase-1 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7202695. [PMID: 30733853 PMCID: PMC6348798 DOI: 10.1155/2019/7202695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 01/24/2023]
Abstract
Shepherd's purse (Capsella bursa-pastoris (L.) Medik.), a wild herb as a traditional herbal medicine, has been proved with multiple healthy benefits. In this study, the chemical constituents of shepherd's purse were identified by UPLC-QTOF-MS/MS. The antioxidative and anti-inflammatory potential of shepherd's purse extract (SPE) were also investigated applying lipopolysaccharide- (LPS-) induced inflammation in RAW 264.7 macrophages and a carrageenan-induced mice paw edema model. Twenty-four chemical compounds were identified mainly including phenolic acids and flavonoids. The data also indicated SPE inhibited the productions of NO, PGE2, TNF-α, and IL-6 stimulated with LPS. In addition, SPE inhibited the increase of reactive oxygen species (ROS) and upregulated the expression of heme oxygenase-1 (HO-1). We further found that SPE inhibited the phosphorylation of P38 MAPK and activation of NF-κB. In vivo mice model also indicated that SPE showed strong antioxidative and anti-inflammatory activity.
Collapse
|
29
|
Jakobek L, Matić P. Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.024] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Wang L, Li X, Wang H. Physicochemical properties, bioaccessibility and antioxidant activity of the polyphenols from pine cones of Pinus koraiensis. Int J Biol Macromol 2018; 126:385-391. [PMID: 30576738 DOI: 10.1016/j.ijbiomac.2018.12.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/20/2023]
Abstract
This study investigated the physicochemical properties, bioaccessibility and in vitro antioxidant ability of the polyphenols isolated from the pine cones of Pinus koraiensis (PKP) under the simulated gastrointestinal digestion. The results found that PKP was mainly composed by derivatives of apigenin, phloretin, quercetin, myricetin, ellagitannin, and chlorogenic acid, and possessed the flat and smooth lump surface morphology. Through respective establishment of saliva, gastric fluid and small intestinal fluid digestive model in vitro, the compositions of phenolic compounds were totally different due to biotransformation. Compared with the phenolic composition of undigested PKP, the derivatives of apigenin, quercetin and ellagitannin were still detected after simulated digestion. A decrease of antioxidant capacity on free radical in vitro was observed throughout the simulated digestion processes, corresponding to the variation in phenolic content and composition. Our results highlighted that gastrointestinal digestion process might essentially influence the absorption of polyphenols, leading to the reduction of bioavailability.
Collapse
Affiliation(s)
- Lu Wang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoyu Li
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hongchao Wang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
31
|
Extraction, Purification, and Hydrolysis Behavior of Apigenin-7-O-Glucoside from Chrysanthemum Morifolium Tea. Molecules 2018; 23:molecules23112933. [PMID: 30424020 PMCID: PMC6278536 DOI: 10.3390/molecules23112933] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/08/2018] [Indexed: 01/03/2023] Open
Abstract
Apigenin-7-O-glucoside is an active phenolic compound in Asteraceae flowers and possesses remarkable therapeutic applications. However, its high price and low abundance in plants limit its use, meanwhile it would hydrolyze in the purification process. In this study, apigenin-7-O-glucoside extracted with ultrasound and purified with preparative HPLC from Chrysanthemum morifolium ‘Huangju’ was investigated, as well as its hydrolysis behavior and bioactivities. The optimized extraction conditions were: solid/liquid ratio: 1:20, extraction time: 35 min, temperature: 50 °C, and ultrasound power: 350 W. The content of apigenin-7-O-glucoside was up to 16.04 mg/g. Apigenin-7-O-glucoside was then purified with preparative HPLC from the extract, and confirmed by Q-TOF/MS. Apigenin-7-O-glucoside was partially hydrolyzed in acidic condition, and the hydrolysis rate depended on the pH value and temperature. The antioxidant activity increased as a result of the hydrolysis process. This study provided a green and effective way to obtain apigenin-7-O-glucoside and would be beneficial for further investigations into nutritional and functional aspects apigenin-7-O-glucoside and other glycosides.
Collapse
|
32
|
Effects of microwave cooking on carotenoids, phenolic compounds and antioxidant activity of Cichorium intybus L. (chicory) leaves. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3168-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Marchetti N, Bonetti G, Brandolini V, Cavazzini A, Maietti A, Meca G, Mañes J. Stinging nettle (Urtica dioica L.) as a functional food additive in egg pasta: Enrichment and bioaccessibility of Lutein and β-carotene. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Anokwuru C, Sigidi M, Boukandou M, Tshisikhawe P, Traore A, Potgieter N. Antioxidant Activity and Spectroscopic Characteristics of Extractable and Non-Extractable Phenolics from Terminalia sericea Burch. ex DC. Molecules 2018; 23:E1303. [PMID: 29844261 PMCID: PMC6099621 DOI: 10.3390/molecules23061303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine the antioxidant activity of the extractable and non-extractable phenolics of Terminalia. Sericea Burch. Ex DC. Free, ester bound, ether or glycoside bound and insoluble phenolics were extracted from the fruit, leaves, stem, and root samples. Follin Ciocalteu was used to estimate the phenolic content while DPPH (2,2-diphenyl-1-picrylhydrazyl) assay was used to determine the antioxidant activity. The data obtained were subjected to multivariate analysis for relationships. The result indicated that the highest average total phenolic contents and antioxidant activities were found in the free (14.8 mgGAE/g; IC50 6.8 μg/mL) and ester bound (15.1 mgGAE/g; IC50 6.4 μg/mL) extractable phenolics. There was a strong negative correlation between TPC and DPPH (r = -0.828). Agglomerative hierarchical clustering revealed three clusters. Cluster one contained the insoluble and glycoside phenolics while cluster 2 contained only free phenolic acid of the root. The third cluster was predominantly free and ester bound phenolic extracts. The principal component analysis score plot indicated two major clusters with factor 1 (F1) explaining 61% of the variation. The nuclear magnetic resonance spectroscopy spectra indicated that gallic acid and resveratrol are the major phenolic compounds present in the root. This study has demonstrated that extractable phenolics contributed more to the antioxidant activities compared to the non-extractables.
Collapse
Affiliation(s)
- Chinedu Anokwuru
- Chemistry Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Muendi Sigidi
- Microbiology Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Marlaine Boukandou
- Microbiology Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Peter Tshisikhawe
- Botany Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Afsatou Traore
- Microbiology Department, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Natasha Potgieter
- School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| |
Collapse
|
35
|
Sobeh M, Mahmoud MF, Hasan RA, Cheng H, El-Shazly AM, Wink M. Senna singueana: Antioxidant, Hepatoprotective, Antiapoptotic Properties and Phytochemical Profiling of a Methanol Bark Extract. Molecules 2017; 22:E1502. [PMID: 28885586 PMCID: PMC6151733 DOI: 10.3390/molecules22091502] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/05/2023] Open
Abstract
Natural products are considered as an important source for the discovery of new drugs to treat aging-related degenerative diseases and liver injury. The present study profiled the chemical constituents of a methanol extract from Senna singueana bark using HPLC-PDA-ESI-MS/MS and 36 secondary metabolites were identified. Proanthocyanidins dominated the extract. Monomers, dimers, trimers of (epi)catechin, (epi)gallocatechin, (epi)guibourtinidol, (ent)cassiaflavan, and (epi)afzelechin represented the major constituents. The extract demonstrated notable antioxidant activities in vitro: In DPPH (EC50 of 20.8 µg/mL), FRAP (18.16 mM FeSO₄/mg extract) assays, and total phenolic content amounted 474 mg gallic acid equivalent (GAE)/g extract determined with the Folin-Ciocalteu method. Also, in an in vivo model, the extract increased the survival rate of Caenorhabditis elegans worms pretreated with the pro-oxidant juglone from 43 to 64%, decreased intracellular ROS inside the wild-type nematodes by 47.90%, and induced nuclear translocation of the transcription factor DAF-16 in the transgenic strain TJ356. Additionally, the extract showed a remarkable hepatoprotective activity against d-galactosamine (d-GalN) induced hepatic injury in rats. It significantly reduced elevated AST (aspartate aminotransferase), and total bilirubin. Moreover, the extract induced a strong cytoplasmic Bcl-2 expression indicating suppression of apoptosis. In conclusion, the bark extract of S. sengueana represents an interesting candidate for further research in antioxidants and liver protection.
Collapse
Affiliation(s)
- Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Rehab A Hasan
- Department of Histology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt.
| | - Haroan Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| | - Assem M El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| |
Collapse
|
36
|
Sobeh M, Mahmoud MF, Abdelfattah MAO, El-Beshbishy HA, El-Shazly AM, Wink M. Albizia harveyi: phytochemical profiling, antioxidant, antidiabetic and hepatoprotective activities of the bark extract. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2005-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|