1
|
Carrera I, Corzo L, Martínez-Iglesias O, Naidoo V, Cacabelos R. Preventive Role of Cocoa-Enriched Extract Against Neuroinflammation in Mice. Neurol Int 2025; 17:47. [PMID: 40278418 PMCID: PMC12029631 DOI: 10.3390/neurolint17040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Chronic aberrant inflammation is a crucial step in mediating cerebrovascular and neurodegenerative pathologies, including Alzheimer's and Parkinson's disease. Due to their exceptional antioxidant properties and ability to alter imbalance metabolism and reactive inflammation response, cocoa-derived flavanols are being investigated as potential bioactive substances to modulate and reverse these inflammation-associated disorders. OBJECTIVE The present study will focus on the possible beneficial effects of cocoa-derived extract, enhanced with other bioactive phytochemicals such as spirulina and pineapple, on selected biomarkers of the inflammatory, metabolic, and neurodegenerative processes. METHODS A mice model of inflammation was treated with cocoa-derived extract cocktail, and biomolecular data was obtained by performing immunohistochemical and biochemical analysis. RESULTS Results show that the cocoa-derived extract mitigates the neuroinflammatory processes triggered (decreased expression of macrophage CD11b) and prevents the escalade of subsequent neurodegeneration pathologies. CONCLUSIONS The results based on hypo-vitaminosis, neuroinflammation, and inmunoreactive analysis suggest that cocoa-derived extract is a powerful bioproduct for ameliorating neuroinflammatory processes that mediate metabolic and cerebrovascular diseases.
Collapse
Affiliation(s)
- Ivan Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain; (L.C.); (O.M.-I.); (V.N.); (R.C.)
| | | | | | | | | |
Collapse
|
2
|
Silva MA, Gonçalves Albuquerque T, Espírito Santo L, Motta C, Almeida A, Azevedo R, Alves RC, Oliveira MBPP, Costa HS. Exploring the Functional Features of Melon Peel Flour for Healthier Bakery Products. Foods 2024; 14:40. [PMID: 39796330 PMCID: PMC11719529 DOI: 10.3390/foods14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The use of fruit by-products to develop new food products could be an advantageous approach to meet the demand for healthy foods and reduce food waste. In this study, the amino acid and mineral profiles of melon peel flour were evaluated. Non-essential/toxic elements were also determined. Furthermore, two formulations (biscuit and muffin) were developed with 50% and 100% melon peel flour, respectively. The bioaccessibility of essential minerals in these two formulations was also determined. These innovative products presented interesting contents of amino acids and high levels of minerals, contributing significantly to daily mineral requirements, mainly magnesium (18-23%), phosphorus (13-28%), molybdenum (14-17%), and manganese (10-13%). Regarding the in vitro bioaccessibility of minerals in the developed formulations, magnesium, manganese, sodium, and phosphorus were those with the highest values (75-108%). Based on these results, melon peel has the potential to improve global food security, nutrition, economic well-being, and overall health and well-being.
Collapse
Affiliation(s)
- Mafalda Alexandra Silva
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (C.M.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Tânia Gonçalves Albuquerque
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (C.M.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Liliana Espírito Santo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, E-32004 Ourense, Spain
| | - Carla Motta
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (C.M.); (H.S.C.)
| | - Agostinho Almeida
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Rui Azevedo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Helena S. Costa
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (C.M.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| |
Collapse
|
3
|
Di Maro M, Gargiulo L, Gomez d'Ayala G, Duraccio D. Exploring Antimicrobial Compounds from Agri-Food Wastes for Sustainable Applications. Int J Mol Sci 2024; 25:13171. [PMID: 39684881 DOI: 10.3390/ijms252313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Transforming agri-food wastes into valuable products is crucial due to their significant environmental impact, when discarded, including energy consumption, water use, and carbon emissions. This review aims to explore the current research on the recovery of bioactive molecules with antimicrobial properties from agri-food waste and by-products, and discusses future opportunities for promoting a circular economy in its production and processing. Mainly, antibacterial molecules extracted from agri-food wastes are phenolic compounds, essential oils, and saponins. Their extraction and antimicrobial activity against a wide spectrum of bacteria is analyzed in depth. Also, their possible mechanisms of activity are described and classified based on their effect on bacteria, such as the (i) alteration of the cell membrane, (ii) inhibition of energy metabolism and DNA synthesis, and iii) disruption of quorum sensing and biofilm formation. These bioactive molecules have a wide range of possible applications ranging from cosmetics to food packaging. However, despite their potential, the amount of wastes transformed into valuable compounds is very low, due to the high costs relating to their extraction, technical challenges in managing supply chain complexity, limited infrastructure, policy and regulatory barriers, and public perception. For these reasons, further research is needed to develop cost-effective, scalable technologies for biomass valorization.
Collapse
Affiliation(s)
- Mattia Di Maro
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luca Gargiulo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
4
|
Beniwal A, Singh S, Rani J, Moond M, Kakkar S, Sangwan S, Kumari S. Waste upcycling of Sapota peels as a green route for the synthesis of silver nanoparticles and their application as catalytic and colorimetric detection of Co 2+ and Hg 2. DISCOVER NANO 2024; 19:191. [PMID: 39572462 PMCID: PMC11582249 DOI: 10.1186/s11671-024-04147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Biochemical synthesis of nanoparticles (NPs) using plant part extracts as capping and reducing agents has drawn considerable attention in research with a growing focus on green chemistry. The present study utilized Sapota (Manilkara zapota L.) peel extract to synthesize silver nanoparticles (SP-AgNPs) using ultrasonic vibration. Different characterization techniques such as UV-vis spectroscopy, dynamic light scattering, Fourier Transform Infrared Spectroscopy, Field emission scanning electron microscope, High resolution transmission electron microscopy, and X-ray diffraction were employed to check the production of SP-AgNPs. The AgNPs were crystalline in nature and had an average particle size of 27.906 nm. The research primarily focused on two aspects: the catalytic activity of SP-AgNPs in degrading environmental pollutants and their ability to act as colorimetric sensors for toxic metal ions. SP-AgNPs exhibited significant catalytic activity in the decomposition of various pollutants such as Methyl Orange (0.035 ± 0.090 min-1, 92.89 ± 1.79%), Crystal Violet (0.1097 ± 0.1016 min-1, 85.56 ± 2.21%) and Cosmic Brilliant Blue G-250 (0.0697 ± 0.0275 min-1, 79.56 ± 1.80%). The high degradation percentages and reaction rate constants indicate the efficiency of SP-AgNPs in pollutant degradation. Additionally, the study demonstrated the effectiveness of SP-AgNPs as sensors for detecting toxic metal ions, particularly Co2+ and Hg2+ with limits of detection 54.40 ± 1.43 µM and 10.70 ± 0.16 µM. With impressive sensitivity and low detection limits, SP-AgNPs showed promise in detecting these ions, which are often found in environmental contaminants. Moreover, their plant-based synthesis, low toxicity, and cost-effectiveness make them attractive options for environmental remediation efforts.
Collapse
Affiliation(s)
- Anuradha Beniwal
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Sushila Singh
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India.
| | - Jyoti Rani
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Monika Moond
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Simran Kakkar
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Seema Sangwan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Sachin Kumari
- Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
5
|
Coelho VS, de Moura DG, Aguiar LL, Ribeiro LV, Silva VDM, da Veiga Correia VT, Melo AC, Silva MR, de Paula ACCFF, de Araújo RLB, Melo JOF. The Profile of Phenolic Compounds Identified in Pitaya Fruits, Health Effects, and Food Applications: An Integrative Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3020. [PMID: 39519939 PMCID: PMC11548494 DOI: 10.3390/plants13213020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This integrative review aimed to identify the phenolic compounds present in pitayas (dragon fruit). METHODS We employed a comprehensive search strategy, encompassing full-text articles published between 2013 and 2023 in Portuguese, English, and Spanish from databases indexed in ScienceDirect, Capes Periodics, Scielo, and PubMed. The study's selection was guided by the question, "What are the main phenolic compounds found in pitaya fruits?". RESULTS After screening 601 papers, 57 met the inclusion criteria. The identified phytochemicals have been associated with a range of health benefits, including antioxidant, anti-inflammatory, and anxiolytic properties. Additionally, they exhibit promising applications in the management of cancer, diabetes, and obesity. These 57 studies encompassed various genera, including Hylocereus, Selenicereus, and Stenocereus. Notably, Hylocereus undatus and Hylocereus polyrhizus emerged as the most extensively characterized species regarding polyphenol content. Analysis revealed that flavonoids, particularly kaempferol and rutin, were the predominant phenolic class within the pulp and peel of these fruits. Additionally, hydroxycinnamic and benzoic acid derivatives, especially chlorogenic acid, caffeic, protocatechuic, synaptic, and ellagic acid, were frequently reported. Furthermore, betalains, specifically betacyanins, were identified, contributing to the characteristic purplish-red color of the pitaya peel and pulp. These betalains hold significant potential as natural colorants in the food industry. CONCLUSION Therefore, the different pitayas have promising sources for the extraction of pigments for incorporation in the food industry. We recommend further studies investigate their potential as nutraceuticals.
Collapse
Affiliation(s)
- Vinicius Serafim Coelho
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Daniela Gomes de Moura
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Lara Louzada Aguiar
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Lucas Victor Ribeiro
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil; (L.V.R.); (V.D.M.S.)
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil; (L.V.R.); (V.D.M.S.)
| | - Vinícius Tadeu da Veiga Correia
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Angelita Cristine Melo
- Curso de Farmácia, Campus Centro-Oeste, Universidade Federal de São João del-Rei, Divinópolis 35501-296, MG, Brazil;
| | - Mauro Ramalho Silva
- Departamento de Bioquímica e Imunologia, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | | | - Raquel Linhares Bello de Araújo
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (V.S.C.); (D.G.d.M.); (L.L.A.); (V.T.d.V.C.); (R.L.B.d.A.)
| | - Julio Onesio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 36307-352, MG, Brazil; (L.V.R.); (V.D.M.S.)
| |
Collapse
|
6
|
Mahomud MS, Islam MN, Hossen D, Wazed MA, Yasmin S, Sarker MSH. Innovative probiotic yogurt: Leveraging green banana peel for enhanced quality, functionality, and sensory attributes. Heliyon 2024; 10:e38781. [PMID: 39421385 PMCID: PMC11483293 DOI: 10.1016/j.heliyon.2024.e38781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Yogurt, a popular dairy product renowned for its nutritional benefits and probiotic content, serves as a functional food with potential health-promoting properties. The objective of this study was to investigate whether incorporating green banana peel polyphenol extract (GBPPE) into yogurt formulations enhances the viability and functionality of probiotics while also potentially improving the overall quality and health-promoting properties of the yogurts. GBPPE was extracted and added to the yogurt formulation at 0.0 %, 0.5 %, 1 %, and 2 %. Various physico-chemical properties of GBPPE as well as a range of physical, biochemical, sensory, and microbial assessments of formulated yogurts were carried out. Compared to the control, yogurt containing GBPPE improves functional characteristics by increasing antioxidant activity while having no detrimental impact on physicochemical and organoleptic properties. In terms of antioxidant capabilities, all fortified yogurts showed significantly (p < 0.05) higher total phenolic, flavonoid contents and antioxidant activities than the control yogurt. The addition of GBPPE also affected (p < 0.05) pH, titratable acidity, viscosity, water-binding capacity, syneresis, and total soluble solids, while no significant differences in the color parameters were detected in both control and all fortified yogurts with reduced brightness (L∗) and increased redness (a∗) of the product. The initial viable counts of all yogurt samples were almost similar, and the maximum and minimum viability loss of probiotics were observed in control and 2 % GBPPE fortified samples, respectively. Sensory assessment revealed that yogurt with 0.5 % banana peel extract outperformed all other treatments except the control. These findings support the sustainable use of GBPPE to create probiotic yogurt with improved physicochemical, microbiological, and sensory qualities.
Collapse
Affiliation(s)
- Md. Sultan Mahomud
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md. Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
- Institute of Food Safety and Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Diloar Hossen
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md. Abdul Wazed
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sabina Yasmin
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md. Sazzat Hossain Sarker
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| |
Collapse
|
7
|
Araújo CM, Sampaio KB, da Silva JYP, de Oliveira JN, de Albuquerque TMR, Lima MDC, Lima MDS, do Nascimento YM, da Silva EF, da Silva MS, Tavares JF, de Souza EL, de Oliveira MEG. Exploiting tropical fruit processing coproducts as circular resources to promote the growth and maintain the culturability and functionality of probiotic lactobacilli. Food Microbiol 2024; 123:104596. [PMID: 39038898 DOI: 10.1016/j.fm.2024.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
This study evaluated the use of acerola (Malpighia glabra L., CACE), cashew (Anacardium occidentale L., CCAS), and guava (Psidium guayaba L., CGUA) fruit processing coproducts as substrates to promote the growth, metabolite production, and maintenance of the viability/metabolic activity of the probiotics Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10 during cultivation, freeze-drying, storage, and exposure to simulated gastrointestinal digestion. Probiotic lactobacilli presented high viable counts (≥8.8 log colony-forming units (CFU)/mL) and a short lag phase during 24 h of cultivation in CACE, CCAS, and CGUA. Cultivation of probiotic lactobacilli in fruit coproducts promoted sugar consumption, medium acidification, and production of organic acids over time, besides increasing the of several phenolic compounds and antioxidant activity. Probiotic lactobacilli cultivated in fruit coproducts had increased survival percentages after freeze-drying and during 120 days of refrigerated storage. Moreover, probiotic lactobacilli cultivated and freeze-dried in fruit coproducts had larger subpopulations of live and metabolically active cells when exposed to simulated gastrointestinal digestion. The results showed that fruit coproducts not only improved the growth and helped to maintain the viability and metabolic activity of probiotic strains but also enriched the final fermented products with bioactive compounds, being an innovative circular strategy for producing high-quality probiotic cultures.
Collapse
Affiliation(s)
- Caroliny Mesquita Araújo
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Jordana Nunes de Oliveira
- Post-Graduate Program in Nutrition Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, PE, Brazil
| | | | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | |
Collapse
|
8
|
Laaraj S, Choubbane H, Elrherabi A, Tikent A, Farihi A, Laaroussi M, Bouhrim M, Shahat AA, Noutfia Y, Herqash RN, Chigr F, Salmaoui S, Elfazazi K. Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature Ceratonia siliqua L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches. Curr Issues Mol Biol 2024; 46:10991-11020. [PMID: 39451533 PMCID: PMC11506481 DOI: 10.3390/cimb46100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Ceratonia siliqua L. is a medicinal plant that has long been used in traditional Moroccan medicine to treat many diseases. This study aimed to assess the impact of the stages of the immature phase of carob pulp (M1, M2, M3, M4, and M5) on phytochemical composition, antioxidant activity, and antidiabetic activity of Ceratonia siliqua L. The identification of the phenolic profile by HPLC-UV/MS-MS and the study of the antidiabetic effect by in silico, in vitro, and in vivo studies were carried out for extracts with high contents of phenolic compounds from immature wild carob pulp from the communes of Timoulit (TM), Bin Elouidane (AW), and Ouaouizerth (TG) in the province of Azilal in the Béni Mellal-Khénifra region. The results revealed a gradual increase in total sugar content over the pulp's ripening period, reaching a value of 2134 ± 56.23 mg GE/100 g fresh weight (FW) for TG. The three locations showed peak values for total polyphenol content (TPC), total flavonoid content (TFC), and total condensed tannin (TCT) at the M2 stage. AW had the highest concentrations of TPC (3819 ± 226.4 mg GAE/100 g FM), TFC (1034 ± 57.08 mg QE/100 g FM), and TCT (1472 ± 28.46 mg CE/100 g FM). The DPPH assay (7892 ± 296.1 mg TE/100 g FM) and the FRAP assay (278.2 ± 7.85 mg TE/100 g FM) both demonstrated that the TG zone is a highly potent antioxidant zone. In contrast, the AW site exhibited a markedly elevated value of 725.4 ± 103.6 mg TE/100 g FM in the ABTS assay. HPLC-UV-MS/MS analysis showed that the methanolic extracts of immature carob pulp (MEICP) from the three areas contained several different chemical compounds. The most prevalent were 3-O-p-coumaroyl-5-O-caffeoylquinic acid, quercetin 3-methyl ether, gallic acid, and galloylquinic acid. Immature carob pulp extract (ICPE) from AW showed the strongest in vitro inhibition of pancreatic α-amylase (IC50 = 0.405 µg/mL) and TG extracts were most potent against intestinal α-glucosidase (IC50 = 0.063 µg/mL). In vivo, AW, TG, and TM extracts significantly reduced postprandial glycemia in rats, with AW having the greatest effect. These results highlight the antidiabetic potential of ICPE. The 3-O-p-Coumaroyl-5-O-caffeoylquinic acid showed better affinity for α-amylase compared to acarbose and interacted significantly with several amino acid residues of the enzyme. Similarly, this molecule and 3,4-Dicaffeoylquinic acid demonstrated a strong affinity for α-glucosidase, suggesting their potential as natural inhibitors of enzymes involved in carbohydrate metabolism. Most of the compounds are not substrates of P-glycoprotein and exhibited high intestinal absorption. Furthermore, the majority of these compounds did not act as inhibitors or substrates of CYP450 enzymes, reinforcing their suitability for development as oral medications. These results underscore the potential of immature carob pulp as a promising antidiabetic agent.
Collapse
Affiliation(s)
- Salah Laaraj
- Agri-Food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, Bp 415 Rabat principal, Rabat 10090, Morocco
- Environmental, Ecological and Agro-Industrial Engineering Laboratory, LGEEAI, Faculty of Science and Technology (FST), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco;
| | - Hanane Choubbane
- Laboratory of Sustainable Development and Health, Faculty of Science and Technology Guéliz (FSTG), University Cadi Ayyad of Marrakech, Marrakech 40000, Morocco;
| | - Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Bp 717, Oujda 60000, Morocco;
| | - Aziz Tikent
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie & Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Bp 717, Oujda 60000, Morocco;
| | - Ayoub Farihi
- Oriental Center for Water and Environmental Sciences and Technologies (COSTE), Mohammed Premier University, Bp 717, Oujda 60000, Morocco;
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.L.); (M.B.); (F.C.)
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.L.); (M.B.); (F.C.)
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.S.); (R.N.H.)
| | - Younes Noutfia
- Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland;
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.S.); (R.N.H.)
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.L.); (M.B.); (F.C.)
| | - Souad Salmaoui
- Environmental, Ecological and Agro-Industrial Engineering Laboratory, LGEEAI, Faculty of Science and Technology (FST), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco;
| | - Kaoutar Elfazazi
- Agri-Food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, Bp 415 Rabat principal, Rabat 10090, Morocco
| |
Collapse
|
9
|
Martínez-Girón J, Cafarella C, Rigano F, Giuffrida D, Mondello L, Baena Y, Osorio C, Ordóñez-Santos LE. Peach Palm Fruit ( Bactris gasipaes) Peel: A Source of Provitamin A Carotenoids to Develop Emulsion-Based Delivery Systems. ACS OMEGA 2024; 9:28738-28753. [PMID: 38973829 PMCID: PMC11223146 DOI: 10.1021/acsomega.4c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
The peach palm fruit (Bactris gasipaes) peel is a byproduct after fruit consumption. The peel flour of two varieties (yellow and red) was separately obtained by hot air drying and was subsequently milled. The proximate analysis showed that the red variety exhibited higher protein, fat, and fiber contents than the yellow one. A higher carotenoid (836.5 ± 24.5 μg/g), phenolic compounds (83.17 ± 1.76 mg GAE/100 g), and provitamin A activity (33.10 ± 0.83 μg retinol/g) were found in the cooked red variety. The carotenoid and phenolic compositions were analyzed by HPLC-PDA-MS, finding β-carotene and γ-carotene to be major compounds. The effect of thermal treatment increased the amount of these provitamin A carotenoids and lycopene, which were detected only in the red variety. Among phenolic compounds, procyanidin dimer (isomer I), feruloyl quinic acid, and several apigenin C-hexosides were identified as major constituents of peach palm epicarp. A carotenoid-rich emulsion-based delivery system was obtained after the optimization (RSM model) of carotenoid extraction with ultraturrax and sunflower oil and further development of an ultrasound-assisted emulsion. The best conditions for a stable emulsion were 73.75% water, 25% carotenoid-rich oil extract, 1.25% emulsifiers, and 480 W of ultrasonic power for 5 min. The optimized emulsion had a total carotenoid content of 67.61 μg/g, Provitamin A activity of 3.23 ± 0.56 μg RAE/g, droplet size of 502.23 nm, polydispersity index of 0.170, and zeta potential of -32.26 mV. This emulsion was chemically and physically stable for 35 days at 30 ± 2 °C, showing potential as a food additive with biofunctional properties. The strategy here developed is an economical and environmentally friendly process that allows the reuse of the byproduct of B. gasipaes.
Collapse
Affiliation(s)
- Jader Martínez-Girón
- Facultad
de Ingeniería y Administración, Departamento de Ingeniería, Universidad Nacional de Colombia-Sede Palmira, Palmira, Valle del Cauca 763533, Colombia
- Tecnología
de Procesamiento de Alimentos, Universidad
del Valle-Seccional Palmira, Palmira, Valle del Cauca 763531, Colombia
| | - Cinzia Cafarella
- Messina
Institute of Technology c/o Department of Chemical Biological, Pharmaceutical
and Environmental Sciences, former Veterinary School, University of Messina, Messina 98122, Italy
| | - Francesca Rigano
- Messina
Institute of Technology c/o Department of Chemical Biological, Pharmaceutical
and Environmental Sciences, former Veterinary School, University of Messina, Messina 98122, Italy
| | - Daniele Giuffrida
- Department
of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina 98122, Italy
| | - Luigi Mondello
- Messina
Institute of Technology c/o Department of Chemical Biological, Pharmaceutical
and Environmental Sciences, former Veterinary School, University of Messina, Messina 98122, Italy
- Chromaleont
s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and
Environmental Sciences, former Veterinary School, University of Messina, Messina 98122, Italy
| | - Yolima Baena
- Departamento
de Farmacia, Facultad de Ciencias, Universidad
Nacional de Colombia-Sede Bogotá, Bogotá 111321, Colombia
| | - Coralia Osorio
- Departamento
de Química, Universidad Nacional
de Colombia-Sede Bogotá, Bogotá 111321, Colombia
| | - Luis Eduardo Ordóñez-Santos
- Facultad
de Ingeniería y Administración, Departamento de Ingeniería, Universidad Nacional de Colombia-Sede Palmira, Palmira, Valle del Cauca 763533, Colombia
| |
Collapse
|
10
|
Martins AM, Adão Malafaia CR, Nunes RM, Mecenas AS, De Moura PHB, Muzitano MF, Machado TDB, Carneiro CDS, Leal ICR. Nutritional, chemical and functional potential of Inga laurina (Fabaceae): A barely used edible species. Food Res Int 2024; 178:113751. [PMID: 38309858 DOI: 10.1016/j.foodres.2023.113751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 02/05/2024]
Abstract
Inga laurina is a plant species which produces edible fruits, and until now there is little information available concerning its nutritional, chemical and bioactive composition. In this study, we evaluated for the first time the proximate composition and mineral contents in its fruit (peel, pulp and seed), that is the traditionally consumed part. The seeds obtained the highest protein (19.52 g/100 g), carbohydrate (22.5 g/100 g) and mineral contents, mainly Cu, Cr, P, Mn, Se and Zn. The peel and pulp were excellent sources of fiber (4.5 and 11.05 g/100 g) as well as mineral content, with Cr and Cu standing out in the pulp. This study is notably the first to provide a detailed assessment of the nutritional compositions of traditionally consumed and not consumed parts of this fruit. Sensory analysis of the pulp was also performed, which indicated good acceptance. The antioxidant properties were characterized in the fruit, peels and leaves. The ABTS test showed that leaf supernatant hydroethanolic crude extract (EC50 = 2.70 μg/mL) and its corresponding ethyl acetate (EC50 = 1.68 µg/mL) and butanol (EC50 = 2.48 µg/mL) partitions presented higher antioxidant potential compared to the control Ginkgo biloba (EC50 = 12.17 µg/mL). The most active precipitate extract regarding DPPH was from the peel (EC50 = 13.30 μg /mL) and the most active partition was the ethyl acetate (EC50 = 13.37 μg/mL), both with better activity compared to the control Ginkgo biloba (EC50 = 46.97 μg/mL). The ethyl acetate partition (EC50 = 13.45 μg/mL) and butanol partition (EC50 = 7.97 μg/mL) from the leaves showed the highest antioxidant capacity. Thus, extracts and partitions from the peels and leaves were studied from a phytochemical point of view due to presenting the best results for antioxidant capacity. The presence of phenolic compounds such as myricetin-3-O-rhamnopyranoside, myricetin-3-O-(2″-O-galloyl)-rhamnopyranoside and myricetin-3-O-(2″,4″-di-O-galloyl)-arabinopentoside-methyl ether were observed in the leaf crude extract and polar partitions, being reported for the first time in the Inga genus and Fabaceae family. Moreover, quercetin, quercetin-3-O-galatoctoside, quercetin-3-O-rhamnopyranoside, quercetin-3-O-(2″-O-galloyl)-rhamnoside, and quercetin tri-hexose were identified in the peel crude extract and ethyl acetate partition, in which the galloyl derivative of quercetin was identified for the first time in I. laurina fruit peels. GC-MS enabled separating and identifying substances such as palmitic and stearic acids, and ethyl oleate. It is possible to conclude that I. laurina pulp can be a supplementary food as a source of phenolic compounds, and the other organs of the plant (leaves and peel) are rich in flavonoids with great antioxidant capacity, making this species a promising source of antioxidants.
Collapse
Affiliation(s)
- Amanda Medeiros Martins
- Laboratory of Natural Products and Biological Assays, LaProNEB, Department of Natural Products and Foods, Center of Health Sciences, Pharmacy Faculty, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Camila Rodrigues Adão Malafaia
- Laboratory of Natural Products and Biological Assays, LaProNEB, Department of Natural Products and Foods, Center of Health Sciences, Pharmacy Faculty, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Rafaela Machado Nunes
- Laboratory of Natural Products and Biological Assays, LaProNEB, Department of Natural Products and Foods, Center of Health Sciences, Pharmacy Faculty, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Anete Souza Mecenas
- Laboratory of Natural Products and Biological Assays, LaProNEB, Department of Natural Products and Foods, Center of Health Sciences, Pharmacy Faculty, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Patricia Homobono Britto De Moura
- Laboratory of Natural Products and Biological Assays, LaProNEB, Department of Natural Products and Foods, Center of Health Sciences, Pharmacy Faculty, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Michele Frazão Muzitano
- Laboratory of Bioactive Products, Pharmacy Course, Federal University of Rio de Janeiro (UFRJ), Macaé Campus, Rio deJaneiro, Brazil
| | - Thelma de Barros Machado
- Postgraduate Program in Biosystems Engineering, School of Engineering, Fluminense Federal University, Rua Passo da Pátria156, São Domingos, 24210-240, Niterói-RJ, Brazil; REQUIMTE/Dep. Chemical Science, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla da Silva Carneiro
- Laboratory Development and Sensory Analysis of Food, Pharmacy Faculty, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Ivana Correa Ramos Leal
- Laboratory of Natural Products and Biological Assays, LaProNEB, Department of Natural Products and Foods, Center of Health Sciences, Pharmacy Faculty, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Ferreira VC, Sganzerla WG, Barroso TLCT, Castro LEN, Colpini LMS, Forster-Carneiro T. Sustainable valorization of pitaya (Hylocereus spp.) peel in a semi-continuous high-pressure hydrothermal process to recover value-added products. Food Res Int 2023; 173:113332. [PMID: 37803643 DOI: 10.1016/j.foodres.2023.113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
This study evaluated the use of a semi-continuous high-pressure hydrothermal process for the recovery of value-added products from pitaya peel. The process was carried out at 15 MPa, a water flow rate of 2 mL/min, a solvent-to-feed ratio of 60 g water/g pitaya peel, and temperatures ranging from 40 to 210 °C. The results show that extraction temperatures (between 40 and 80 °C) promoted the recovery of betacyanin (1.52 mg/g), malic acid (25.6 mg/g), and citric acid (25.98 mg/g). The major phenolic compounds obtained were p-coumaric acid (144.63 ± 0.42 µg/g), protocatechuic acid (91.43 ± 0.32 µg/g), and piperonylic acid (74.2 ± 0.31 µg/g). The hydrolysis temperatures (between 150 and 210 °C) could produce sugars (18.09 mg/g). However, the hydrolysis process at temperatures above 180 °C generated Maillard reaction products, which increased the total phenolic compounds and antioxidant activity of the hydrolysates. Finally, the use of semi-continuous high-pressure hydrothermal process can be a sustainable and promising approach for the recovery of value-added compounds from pitaya peel, advocating a circular economy approach in the agri-food industry.
Collapse
Affiliation(s)
- Vanessa Cosme Ferreira
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | - Tânia Forster-Carneiro
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
12
|
Oliveira ACD, Mar JM, Corrêa RF, Sanches EA, Campelo PH, Ramos ADS, Bezerra JDA. Pouteria spp. fruits: Health benefits of bioactive compounds and their potential for the food industry. Food Res Int 2023; 173:113310. [PMID: 37803621 DOI: 10.1016/j.foodres.2023.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
The Sapotaceae family encompasses the genus Pouteria spp., comprising approximately 1,250 species of fruits cherished by consumers for their delightful assortment and flavors. Over the years, extensive research has been devoted to exploring the natural bioactive compounds present in these fruits, with the primary goal of preventing and/or mitigating the risk of degenerative diseases. Despite their widespread popularity in numerous countries, the chemistry, nutritional content, and biological potential of these fruits remain relatively unexplored. This comprehensive review aims to shed light on the principal volatile and non-volatile chemical components found in Pouteria fruits, which present notable antioxidant properties. By doing so, a broad perspective on the current trends in characterizing these compounds and their potential applications were provided, as well as the associated health benefits. Additionally, the prospects and potential applications of Pouteria fruits in the food industry were explored herein.
Collapse
Affiliation(s)
| | - Josiana Moreira Mar
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, Amazonas, Brazil
| | - Renilto Frota Corrêa
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, Amazonas, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Pedro Henrique Campelo
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Andrezza da Silva Ramos
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, Amazonas, Brazil
| | - Jaqueline de Araújo Bezerra
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, Amazonas, Brazil.
| |
Collapse
|
13
|
Sánchez-Capa M, Corell González M, Mestanza-Ramón C. Edible Fruits from the Ecuadorian Amazon: Ethnobotany, Physicochemical Characteristics, and Bioactive Components. PLANTS (BASEL, SWITZERLAND) 2023; 12:3635. [PMID: 37896098 PMCID: PMC10610027 DOI: 10.3390/plants12203635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
In the Ecuadorian Amazon region, there are various types of edible fruits that have distinct qualities and benefits. Understanding the uses, properties, and functions of these fruits is important for researching products that are only available in local markets. This review aims to gather and summarize the existing scientific literature on the ethnobotany, physicochemical composition, and bioactive compounds of these native fruits to highlight the potential of the region's underutilized biodiversity. A systematic review was carried out following the PRISMA methodology, utilizing databases such as Web of Science, Scopus, Pubmed, Redalyc, and SciELO up to August 2023. The research identified 55 edible fruits from the Ecuadorian Amazon and reported their ethnobotanical information. The most common uses were fresh fruit consumption, preparation of typical food, and medicine. Additionally, nine native edible fruits were described for their physicochemical characteristics and bioactive components: Aphandra natalia (Balslev and Henderson) Barfod; Eugenia stipitate McVaugh; Gustavia macarenensis Philipson; Mauritia flexuosa L.f; Myrciaria dubia (Kunth) McVaugh; Oenocarpus bataua Mart; Plukenetia volubilis L.; Pouteria caimito (Ruiz and Pav.) Radlk.; and Solanum quitoense Lam. The analyzed Amazonian fruits contained bioactive compounds such as total polyphenols, flavonoids, carotenoids, and anthocyanins. This information highlights their potential as functional foods and the need for further research on underutilized crops.
Collapse
Affiliation(s)
- Maritza Sánchez-Capa
- Departamento de Agronomía, Universidad de Sevilla, ETSIA Crta. de Utrera Km 1, 41013 Seville, Spain;
- Research Group YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, Sede Orellana, El Coca 220001, Ecuador
| | - Mireia Corell González
- Departamento de Agronomía, Universidad de Sevilla, ETSIA Crta. de Utrera Km 1, 41013 Seville, Spain;
- CSIC Associate Unit, “Uso Sostenible del Suelo & Agua en Agricultura”, Universidad de Sevilla IRNAS, 41013 Seville, Spain
| | - Carlos Mestanza-Ramón
- Research Group YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, Sede Orellana, El Coca 220001, Ecuador
| |
Collapse
|
14
|
de Oliveira SD, de Souza EL, Araújo CM, Martins ACS, Borges GDSC, Lima MDS, Viera VB, Garcia EF, da Conceição ML, de Souza AL, de Oliveira MEG. Spontaneous fermentation improves the physicochemical characteristics, bioactive compounds, and antioxidant activity of acerola ( Malpighia emarginata D.C.) and guava ( Psidium guajava L.) fruit processing by-products. 3 Biotech 2023; 13:315. [PMID: 37637001 PMCID: PMC10449742 DOI: 10.1007/s13205-023-03738-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to investigate the effects of spontaneous fermentation on physicochemical characteristics, bioactive compounds, and antioxidant activity of acerola and guava fruit industrial by-products. Viable cell counts of lactic acid bacterial (LAB) in acerola and guava by-products were ≥ 5.0 log CFU/mL from 24 h up to 120 h of fermentation. Fermented acerola and guava by-products had increased luminosity and decreased contrast. Contents of total soluble solids and pH decreased, and titrable acidity increased in acerola and guava by-products during fermentation. Ascorbic acid contents decreased in acerola by-product and increased in guava by-product during fermentation. Different phenolic compounds were found in acerola and guava by-products during fermentation. Fermented acerola and guava by-products had increased contents of total flavonoids, total phenolics, and antioxidant activity. The contents of total flavonoids and total phenolics positively correlated with antioxidant activity in fermented acerola and guava by-products. These results indicate that spontaneous fermentation could be a strategy to improve the contents of bioactive compounds and the antioxidant activity of acerola and guava by-products, adding value and functionalities to these agro-industrial residues.
Collapse
Affiliation(s)
- Sabrina Duarte de Oliveira
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Caroliny Mesquita Araújo
- Post-Graduate Program in Nutrition Sciences, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Ana Cristina Silveira Martins
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Graciele da Silva Campelo Borges
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, 56302-100 Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Center of Education and Health, Federal University of Campina Grande, Cuité, 58175-000 Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center for Technology and Regional Development, Federal University of Paraíba, João Pessoa, 58058-600 Brazil
| | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Antônia Lúcia de Souza
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Maria Elieidy Gomes de Oliveira
- Laboratory of Bromatology, Department of Nutrition, Center of Health Sciences, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, Paraíba 58051-900 Brazil
| |
Collapse
|
15
|
Thumwong A, Darachai J, Thamrongsiripak N, Tokonami S, Ishikawa T, Saenboonruang K. Fruit Peel Powder as Natural Antioxidant and Reinforcing Bio-Filler in Natural Rubber Latex Gloves: Cases of Mangosteen, Pomelo and Durian. Antioxidants (Basel) 2023; 12:antiox12051119. [PMID: 37237986 DOI: 10.3390/antiox12051119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
As the world is facing rapid increases in agricultural wastes that greatly affect global health, the environment, and economies, this work aims to alleviate such issues by introducing simple uses of waste fruit peel powder (FPP) derived from mangosteen (MPP), pomelo (PPP), or durian (DPP), as dual natural antioxidants and reinforcing bio-fillers in natural rubber latex (NRL) gloves. A thorough investigation was undertaken of the relevant characteristics for both FPP (morphological, functional groups, particle sizes, and thermals stability) and NRL gloves (morphological, functional groups, density, color, thermal stability, and mechanical properties-both before and after thermal/25 kGy gamma aging). The results indicated that the initial addition (2-4 parts per hundred parts of rubber by weight; phr) of FPP to NRL composites generally enhanced the strength and elongation at the break of the specimens, with the levels of the improvement varying depending on the type and content of FPPs. In addition to the reinforcing effects, the FPP also offered natural antioxidant properties, evidenced by higher values of aging coefficients for all FPP/NRL gloves under either thermal or 25 kGy gamma aging than those of pristine NRL. Furthermore, by comparing the tensile strength and elongation at break of the developed FPP/NRL gloves with the requirements for medical examination latex gloves according to ASTM D3578-05, the recommended FPP contents for actual glove production were 2-4 phr for MPP, 4 phr for PPP, and 2 phr for DPP. Consequently, based on the overall outcomes, the FPPs of interest showed promising potential for utilization as simultaneous natural antioxidants and reinforcing bio-fillers in NRL gloves, which would not only enhance the strength and ability of the gloves to resist oxidative degradation from heat and gamma irradiation but also increase their economical value as well as reducing the amounts of the investigated wastes.
Collapse
Affiliation(s)
- Arkarapol Thumwong
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit of Radiation Technology for Advanced Materials (RTAM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jitsuna Darachai
- Special Research Unit of Radiation Technology for Advanced Materials (RTAM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 0368564, Japan
| | - Tetsuo Ishikawa
- Department of Radiation Physics and Chemistry, Fukushima Medical University, Fukushima 9601295, Japan
| | - Kiadtisak Saenboonruang
- Special Research Unit of Radiation Technology for Advanced Materials (RTAM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Kasetsart University Research and Development Institute, Kasetsart University, Bangkok 10900, Thailand
- Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
16
|
Roy P, Mohanty AK, Dick P, Misra M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS ENVIRONMENTAL AU 2023; 3:58-75. [PMID: 36941850 PMCID: PMC10021016 DOI: 10.1021/acsenvironau.2c00050] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/22/2023]
Abstract
Valorization of food waste (FW) is instrumental for reducing the environmental and economic burden of FW and transitioning to a circular economy. The FW valorization process has widely been studied to produce various end-use products and summarize them; however, their economic, environmental, and social aspects are limited. This study synthesizes some of the valorization methods used for FW management and produces value-added products for various applications, and also discusses the technological advances and their environmental, economic, and social aspects. Globally, 1.3 billion tonnes of edible food is lost or wasted each year, during which about 3.3 billion tonnes of greenhouse gas is emitted. The environmental (-347 to 2969 kg CO2 equiv/tonne FW) and economic (-100 to $138/tonne FW) impacts of FW depend on the multiple parameters of food chains and waste management systems. Although enormous efforts are underway to reduce FW as well as valorize unavoidable FW to reduce environmental and economic loss, it seems the transdisciplinary approach/initiative would be essential to minimize FW as well as abate the environmental impacts of FW. A joint effort from stakeholders is the key to reducing FW and the efficient and effective valorization of FW to improve its sustainability. However, any initiative in reducing food waste should consider a broader sustainability check to avoid risks to investment and the environment.
Collapse
Affiliation(s)
- Poritosh Roy
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Amar K. Mohanty
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- (A.K.M.)
| | - Phil Dick
- Ontario
Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario N1G 4Y2, Canada
| | - Manjusri Misra
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- (M.M.)
| |
Collapse
|
17
|
Fareed N, El-Kersh DM, Youssef FS, Labib RM. Unveiling major ethnopharmacological aspects of genus Diospyros in context to its chemical diversity: A comprehensive overview. J Food Biochem 2022; 46:e14413. [PMID: 36136087 DOI: 10.1111/jfbc.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.
Collapse
Affiliation(s)
- Nada Fareed
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| |
Collapse
|
18
|
Abstract
One of the biggest problems faced by food industries is the generation of large amounts of agro-industrial byproducts, such as those derived from fruit processing, as well as the negative effects of their inadequate management. Approximately 1/3 of the food produced worldwide is unused or is otherwise wasted along the chain, which represents a burden on the environment and an inefficiency of the system. Thus, there is growing interest in reintroducing agro-industrial byproducts (both from fruits and other sources) into the processing chain, either by adding them as such or utilizing them as sources of health-promoting bioactive compounds. The present work discusses recent scientific studies on the nutritional and bioactive composition of some agro-industrial byproducts derived from fruit processing, their applications as ingredients to supplement baked foods, and their main biological activities on the consumer’s health. Research shows that agro-industrial fruit byproducts can be incorporated into various baked foods, increasing their fiber content, bioactive profile, and antioxidant capacity, in addition to other positive effects such as reducing their glycemic impact and inducing satiety, all while maintaining good sensory acceptance. Using agro-industrial fruit byproducts as food ingredients avoids discarding them; it can promote some bioactivities and maintain or even improve sensory acceptance. This contributes to incorporating edible material back into the processing chain as part of a circular bioeconomy, which can significantly benefit primary producers, processing industries (particularly smaller ones), and the final consumer.
Collapse
|
19
|
Pasha I, Basit A, Ahsin M, Ahmad F. Probing nutritional and functional properties of salted noodles supplemented with ripen Banana peel powder. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractBanana peel is appreciated for higher dietary fiber, phenolics, flavonoid contents, and minerals (particularly iron, calcium, and potassium), despite being a waste product. After drying, it can be processed into powder/flour to be combined with wheat flour (WF) for development of value-added products. In this study, we substituted WF with banana peel powder (BPP) at supplementation rates of 5, 10, and 15%, and evaluated their suitability to develop salted noodles. The results showed that the composite flour with 15% BPP had significantly higher protein, ash, and crude fiber content as compared to control. Higher antioxidant capacity was observed in composite flour noodles: total phenolics content (TPC), total flavonoid content (TFC), ferric reducing power (FRAP) and DPPH reducing power were increased up to 278, 260, 143 and 13 percent respectively in the noodles containing 15% BPP as compared to control (100% WF). On the other hand, values for viscosity decreased up to 22% with addition of BPP in WF. Furthermore, water absorption capacity and cooking losses were increased up to 15 and 13 percent respectively with 15% BPP incorporation in WF. Results for sensory evaluation demonstrated that noodles with 10% BPP scored highest for sensory profile.
Graphical abstract
Collapse
|
20
|
Mannino G, Serio G, Gaglio R, Busetta G, La Rosa L, Lauria A, Settanni L, Gentile C. Phytochemical Profile and Antioxidant, Antiproliferative, and Antimicrobial Properties of Rubus idaeus Seed Powder. Foods 2022; 11:foods11172605. [PMID: 36076790 PMCID: PMC9455724 DOI: 10.3390/foods11172605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
In the context of the contemporary research on sustainable development and circular economy, the quest for effective strategies aimed at revaluation of waste and by-products generated in industrial and agricultural production becomes important. In this work, an ethanolic extract from red raspberry (Rubus idaeus) seed waste (WRSP) was evaluated for its phytochemical composition and functional properties in term of antioxidative, antiproliferative, and antimicrobial activities. Chemical composition of the extract was determined by both HPLC-ESI-MS/MS and spectrophotometric methods. Phytochemical analysis revealed that flavan-3-ols and flavonols were the major phenolic compounds contained in WRSP. The extract demonstrated very high radical-scavenging (4.86 ± 0.06 µmol TE/DW) and antioxidant activity in a cell-based model (0.178 ± 0.03 mg DW/mL cell medium). The WRSP extract also exhibited antiproliferative activity against three different epithelial cancer cell lines (MCF-7, HepG2, and HeLa cells) in a dose-dependent manner. Finally, microbiological assays showed the absence of colonies of bacteria and microscopic fungi (yeasts and molds) and revealed that the WRSP extract has a large inhibition spectrum against spoilage and pathogenic bacteria, without inhibitory activity against pro-technological bacteria. In conclusion, the obtained results show that WRSP is a rich source of phytochemical compounds exerting interesting biological activities. For these reasons WRSP could find applications in the nutritional, nutraceutical, and pharmacological fields.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Innovation Centre, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gabriele Busetta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Lorenza La Rosa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (L.S.); (C.G.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (L.S.); (C.G.)
| |
Collapse
|
21
|
Mannino G, Serio G, Bertea CM, Chiarelli R, Lauria A, Gentile C. Phytochemical profile and antioxidant properties of the edible and non-edible portions of black sapote (Diospyros digyna Jacq.). Food Chem 2022; 380:132137. [DOI: 10.1016/j.foodchem.2022.132137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/23/2021] [Accepted: 01/09/2022] [Indexed: 12/11/2022]
|
22
|
da Silva Pires PG, Bavaresco C, Wirth ML, Moraes PO. Egg coatings: trends and future opportunities for new coatings development. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2075298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - M. L. Wirth
- Department of Animal Sciences and Rural Development, Universidade Federal de Santa Catarina, School of Agricultural Sciences, Florianópolis, Brazil
| | - P. O. Moraes
- Department of Animal Sciences and Rural Development, Universidade Federal de Santa Catarina, School of Agricultural Sciences, Florianópolis, Brazil
| |
Collapse
|
23
|
Hussain H, Mamadalieva NZ, Hussain A, Hassan U, Rabnawaz A, Ahmed I, Green IR. Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Curr Issues Mol Biol 2022; 44:1960-1994. [PMID: 35678663 PMCID: PMC9164088 DOI: 10.3390/cimb44050134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fruits along with vegetables are crucial for a balanced diet. These not only have delicious flavors but are also reported to decrease the risk of contracting various chronic diseases. Fruit by-products are produced in huge quantity during industrial processing and constitute a serious issue because they may pose a harmful risk to the environment. The proposal of employing fruit by-products, particularly fruit peels, has gradually attained popularity because scientists found that in many instances peels displayed better biological and pharmacological applications than other sections of the fruit. The aim of this review is to highlight the importance of fruit peel extracts and natural products obtained in food industries along with their other potential biological applications.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent 100170, Uzbekistan;
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Uzma Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Aisha Rabnawaz
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK;
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa;
| |
Collapse
|
24
|
Karle PP, Dhawale SC, Navghare VV. Amelioration of diabetes and its complications by Manilkara zapota (L) P. Royen fruit peel extract and its fractions in alloxan and STZ-NA induced diabetes in Wistar rats. J Diabetes Metab Disord 2022; 21:493-510. [PMID: 35673482 PMCID: PMC9167411 DOI: 10.1007/s40200-022-01000-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 02/06/2023]
Abstract
Purpose This study aims to evaluate the effects of Manilkara zapota (L) P. Royen fruit peel extract (EMZFP) and its fractions in ameliorating diabetes and its complications in alloxan and STZ-NA induced diabetes in Wistar rats. Methods Antidiabetic effects of EMZFP were assessed in alloxan (150 mg kg-1) induced diabetes in differently grouped rats (n=6). Diabetic rats were treated with EMZFP 150, 300, and 600 mg kg-1 while, glimepiride (0.09 mg kg-1) was used as a reference standard. Treated animals were assessed for various biological parameters i.e. blood glucose, serum lipids, nephroprotective markers, cardiovascular risk indices, liver glycogen, neuropathy, body weight, and histopathology of kidneys. However, for evaluating antidiabetic effects of fractions (chloroform, acetone, ethyl acetate, and remaining ethanol fraction) of EMZFP, diabetes was induced by streptozotocin (60 mg kg-1)-nicotinamide (120 mg kg-1/ml) in differently grouped male rats (n=6). Diabetic rats were treated with EMZFP fractions 200 mg kg-1 however; glibenclamide (10 mg kg-1) was a reference standard and evaluated for blood glucose, serum lipids, cardiovascular risk indices, and diabetic neuropathy. Results EMZFP 300 and 600 mg kg-1/day demonstrated significant antihyperglycemic effects with augmentation in glycogen content, perfection in serum lipid profile, cardiovascular risk indices, body weight enhancement, nephroprotective effects, beneficial in peripheral neuropathy, and histopathological evidence of reversal of glomerulosclerosis. EMZFP-Et and EMZFP-EA fractions depicted a significant improvement in blood glucose, serum lipid profile, cardiovascular risk indices, and peripheral neuropathy. Conclusion EMZFP and its Et and EA fractions ameliorated diabetes and its complications by improving glycemic control and associated biochemical alteration. Highlights • Manilkara Zapota (L.) P. Royen fruit peel 70% ethanolic extract exert antidiabetic effects• EMZFP significantly ameliorated diabetic biochemical parameters and its complications.• EMZFP-Et and EMZFP-EA fractions exert potential antihyperglycemic, hypolipidemic effects and significantly improved cardiovascular risk indices, and peripheral neuropathy.• Studied MZFP can be used as promising natural herbal source of antidiabetic principles.
Collapse
Affiliation(s)
- Pravin P. Karle
- grid.412747.30000 0000 8673 788XDepartment of Pharmacology, School of Pharmacy, S.R.T.M. University, Nanded, 431606 MS India
| | - Shashikant C. Dhawale
- grid.412747.30000 0000 8673 788XDepartment of Pharmacology, School of Pharmacy, S.R.T.M. University, Nanded, 431606 MS India
| | - Vijay V. Navghare
- grid.412747.30000 0000 8673 788XDepartment of Pharmacology, School of Pharmacy, S.R.T.M. University, Nanded, 431606 MS India
| |
Collapse
|
25
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
26
|
Hernández Fuentes LM, Montalvo González E, García Magaña MDL, Anaya Esparza LM, Nolasco González Y, Villagrán Z, González Torres S, Velázquez Monreal JJ, Morelos Flores DA. Current Situation and Perspectives of Fruit Annonaceae in Mexico: Biological and Agronomic Importance and Bioactive Properties. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010007. [PMID: 35009011 PMCID: PMC8747276 DOI: 10.3390/plants11010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 05/20/2023]
Abstract
The Annonaceae family is one of the oldest angiosperms. The genus Annona is the one with the most species and, together with Asimina, the only ones that contain edible fruits. In the last 10 years, interest in these fruit species has increased, mainly due to their nutritional properties and their application in the treatment of human diseases. Mexico is the center of origin for most of them. However, at present much of the basic agronomic information, postharvest handling of the fruits, and their potential as new crops for areas with poor soils in organic matter or semi-dry climates is unknown. It is considered that these custard apple species may be an option to change towards instead of crops that have lost profitability and sustainability. A review of the current state of knowledge in different areas of the species A. muricata, A. macroprophyllata, A. reticulata, A. squamosa, and A. cherimola was carried out and to focus research efforts on the topics of greatest interest and on those where is required to achieve a sustainable production and use of these resources in Mexico. However, knowledge about the cultivation and potential uses of these species is needed to increase their commercialization; the integration of interdisciplinary and interinstitutional groups is required.
Collapse
Affiliation(s)
- Luis M. Hernández Fuentes
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Santiago Ixcuintla 63300, Nayarit, Mexico;
- Correspondence: (L.M.H.F.); (E.M.G.); (J.J.V.M.)
| | - Efigenia Montalvo González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (M.d.L.G.M.); (L.M.A.E.); (D.A.M.F.)
- Correspondence: (L.M.H.F.); (E.M.G.); (J.J.V.M.)
| | - Maria de Lourdes García Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (M.d.L.G.M.); (L.M.A.E.); (D.A.M.F.)
| | - Luis M. Anaya Esparza
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (M.d.L.G.M.); (L.M.A.E.); (D.A.M.F.)
- División de Ciencias Agropecuarias e Ingenierías, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Yolanda Nolasco González
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Santiago Ixcuintla 63300, Nayarit, Mexico;
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (M.d.L.G.M.); (L.M.A.E.); (D.A.M.F.)
| | - Zuamí Villagrán
- División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico; (Z.V.); (S.G.T.)
| | - Sughey González Torres
- División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico; (Z.V.); (S.G.T.)
| | - José Joaquín Velázquez Monreal
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tecomán 28925, Colima, Mexico
- Correspondence: (L.M.H.F.); (E.M.G.); (J.J.V.M.)
| | - David Antonio Morelos Flores
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico; (M.d.L.G.M.); (L.M.A.E.); (D.A.M.F.)
| |
Collapse
|
27
|
Contreras-Castro AI, Oidor-Chan VH, Bustamante-Camilo P, Pelayo-Zaldívar C, Díaz de León-Sánchez F, Mendoza-Espinoza JA. Chemical Characterization and Evaluation of the Antihyperglycemic Effect of Lychee ( Litchi chinensis Sonn.) cv. Brewster. J Med Food 2021; 25:61-69. [PMID: 34874786 DOI: 10.1089/jmf.2021.0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lychee is a fruit of Asian origin with an exquisite flavor and an attractive reddish color. However, according to recent reports, the consumption of this fruit reduces the levels of blood glucose with adverse effects on human health such as encephalopathy and hypoglycemic. The objective of this work was to determine if the peel, pulp, and seed of "Brewster" lychee fruits harvested at two stages of maturity had antihyperglycemic effect. This effect was determined by an oral glucose tolerance test using Wistar rats. In addition, ultraviolet-visible spectrophotometry and high-resolution liquid chromatography were used to quantify phenolic compounds, flavonoids, organic acids (OAs), sugars, and antioxidant activity. Results indicated that stage I pulp (immature fruits) and stage II peel and seed (export mature fruits) reduced blood glucose levels, and the effects of the former two were synergistic with metformin. The pulp of mature fruits (stage II), however, lacked a hypoglycemic effect. Additionally, the peel and the seeds of these fruits presented a high antioxidant activity (as determined by DPPH [2,2-diphenyl-2-picryl-hydracyl] and ABTS+ [2,2-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid] methods), which correlated well with the total content of phenolic compounds. The highest content of polyphenolics, flavonoids, and OAs was found in the extracts of the peel and seeds of both stages of maturity. It was therefore concluded that "Brewster" mature lychees are safe for human consumption, and both the seed and the peel can be useful sources for obtaining new compounds with antihyperglycemic activity.
Collapse
Affiliation(s)
- Alexandra Ivette Contreras-Castro
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, UAM-I, Ciudad de Mexico, Mexico
| | - Víctor Hugo Oidor-Chan
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, UAM-I, Ciudad de Mexico, Mexico
| | - Patricia Bustamante-Camilo
- Department of Human Biology, College of Sciences and Humanities, Universidad Autónoma de la Ciudad de México (UACM), Ciudad de Mexico, Mexico
| | - Clara Pelayo-Zaldívar
- Postharvest Physiology Laboratory of Fruits and Vegetables, Department of Biotechnology, Universidad Autónoma Metropolitana (UAM) Unidad Iztapalapa, Ciudad de Mexico, Mexico
| | - Fernando Díaz de León-Sánchez
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, UAM-I, Ciudad de Mexico, Mexico
| | - José Alberto Mendoza-Espinoza
- Department of Human Biology, College of Sciences and Humanities, Universidad Autónoma de la Ciudad de México (UACM), Ciudad de Mexico, Mexico
| |
Collapse
|
28
|
Tsong JL, Goh LPW, Gansau JA, How SE. Review of Nephelium lappaceum and Nephelium ramboutan-ake: A High Potential Supplement. Molecules 2021; 26:molecules26227005. [PMID: 34834094 PMCID: PMC8620321 DOI: 10.3390/molecules26227005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nephelium lappaceum (N. lappaceum) and Nephelium ramboutan-ake (N. ramboutan-ake) are tropical fruits that gain popularity worldwide due to their tastiness. Currently, their potential to be used as pharmaceutical agents is underestimated. Chronic diseases such as cancer, diabetes and aging have high incidence rates in the modern world. Furthermore, pharmaceutical agents targeting pathogenic microorganisms have been hampered by the growing of antimicrobial resistance threats. The idea of food therapy leads to extensive nutraceuticals research on the potential of exotic fruits such as N. lappaceum and N. ramboutan-ake to act as supplements. Phytochemicals such as phenolic compounds that present in the fruit act as potent antioxidants that contribute to the protective effects against diseases induced by oxidative stress. Fruit residuals such as the peel and seeds hold greater nutraceutical potential than the edible part. This review highlights the antioxidant and biological activities (anti-neoplastic, anti-microbial, hypoglycemic actions and anti-aging), and chemical contents of different parts of N. lappaceum and N. ramboutan-ake. These fruits contain a diverse and important chemical profile that can alleviate or cure diseases.
Collapse
|
29
|
Jiang H, Zhang W, Li X, Shu C, Jiang W, Cao J. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Langston FMA, Nash GR, Bows JR. The retention and bioavailability of phytochemicals in the manufacturing of baked snacks. Crit Rev Food Sci Nutr 2021; 63:2141-2177. [PMID: 34529547 DOI: 10.1080/10408398.2021.1971944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a growing body of evidence supporting the role that phytochemicals play in reducing the risk of various chronic diseases. Although there has been a rise in health products marketed as being "supergrains," "superfood," or advertising their abundance in antioxidants, these food items are often limited to powdered blends, dried fruit, nuts, or seeds, rarely intercepting the market of baked snacks. This is in part due to the still limited understanding of the impact that different industrial processes have on phytochemicals in a complex food matrix and their corresponding bioavailability. This review brings together the current data on how various industrial dehydration processes influence the retention and bioaccessibility of phytochemicals in baked snacks. It considers the interplay of molecules in an intricate snack matrix, limitations of conventional technologies, and constraints with consumer acceptance preventing wider utilization of novel technologies. Furthermore, the review takes a holistic approach, encompassing each stage of production-discussing the potential for inclusion of by-products to promote a circular economy and the proposal for a shift in agriculture toward biofortification or tailored growing of crops for their nutritional and post-harvest attributes.
Collapse
Affiliation(s)
- Faye M A Langston
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | - Geoff R Nash
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | | |
Collapse
|
31
|
de Souza AR, Schmiele M. Custard apple puree, fructooligosaccharide and soy protein hydrolysate as alternative ingredients in low carb pound cake. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3632-3644. [PMID: 34366480 PMCID: PMC8292479 DOI: 10.1007/s13197-021-05155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
The optimum formulation of a low carb pound cake was determined using alternative ingredients to replace the main sources of digestible carbohydrates in the standard formulation. Surface response methodology was a useful tool in the investigation of the use of custard apple puree (CAP), fructooligosaccharides (FOS) and soy protein hydrolysate (SPH) as partial or total replacers for wheat flour, sucrose, and powdered whole milk, respectively. The quality of pound cakes was assessed by measuring the batter and cake properties. The percentage of ingredients substitution affected the specific gravity of the batter, cakes specific volume, crumb firmness, instrumental color parameters (L*, a*, b*) and number and circularity of alveoli from pound cake slices. The model equations developed can be used for predicting the quality of the pound cake. The optimum formulation of low carb pound cake with 40.98% of CAP, 94.94% of FOS and 100% of SPH, in replacement of wheat flour, sucrose and powdered whole milk, respectively, has a 93.70% of desirability. A reduction of 60.67% in digestible carbohydrates was reached. The main reduction occurs in the starch content due to the wheat flour replacement and the non-reducing sugar content due to the sucrose partial substitution. The low carb pound cake had a moderate glycemic index (60.08%), a low glycemic load (4.69%) and accepted by the judges through sensory analysis, with an acceptability index of 72.08 ± 3.97%. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05155-9.
Collapse
Affiliation(s)
- Adrielle Reis de Souza
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway, Km 583, n. 5000, Diamantina, MG 39100-000 Brazil
- Department of Food Technology, University of Campinas, Monteiro Lobato Street, n. 80, Campinas, SP 13083-862 Brazil
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway, Km 583, n. 5000, Diamantina, MG 39100-000 Brazil
| |
Collapse
|
32
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
33
|
Pinho LS, Silva MP, Thomazini M, Cooperstone JL, Campanella OH, Costa Rodrigues CE, Favaro‐Trindade CS. Guaraná (
Paullinia cupana
) by‐product as a source of bioactive compounds and as a natural antioxidant for food applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lorena Silva Pinho
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | - Marluci Palazzolli Silva
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| | - Marcelo Thomazini
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| | - Jessica L. Cooperstone
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
- Department of Horticulture and Crop Science College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology College of Food, Agricultural, and Environmental Sciences Ohio State University Columbus OH USA
| | | | - Carmen Sílvia Favaro‐Trindade
- Departamento de Engenharia de Alimentos Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
34
|
High Hydrostatic Pressure-Assisted Extraction of Carotenoids from Papaya (Carica papaya L. cv. Maradol) Tissues Using Soybean and Sunflower Oil as Potential Green Solvents. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09289-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Gastroprotective Effect of Ethanol Extracts from Bark of Magnolia officinalis on Ethanol-Induced Gastric Mucosal Damage in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6688414. [PMID: 34159200 PMCID: PMC8187047 DOI: 10.1155/2021/6688414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Background. Magnolia officinalis Rehd. and Wils. is widely used in Asian countries because of its multiple pharmacological effects. This study investigated the gastroprotective effect and mechanisms of the ethanol extracts from the bark of Magnolia officinalis (MOE) against ethanol-induced gastric mucosal damage in rats. Methods. MOE was prepared by reflux extraction with 70% ethanol, and its main compounds were analyzed by UPLC-Q-Exactive Orbitrap-MS. DPPH, ABTS, and FRAP methods were used to evaluate the antioxidant capacity of MOE in vitro. The gastroprotective effects of MOE were evaluated by the area of gastric injury, H&E (hematoxylin-eosin), and PAS (periodic acid-Schiff). The mechanism was explored by measuring the levels of cytokines and protein in the NF-κB signaling pathway. Results. 30 compounds were identified from MOE, mainly including lignans and alkaloids. MOE presented a high antioxidant activity in several oxidant in vitro systems. Gastric ulcer index and histological examination showed that MOE reduced ethanol-induced gastric mucosal injury in a dose-dependent manner. MOE pretreatment significantly restored the depleted activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzymes, reduced malondialdehyde (MDA), and prostaglandin E2 (PGE2) levels in the gastric tissue in rats. In addition, MOE also inhibited the activation of nuclear factor kappa B (NF-κB) pathway and decreased the production of proinflammatory cytokines. Conclusions. The gastroprotective effect of MOE was attributed to the inhibition of oxidative stress and the NF-κB inflammatory pathway. The results provided substantial evidence that MOE could be a promising phytomedicine for gastric ulcer prevention.
Collapse
|
36
|
Larrosa APQ, Otero DM. Flour made from fruit by‐products: Characteristics, processing conditions, and applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ana Paula Q. Larrosa
- Departamento de Engenharia de Alimentos Centro de Tecnologia Universidade Estadual de Maringá Maringá Brazil
| | - Deborah M. Otero
- Departamento de Ciência de Alimentos Escola de Nutrição Universidade Federal da Bahia Salvador Brazil
| |
Collapse
|
37
|
Lee YH, Yoon SY, Baek J, Kim SJ, Yu JS, Kang H, Kang KS, Chung SJ, Kim KH. Metabolite Profile of Cucurbitane-Type Triterpenoids of Bitter Melon (Fruit of Momordica charantia) and Their Inhibitory Activity against Protein Tyrosine Phosphatases Relevant to Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1816-1830. [PMID: 33406828 DOI: 10.1021/acs.jafc.0c06085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Qualitative analysis of cucurbitane-type triterpenoids of bitter melon (fruit of Momordica charantia L.) using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry revealed 27 promising cucurbitane-type triterpenoids, and LC/MS-guided chemical analysis of M. charantia fruit extract led to the isolation and structural characterization of 22 cucurbitane-type triterpenoids (1-22), including 8 new cucurbitane-type triterpenoidal saponins, yeojoosides A-H (1-8). The structures of the new compounds (1-8) were elucidated by spectroscopic methods, including 1D and 2D NMR and high-resolution electrospray ionization mass spectrometry. Their absolute configurations were assigned by quantum chemical electronic circular dichroism calculations, chemical reactions, and DP4+ analysis using gauge-including atomic orbital NMR chemical shift calculations. All isolated compounds (1-22) were examined for inhibitory activity against protein tyrosine phosphatases relevant to insulin resistance. Nine compounds (7, 8, 9, 11, 14, 15, 19, 20, and 21) showed selective inhibitory effects of over 70% against PTPN2. The present results suggested that these compounds would be potential antidiabetic agents.
Collapse
Affiliation(s)
- Yong Hoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Korea
| | - Jiyun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
38
|
Anaya-Esparza LM, García-Magaña MDL, Abraham Domínguez-Ávila J, Yahia EM, Salazar-López NJ, González-Aguilar GA, Montalvo-González E. Annonas: Underutilized species as a potential source of bioactive compounds. Food Res Int 2020; 138:109775. [DOI: 10.1016/j.foodres.2020.109775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
|
39
|
de Oliveira SD, Araújo CM, Borges GDSC, Lima MDS, Viera VB, Garcia EF, de Souza EL, de Oliveira MEG. Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Tan L, Jin Z, Ge Y, Nadeem H, Cheng Z, Azeem F, Zhan R. Comprehensive ESI-Q TRAP-MS/MS based characterization of metabolome of two mango (Mangifera indica L) cultivars from China. Sci Rep 2020; 10:20017. [PMID: 33208758 PMCID: PMC7676270 DOI: 10.1038/s41598-020-75636-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Polyphenols based bioactive compounds from vegetables and fruits are known for impressive antioxidant activity. Ingestion of these antioxidants may promote human health against cardiovascular diseases and cancer. Mango is a popular tropical fruit with special taste, high nutritional value and health-enhancing metabolites. The aim was to investigate the diversity of phytochemicals between two mango cultivars of china at three stages of fruit maturity. We used ESI-QTRAP-MS/MS approach to characterize comprehensively the metabolome of two mango cultivars named Hongguifei (HGF) and Tainong (TN). HPLC was used to quantify selected catechin based phenolic compounds. Moreover, real-time qPCR was used to study the expression profiles of two key genes (ANR and LAR) involved in proanthocyanidin biosynthesis from catechins and derivatives. A total of 651 metabolites were identified, which include at least 257 phenolic compounds. Higher number of metabolites were differentially modulated in peel as compared to pulp. Overall, the relative quantities of amino acids, carbohydrates, organic acids, and other metabolites were increased in the pulp of TN cultivar. While the contents of phenolic compounds were relatively higher in HGF cultivar. Moreover, HPLC based quantification of catechin and derivatives exhibited cultivar specific variations. The ANR and LAR genes exhibited an opposite expression profile in both cultivars. Current study is the first report of numerous metabolites including catechin-based derivatives in mango fruit. These findings open novel possibilities for the use of mango as a source of bioactive compounds.
Collapse
Affiliation(s)
- Lin Tan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zhiqiang Jin
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yu Ge
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Farrukh Azeem
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
41
|
Almeida RLJ, Santos NC, Alves IL, André AMMCN. Evaluation of thermodynamic properties and antioxidant activities of Achachairu (
Garcinia humilis
) peels under drying process. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Newton Carlos Santos
- Department of Chemical Engineering Federal University of Rio Grande do Norte Natal Brazil
| | - Israel Luna Alves
- Department of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | | |
Collapse
|
42
|
Jana S, Mukherjee S, Ali I, Ray B, Ray S. Isolation, structural features, in vitro antioxidant activity and assessment of complexation ability with β-lactoglobulin of a polysaccharide from Borassus flabellifer fruit. Heliyon 2020; 6:e05499. [PMID: 33294661 PMCID: PMC7700886 DOI: 10.1016/j.heliyon.2020.e05499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
This research was intended to investigate the structural feature, antioxidative activity and interaction with β-lactoglobulin (β-lg) of a polysaccharide (P) isolated from Borassus flabellifer fruit thru aqueous extraction, protein elimination and chromatographic techniques. Polysaccharide P (molecular weight: 21,000 g mol-1) was constituted of arabinose, galactose, glucose, and rhamnose in a 50:24:20:6 M ratio alongside 9% (w/w) galacturonic acid. It encompassed a petite backbone entailing galacturonopyranosyl and rhamnopyranosyl units substituted with sizable side chains comprising of arabinofuranosyl, galactopyranosyl and esterified coumaric acid (CA) residues. Various series of oligosaccharides including (i) Gal1,2,4-9Ac5-29, (ii) Ara2-3Ac6-8, (iii) Gal3Ara1-3Ac13-17, (iv) Gal4-6Ara2Ac18-24, (v) Gal6Ara1Ac22 and (vi) Gal1Ara2CA1Ac7 and Gal1Ara3CA1Ac9 epitomizing polysaccharide structure were generated and characterised. Fraction P exhibited dose-dependent antioxidant activity and possessed a strong β-lactoglobulin binding capability. Accordingly, B. flabellifer fruit offers an antioxidative polysaccharide having novel structure that can associate with β-lg and, hence, useful in formulating novel food possessing adjustable composition.
Collapse
Affiliation(s)
| | | | - Imran Ali
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Bimalendu Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| | - Sayani Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal 713 104, India
| |
Collapse
|
43
|
Hua M, Sun Y, Shao Z, Lu J, Lu Y, Liu Z. Functional soluble dietary fiber from ginseng residue: Polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. J Food Biochem 2020; 44:e13524. [PMID: 33073381 DOI: 10.1111/jfbc.13524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023]
Abstract
Ginseng (Panax ginseng C.A. Meyer) is the most famous edible Chinese herbal medicine. In the present study, soluble dietary fiber of ginseng (ginseng-SDF, 8.98% content) was extracted from ginseng residue, and its physicochemical characterization, structure, and biological activities were studied. Ginseng-SDF was an acidic heteropolysaccharide (uronic acid, 4.42% content) rich in protein, amino acids, and mineral elements. Glucose was its main monosaccharide composition (58.03%). Ginseng-SDF had a porous microstructure, a typical cellulose I structure and a large number of hydroxyl functional groups. These chemical composition and structural characteristics gave ginseng-SDF a good water solubility (98.56%), oil-holding capacity (OHC) (3.01 g/g), and biological activities, as the antioxidant activity (13.35 μM TE/g, 105.17 μM TE/g, 54.20 μM TE/g for DPPH, ABTs, and FRAP assays, respectively), glucose diffusion retardation index (GDRI, 33.33%-7.43%), and α-amylase/α-glucosidase inhibitory activities (IC50 , 6.70 mg/ml, and 4.89 mg/ml, respectively). The results suggested that ginseng residue is a valuable source of functional dietary fiber, and the ginseng-SDF has a potential use in antioxidant and hypoglycemic foods. PRACTICAL APPLICATIONS: Ginseng has long been popular as a health food in Asia, North America, and Europe. Ginseng residue is rich in polysaccharides, dietary fiber, proteins, and other components, which is also of great research value. However, there are few studies focus on the soluble dietary fiber of ginseng at present. The research shows that ginseng residue is a valuable source of functional dietary fiber. The chemical components and structural characteristics give ginseng-SDF a noteworthy antioxidant activity and enzyme inhibitory activity in vitro. These properties and biological activities indicate that ginseng-SDF has application value in antioxidant and hypoglycemic foods.
Collapse
Affiliation(s)
- Mei Hua
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zijun Shao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaxi Lu
- The Hague University of Applied Science, The Hague, the Netherlands
| | - Yushun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhengbo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
44
|
Bioactive compounds and health benefits of Pereskioideae and Cactoideae: A review. Food Chem 2020; 327:126961. [DOI: 10.1016/j.foodchem.2020.126961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
|
45
|
Leite DOD, de F. A. Nonato C, Camilo CJ, de Carvalho NKG, da Nobrega MGLA, Pereira RC, da Costa JGM. Annona Genus: Traditional Uses, Phytochemistry and Biological Activities. Curr Pharm Des 2020; 26:4056-4091. [DOI: 10.2174/1381612826666200325094422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Abstract
Species from the Annona (Anonaceae) genus are used in traditional medicine for the treatment of various
diseases. Ethnobotanical studies provide information regarding the plant part and the preparation method
being used, while scientific studies such as in vitro, in vivo, and clinical tests can provide evidence supporting
ethnopharmacological reports, directing studies towards the isolation of compounds which may be active for
specific pathologies. Annona muricata and Annona squamosa were the most commonly reported species from
those studied, with Annona cherimola and Annona classiflora also standing out. Acetogenins were the most
commonly isolated metabolite class due to their cytotoxic properties, with flavonoids, alkaloids, steroids, and
peptides also being reported. Many species from the Annona genus have proven biological activities, such as
antitumor, antioxidant, antimicrobial and antifungal. The present review had as its objective to facilitate access to
ethnobotanical, chemical and biological information in order to direct future researches.
Collapse
Affiliation(s)
- Débora O. D. Leite
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Carla de F. A. Nonato
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Cicera J. Camilo
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Natália K. G. de Carvalho
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Mário G. L. A. da Nobrega
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Rafael C. Pereira
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - José G. M. da Costa
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| |
Collapse
|
46
|
COSTA RSD, SANTOS OVD, RODRIGUES AMDC, RIBEIRO-COSTA RM, CONVERTI A, SILVA JÚNIOR JOC. Functional product enriched with the microencapsulated extract of cupuassu (Theobroma grandiflorum Schum.) seed by-product. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.11319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Pacheco N, Méndez-Campos GK, Herrera-Pool IE, Alvarado-López CJ, Ramos-Díaz A, Ayora-Talavera T, Talcott SU, Cuevas-Bernardino JC. Physicochemical composition, phytochemical analysis and biological activity of ciricote ( Cordia dodecandra A. D.C.) fruit from Yucatán. Nat Prod Res 2020; 36:440-444. [PMID: 32496133 DOI: 10.1080/14786419.2020.1774763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The physicochemical properties, proximate composition, minerals, total polyphenols, carotenoids, phenolic compounds, antioxidant, and antibacterial activities of ciricote (Cordia dodecandra A. DC.) tropical fruit were investigated. Minerals were quantified by using micro-Energy Dispersive X-Ray Fluorescence. Lutein and β-carotene were identified in ciricote fruit by using UPLC-PDA analysis. The highest values of the total polyphenols content and antioxidant activity were presented in ethanolic crude extracts obtaining by the ultrasonic-assisted method with freeze-dried fruit. The phenolic acids profile was identified and quantified by UPLC-PDA-ESI-MS. The main phenolic acids were caffeoyl hexoside, rufescenolide, quercetin 3-O-rutinoside, and rosmarinic acid. The ciricote extracts presented antibacterial activity against Staphylococus aureus (Gram+) and Salmonella typhymurium (Gram-). In conclusion, the ciricote (Cordia dodecandra A. DC.) tropical fruits could be very useful source of biological macromolecules, micro-elements, and phytochemical compounds for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Mérida, Mexico
| | - Gloria K Méndez-Campos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Mérida, Mexico.,Industrias Alimentarias, Instituto Tecnológico Superior de Martínez de la Torre, Martínez de la Torre, Mexico
| | - I Emanuel Herrera-Pool
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Mérida, Mexico
| | | | - Ana Ramos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Mérida, Mexico
| | - Teresa Ayora-Talavera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Mérida, Mexico
| | - Susanne U Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, United States
| | - Juan C Cuevas-Bernardino
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Mérida, Mexico
| |
Collapse
|
48
|
Saleem H, Sarfraz M, Khan KM, Anwar MA, Zengin G, Ahmad I, Khan SU, Mahomoodally MF, Ahemad N. UHPLC-MS phytochemical profiling, biological propensities and in-silico studies of Alhagi maurorum roots: a medicinal herb with multifunctional properties. Drug Dev Ind Pharm 2020; 46:861-868. [PMID: 32352878 DOI: 10.1080/03639045.2020.1762199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The biological, chemical, and in silico properties of methanol and dichloromethane (DCM) extracts of Alhagi maurorum roots with respect to the antioxidant, enzyme inhibition, and phytochemical composition were evaluated. Total bioactive contents were determined spectrophotometrically, and the individual secondary metabolites composition was assessed via ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) analysis. Antioxidant capacities were evaluated using a panoply of assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging, ferric reducing antioxidant power (FRAP), cupric reducing antioxidant power (CUPRAC), phosphomolybdenum total antioxidant capacity (TAC), and metal chelating activity (MCA)). The enzyme inhibition potential was studied against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, tyrosinase, urease and lipoxygenase (LOX) enzymes. The methanol extract was found to contain higher total phenolic (105.91 mg GAE/g extract) and flavonoid (2.27 mg RE/g extract) contents which can be correlated to its more substantial antioxidant potential as well as AChE, BChE, tyrosinase and α-glucosidase inhibition. However, the DCM extract was the most effective against α-amylase (1.86 mmol ACAE/g extract) enzyme inhibition. The UHPLC-MS analysis of methanol extract identified the tentative presence of a total of 18 secondary metabolites, including flavonoids, saponins, phenolic and terpenoid derivatives. Three compounds named emmotin A, luteolin 5,3'-dimethyl ether, and preferrugone were further investigated for their in silico molecular docking studies against the tested enzymes. The selected compounds were found to have higher binding interaction with AChE followed by BChE, α-glucosidase, α-amylase, and tyrosinase. The results of the present study have demonstrated A. mauroram to be considered as a lead source of natural antioxidant and enzyme inhibitor compounds.
Collapse
Affiliation(s)
- Hammad Saleem
- School of Pharmacy, Monash University, Selangor, Malaysia.,Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | | | - Kashif Maqbool Khan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | | | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Irshad Ahmad
- Department of Pharmacy, The Islamia University of Bahawalpur, Karachi, Pakistan
| | | | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Nafees Ahemad
- School of Pharmacy, Monash University, Selangor, Malaysia
| |
Collapse
|
49
|
Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Ben-Othman S, Jõudu I, Bhat R. Bioactives From Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020; 25:E510. [PMID: 31991658 PMCID: PMC7037811 DOI: 10.3390/molecules25030510] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sustainable utilization of agri-food wastes and by-products for producing value-added products (for cosmetic, pharmaceutical or food industrial applications) provides an opportunity for earning additional income for the dependent industrial sector. Besides, effective valorisation of wastes/by-products can efficiently help in reducing environmental stress by decreasing unwarranted pollution. The major focus of this review is to provide comprehensive information on valorisation of agri-food wastes and by-products with focus laid on bioactive compounds and bioactivity. The review covers the bioactives identified from wastes and by-products of plants (fruits, exotic fruits, vegetables and seeds), animals (dairy and meat) and marine (fish, shellfish seaweeds) resources. Further, insights on the present status and future challenges of sustainably utilizing agri-food wastes/by-products for value addition will be highlighted.
Collapse
Affiliation(s)
- Sana Ben-Othman
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| | - Ivi Jõudu
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| |
Collapse
|